Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design of Novel Imidazopyrazine Derivative against Breast Cancer via Targeted NPY1R Antagonist

Author(s): Vidya Niranjan*, Vibha R, Sarah Philip, Akshay Uttarkar, Raviraj Kusanur and Jitendra Kumar*

Volume 23, Issue 15, 2023

Published on: 22 May, 2023

Page: [1783 - 1793] Pages: 11

DOI: 10.2174/1871520623666230505100031

Price: $65

Abstract

Introduction: Breast cancer is the most frequent malignancy in women with more than one in ten new cancer diagnoses each year. Synthetic products are a key source for the identification of new anticancer medicines and drug leads.

Objectives: Imidazopyrazine is a highly favored skeleton for the design of new anticancer drugs. In silico designed derivatives were screened using computer aided drug design techniques and validated using MTT assay.

Methods: A template-based methodology was used in the current work to create novel Imidazopyrazine derivatives, targeting the NPY1R protein. Molecular docking, Diffusion docking, MD simulation, MM-GBSA and meta-dynamics techniques were followed. MTT assay was performed to validate the activity of principal compound.

Results: A docking score of -6.660 and MMGBSA value of -108.008 (+/-) 9.14 kcal/mol was obtained from the investigations conducted. In addition, molecular dynamics simulation was carried out for 500 ns, yielding a stable RMSD and value of 5.6 Å, thus providing insights on the stability of the protein conformation on interaction with the principal compound. Furthermore, the in vivo validation studies conducted via MTT assay showed an IC50 value of 73.45 (+/-) 0.45 μg /mL.

Conclusion: The research has produced encouraging findings and can be applied as a model for precise enumerations in the future. It also encourages the study of novel synthetic compounds with potential anti-cancer properties.

Keywords: NPY1R, imidazopyrazine, MM-GBSA, MTT assay, MCF-7 cell line, molecular dynamics simulation.

« Previous
Graphical Abstract
[1]
Ferguson, T.F.; Kumar, S.; Danos, D. Abstract P148: Heart disease among breast cancer patients. Circulation, 2018, 137(S1), AP148.
[2]
Muchtaridi, M.; Jajuli, M.; Yusuf, M. Antagonistic mechanism of chalcone derivatives against human estrogen alpha of breast cancer using molecular dynamic simulation. Orient. J. Chem., 2018, 34(6), 2735-2741.
[http://dx.doi.org/10.13005/ojc/340607]
[3]
Sharma, P.; LaRosa, C.; Antwi, J.; Govindarajan, R.; Werbovetz, K.A. Imidazoles as potential anticancer agents: An update on recent studies. Molecules, 2021, 26(14), 4213.
[http://dx.doi.org/10.3390/molecules26144213] [PMID: 34299488]
[4]
Khoogar, R.; Kim, B.C.; Morris, J.; Wargovich, M.J. Chemoprevention in gastrointestinal physiology and disease. Targeting the progression of cancer with natural products: A focus on gastrointestinal cancer. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 310(9), G629-G644.
[http://dx.doi.org/10.1152/ajpgi.00201.2015] [PMID: 26893159]
[5]
Bouloc, N.; Large, J.M.; Kosmopoulou, M.; Sun, C.; Faisal, A.; Matteucci, M.; Reynisson, J.; Brown, N.; Atrash, B.; Blagg, J.; McDonald, E.; Linardopoulos, S.; Bayliss, R.; Bavetsias, V. Structure-based design of imidazo[1,2-a]pyrazine derivatives as selective inhibitors of Aurora-A kinase in cells. Bioorg. Med. Chem. Lett., 2010, 20(20), 5988-5993.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.091] [PMID: 20833547]
[6]
Hatti, I.; Sreenivasulu, R.; Jadav, S.S.; Ahsan, M.J.; Raju, R.R. Synthesis and biological evaluation of 1,3,4-oxadiazole-linked bisindole derivatives as anticancer agents. Monatsh. fur Chem, 2015, 146(10), 1699-1705.
[7]
Myadaraboina, S.; Alla, M.; Parlapalli, A.; Manda, S. Novel Imidazo [1, 2-a] Pyrazine Derivatives: design, synthesis, antioxidant and antimicrobial evaluations. Int. J. Chem. Sci., 2018, 16(3), 276.
[8]
Kang, S.J.; Lee, J.W.; Chung, S.H.; Jang, S.Y.; Choi, J.; Suh, K.H.; Kim, Y.H.; Ham, Y.J.; Min, K.H. Synthesis and anti-tumor activity of imidazopyrazines as TAK1 inhibitors. Eur. J. Med. Chem., 2019, 163, 660-670.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.025] [PMID: 30576901]
[9]
Takiyyuddin, M.A.; Brown, M.R.; Dinh, T.Q.; Cervenka, J.H.; Braun, S.D.; Parmer, R.J.; Kennedy, B.; O’Connor, D.T. Sympatho-adrenal secretion in humans: Factors governing catecholamine and storage vesicle peptide co-release. J. Auton. Pharmacol., 1994, 14(3), 187-200.
[http://dx.doi.org/10.1111/j.1474-8673.1994.tb00601.x] [PMID: 7929473]
[10]
Díaz-Cabiale, Z.; Parrado, C.; Rivera, A.; de la Calle, A.; Agnati, L.; Fuxe, K.; Narváez, J.A.; Galanin-neuropeptide, Y. (NPY) interactions in central cardiovascular control: Involvement of the NPY Y1 receptor subtype. Eur. J. Neurosci., 2006, 24(2), 499-508.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04937.x] [PMID: 16903855]
[11]
DelTondo, J.; Por, I.; Hu, W.; Merchenthaler, I.; Semeniken, K.; Jojart, J.; Dudas, B. Associations between the human growth hormone-releasing hormone- and neuropeptide-Y-immunoreactive systems in the human diencephalon: A possible morphological substrate of the impact of stress on growth. Neuroscience, 2008, 153(4), 1146-1152.
[http://dx.doi.org/10.1016/j.neuroscience.2008.02.072] [PMID: 18423883]
[12]
Zhou, Z.; Zhu, G.; Hariri, A.R.; Enoch, M.A.; Scott, D.; Sinha, R.; Virkkunen, M.; Mash, D.C.; Lipsky, R.H.; Hu, X.Z.; Hodgkinson, C.A.; Xu, K.; Buzas, B.; Yuan, Q.; Shen, P.H.; Ferrell, R.E.; Manuck, S.B.; Brown, S.M.; Hauger, R.L.; Stohler, C.S.; Zubieta, J.K.; Goldman, D. Genetic variation in human NPY expression affects stress response and emotion. Nature, 2008, 452(7190), 997-1001.
[http://dx.doi.org/10.1038/nature06858] [PMID: 18385673]
[13]
Farzi, A.; Hassan, A.M.; Zenz, G.; Holzer, P. Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Mol. Aspects Med., 2019, 66, 80-93.
[http://dx.doi.org/10.1016/j.mam.2018.11.003] [PMID: 30513310]
[14]
Zhang, L.; Bijker, M.S.; Herzog, H. The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol. Ther., 2011, 131(1), 91-113.
[http://dx.doi.org/10.1016/j.pharmthera.2011.03.011] [PMID: 21439311]
[15]
Park, C.; Kim, J.; Ko, S.B.; Choi, Y.K.; Jeong, H.; Woo, H.; Kang, H.; Bang, I.; Kim, S.A.; Yoon, T.Y.; Seok, C.; Im, W.; Choi, H.J. Structural basis of neuropeptide Y signaling through Y1 receptor. Nat. Commun., 2022, 13(1), 853-853.
[http://dx.doi.org/10.1038/s41467-022-28510-6] [PMID: 35165283]
[16]
Bhat, R.; Vasaikar, S.; Bae, L.; Carmine, D.A.; Cataldo, M.L.; Nanda, S.; Zhang, B.; Schiff, R.; Trivedi, M.V. Abstract 1926: Npy1r as a prognostic marker and a novel drug target in estrogen receptor-positive breast cancer. Cancer Res., 2018, 78(13), 1926-1926.
[http://dx.doi.org/10.1158/1538-7445.AM2018-1926]
[17]
Wittrisch, S.; Klöting, N.; Mörl, K.; Chakaroun, R.; Blüher, M.; Beck-Sickinger, A.G. NPY1R-targeted peptide-mediated delivery of a dual PPARα/γ agonist to adipocytes enhances adipogenesis and prevents diabetes progression. Mol. Metab., 2020, 31, 163-180.
[http://dx.doi.org/10.1016/j.molmet.2019.11.009] [PMID: 31918918]
[18]
Dawoud, M.M.; Abdelaziz, K.K.E.; Alhanafy, A.M.; Ali, M.S.E.d.; Elkhouly, E.A.B. Clinical significance of immunohistochemical expression of neuropeptide Y1 receptor in patients with breast cancer in Egypt. Applied Immunohistochemistry &amp. Molecular Morphology, 2020, 29(4), 277-286.
[19]
Taylor, I.L. Pancreatic polypeptide family: Pancreatic polypeptide, neuropeptide Y, and peptide YY. In: Comprehensive Physiology; Wiley: Hoboken, New Jersey, 1989; pp. 475-543.
[http://dx.doi.org/10.1002/cphy.cp060221]
[20]
Körner, M.; Waser, B.; Reubi, J.C. High expression of neuropeptide Y1 receptors in ewing sarcoma tumors. Clin. Cancer Res., 2008, 14(16), 5043-5049.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4551] [PMID: 18698022]
[21]
Sheriff, S.; Ali, M.; Yahya, A.; Haider, K.H.; Balasubramaniam, A.; Amlal, H. Neuropeptide Y Y5 receptor promotes cell growth through extracellular signal-regulated kinase signaling and cyclic AMP inhibition in a human breast cancer cell line. Mol. Cancer Res., 2010, 8(4), 604-614.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0301] [PMID: 20332211]
[22]
Amlal, H.; Faroqui, S.; Balasubramaniam, A.; Sheriff, S. Estrogen up-regulates neuropeptide Y Y1 receptor expression in a human breast cancer cell line. Cancer Res., 2006, 66(7), 3706-3714.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2744] [PMID: 16585197]
[23]
Medeiros, P.J.; Al-Khazraji, B.K.; Novielli, N.M.; Postovit, L.M.; Chambers, A.F.; Jackson, D.N. Neuropeptide Y stimulates proliferation and migration in the 4T1 breast cancer cell line. Int. J. Cancer, 2012, 131(2), 276-286.
[http://dx.doi.org/10.1002/ijc.26350] [PMID: 21823118]
[24]
Guérin, B.; Dumulon-Perreault, V.; Tremblay, M.C.; Ait-Mohand, S.; Fournier, P.; Dubuc, C.; Authier, S.; Bénard, F. [Lys(DOTA)4]BVD15, a novel and potent neuropeptide Y analog designed for Y1 receptor-targeted breast tumor imaging. Bioorg. Med. Chem. Lett., 2010, 20(3), 950-953.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.068] [PMID: 20042335]
[25]
Liu, L.; Xu, Q.; Cheng, L.; Ma, C.; Xiao, L.; Xu, D.; Gao, Y.; Wang, J.; Song, H. NPY1R is a novel peripheral blood marker predictive of metastasis and prognosis in breast cancer patients. Oncol. Lett., 2015, 9(2), 891-896.
[http://dx.doi.org/10.3892/ol.2014.2721] [PMID: 25624911]
[26]
Bhat, R.; Thangavel, H.; Abdulkareem, N.M.; Vasaikar, S.; De Angelis, C.; Bae, L.; Cataldo, M.L.; Nanda, S.; Fu, X.; Zhang, B.; Schiff, R.; Trivedi, M.V. NPY1R exerts inhibitory action on estradiol-stimulated growth and predicts endocrine sensitivity and better survival in ER-positive breast cancer. Sci. Rep., 2022, 12(1), 1972-1972.
[http://dx.doi.org/10.1038/s41598-022-05949-7] [PMID: 35121782]
[27]
Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B.J.; Bosse, M.; Burkert, K.; Kögler, L.M.; Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; Xu, B.; Larhammar, D.; Stevens, R.C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A.G.; Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor. Nature, 2018, 556(7702), 520-524.
[http://dx.doi.org/10.1038/s41586-018-0046-x] [PMID: 29670288]
[28]
Berman, H.; Henrick, K.; Nakamura, H.; Markley, J.L. The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data. Nucleic Acids Res., 2007, 35, D301-D303.
[http://dx.doi.org/10.1093/nar/gkl971] [PMID: 17142228]
[29]
Madhavi S, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[30]
Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des., 2010, 24(6-7), 591-604.
[http://dx.doi.org/10.1007/s10822-010-9349-1] [PMID: 20354892]
[31]
Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des., 2007, 21(12), 681-691.
[http://dx.doi.org/10.1007/s10822-007-9133-z] [PMID: 17899391]
[32]
Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.; Friesner, R.A.; Harder, E.D. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput., 2019, 15(3), 1863-1874.
[http://dx.doi.org/10.1021/acs.jctc.8b01026] [PMID: 30768902]
[33]
Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; Kaus, J.W.; Cerutti, D.S.; Krilov, G.; Jorgensen, W.L.; Abel, R.; Friesner, R.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 2016, 12(1), 281-296.
[http://dx.doi.org/10.1021/acs.jctc.5b00864] [PMID: 26584231]
[34]
Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519.
[http://dx.doi.org/10.1021/ct900587b] [PMID: 26615687]
[35]
Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS All-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236.
[http://dx.doi.org/10.1021/ja9621760]
[36]
Jorgensen, W.L.; Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 1988, 110(6), 1657-1666.
[http://dx.doi.org/10.1021/ja00214a001] [PMID: 27557051]
[37]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[38]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[39]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[40]
Goel, R.; Luxami, V.; Paul, K. Recent advances in development of imidazo[1,2-a]pyrazines: synthesis, reactivity and their biological applications. Org. Biomol. Chem., 2015, 13(12), 3525-3555.
[http://dx.doi.org/10.1039/C4OB01380H] [PMID: 25563506]
[41]
Patagar, D.; Kusanur, R.; Sitwala, N.D.; Ghate, M.D.; Saravanakumar, S.; Nembenna, S.; Gediya, P.A. Synthesis of novel 4-substituted coumarins, docking studies, and DHODH inhibitory activity. J. Heterocycl. Chem., 2019, 56(10), 2761-2771.
[http://dx.doi.org/10.1002/jhet.3644]
[42]
Bowers, K.J.; Sacerdoti, F.D.; Salmon, J.K.; Shan, Y.; Shaw, D.E.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A. Molecular dynamics: Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC '06, ACM Press, 2006.
[43]
Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A, 2001, 105(43), 9954-9960.
[http://dx.doi.org/10.1021/jp003020w]
[44]
Uttarkar, A.; Kishore, A.P.; Srinivas, S.M.; Rangappa, S.; Kusanur, R.; Niranjan, V. Coumarin derivative as a potent drug candidate against triple negative breast cancer targeting the frizzled receptor of wingless-related integration site signaling pathway. J. Biomol. Struct. Dyn., 2023, 41(5), 1561-1573.
[PMID: 34984961]
[45]
Patagar, D.; Uttarkar, A.; Patra, S.M.; Patil, J.H.; Kusanur, R.; Niranjan, V.; Kumar, H.G.A. Spiro benzodiazepine substituted fluorocoumarins as potent anti-anxiety agents. Russ. J. Bioorganic Chem., 2021, 47(2), 390-398.
[http://dx.doi.org/10.1134/S1068162021020199]
[46]
Posch, H.A.; Hoover, W.G.; Vesely, F.J. Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. Phys. Rev. A Gen. Phys., 1986, 33(6), 4253-4265.
[http://dx.doi.org/10.1103/PhysRevA.33.4253] [PMID: 9897167]
[47]
Mongan, J.; Simmerling, C.; McCammon, J.A.; Case, D.A.; Onufriev, A. Generalized Born model with a simple, robust molecular volume correction. J. Chem. Theory Comput., 2007, 3(1), 156-169.
[http://dx.doi.org/10.1021/ct600085e] [PMID: 21072141]
[48]
Grant, J.A.; Pickup, B.T.; Sykes, M.J.; Kitchen, C.A.; Nicholls, A. A simple formula for dielectric polarisation energies: The Sheffield Solvation Model. Chem. Phys. Lett., 2007, 441(1-3), 163-166.
[http://dx.doi.org/10.1016/j.cplett.2007.05.008]
[49]
Grant, J.A.; Pickup, B.T.; Sykes, M.J.; Kitchen, C.A.; Nicholls, A. The gaussian generalized born model: Application to small molecules. Phys. Chem. Chem. Phys., 2007, 9(35), 4913-4922.
[http://dx.doi.org/10.1039/b707574j] [PMID: 17912422]
[50]
Onufriev, A.V.; Case, D.A. Generalized born implicit solvent models for biomolecules. Annu. Rev. Biophys., 2019, 48(1), 275-296.
[http://dx.doi.org/10.1146/annurev-biophys-052118-115325] [PMID: 30857399]
[51]
Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 2011, 79(10), 2794-2812.
[http://dx.doi.org/10.1002/prot.23106] [PMID: 21905107]
[52]
Niranjan, V. Well-tempered Metadynamics protocol v2; ZappyLab, Inc., 2022.
[http://dx.doi.org/10.17504/protocols.io.b5fyq3pw]
[53]
Niranjan, V.; Uttarkar, A.; Murali, K.; Niranjan, S.; Gopal, J.; Kumar, J. Mycobacterium time-series genome analysis identifies AAC2′ as a potential drug target with naloxone showing potential bait drug synergism. Molecules, 2022, 27(19), 6150.
[http://dx.doi.org/10.3390/molecules27196150] [PMID: 36234683]
[54]
Wang, J.; Ishchenko, A.; Zhang, W.; Razavi, A.; Langley, D. A highly accurate metadynamics-based Dissociation Free Energy method to calculate protein–protein and protein–ligand binding potencies. Sci. Rep., 2022, 12(1), 2024-2024.
[http://dx.doi.org/10.1038/s41598-022-05875-8] [PMID: 35132139]
[55]
Corso, G.; Stärk, H.; Jing, B.; Barzilay, R.; Jaakkola, T. DiffDock: Diffusion steps, twists, and turns for molecular docking. Biomolecules, 2022. Available from: http://arxiv.org/abs/2210.01776
[56]
van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. In: Methods in Molecular Biology; Humana Press, 2011; pp. 237-245.
[57]
National Center for Biotechnology Information PubChem Compound Summary for CID 133053543, Available from: https://pubchem.ncbi.nlm.nih.gov/compound/133053543 (Accessed on: 14 February, 2022).
[58]
Pa, V.; Vijayaraghavareddy, P.; Uttarkar, A.; Dawane, A. D, S.; v, A.; Kc, B.; Niranjan, V.; Ms, S.; Cv, A.; Makarla, U.; Vemanna, R.S. Novel small molecules targeting bZIP23 TF improve stomatal conductance and photosynthesis under mild drought stress by regulating ABA. FEBS J., 2022, 289(19), 6058-6077.
[http://dx.doi.org/10.1111/febs.16461] [PMID: 35445538]
[59]
Skariyachan, S.; Ravishankar, R.; Gopal, D.; Muddebihalkar, A.G.; Uttarkar, A.; Praveen, P.K.U.; Niranjan, V. Response regulator GacA and transcriptional activator RhlR proteins involved in biofilm formation of Pseudomonas aeruginosa are prospective targets for natural lead molecules: Computational modelling, molecular docking and dynamic simulation studies. Infect. Genet. Evol., 2020, 85, 104448.
[http://dx.doi.org/10.1016/j.meegid.2020.104448] [PMID: 32622078]
[60]
Gopal, D.; Muddebihalkar, A.G.; Skariyachan, S. A.U, C.; Kaveramma, P.; Praveen, U.; Shankar, R.R.; Venkatesan, T.; Niranjan, V. Mitogen activated protein kinase-1 and cell division control protein-42 are putative targets for the binding of novel synthetic lead molecules: A therapeutic intervention against Candida albicans. J. Biomol. Struct. Dyn., 2019, 38(15), 4584-4599.
[http://dx.doi.org/10.1080/07391102.2019.1682053] [PMID: 31625462]
[61]
Skariyachan, S.; Muddebihalkar, A.G.; Badrinath, V.; Umashankar, B.; Eram, D.; Uttarkar, A.; Niranjan, V. Natural epiestriol-16 act as potential lead molecule against prospective molecular targets of multidrug resistant Acinetobacter baumannii-Insight from in silico modelling and in vitro investigations. Infect. Genet. Evol., 2020, 82, 104314.
[http://dx.doi.org/10.1016/j.meegid.2020.104314] [PMID: 32268193]
[62]
Uttarkar, A.; Niranjan, V. Brefeldin A variant via combinatorial screening acts as an effective antagonist inducing structural modification in EPAC2. Mol. Simul., 2022, 48(17), 1592-1603.
[http://dx.doi.org/10.1080/08927022.2022.2110271]
[63]
Ylilauri, M.; Pentikäinen, O.T. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J. Chem. Inf. Model., 2013, 53(10), 2626-2633.
[http://dx.doi.org/10.1021/ci4002475] [PMID: 23988151]
[64]
Ahmad, S.; Bhanu, P.; Kumar, J.; Pathak, R.K.; Mallick, D.; Uttarkar, A.; Niranjan, V.; Mishra, V. Molecular dynamics simulation and docking analysis of NF-κB protein binding with sulindac acid. Bioinformation, 2022, 18(3), 170-179.
[http://dx.doi.org/10.6026/97320630018170] [PMID: 36518123]
[65]
Kitlinska, J.; Abe, K.; Kuo, L.; Pons, J.; Yu, M.; Li, L.; Tilan, J.; Everhart, L.; Lee, E.W.; Zukowska, Z.; Toretsky, J.A. Differential effects of neuropeptide Y on the growth and vascularization of neural crest-derived tumors. Cancer Res., 2005, 65(5), 1719-1728.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2192] [PMID: 15753367]
[66]
Ruscica, M.; Dozio, E.; Boghossian, S.; Bovo, G.; Martos Riaño, V.; Motta, M.; Magni, P. Activation of the Y1 receptor by neuropeptide Y regulates the growth of prostate cancer cells. Endocrinology, 2006, 147(3), 1466-1473.
[http://dx.doi.org/10.1210/en.2005-0925] [PMID: 16339211]
[67]
Lv, X.; Zhao, F.; Huo, X.; Tang, W.; Hu, B.; Gong, X.; Yang, J.; Shen, Q.; Qin, W. Neuropeptide Y1 receptor inhibits cell growth through inactivating mitogen-activated protein kinase signal pathway in human hepatocellular carcinoma. Med. Oncol., 2016, 33(7), 70.
[http://dx.doi.org/10.1007/s12032-016-0785-1] [PMID: 27262566]
[68]
Malvasi, A.; Cavallotti, C.; Nicolardi, G.; Pellegrino, M.; Dell’Edera, D.; Vergara, D.; Greco, M.; Kumakiri, J.; Tinelli, A. NT, NPY and PGP 9.5 presence in myomeytrium and in fibroid pseudocapsule and their possible impact on muscular physiology. Gynecol. Endocrinol., 2013, 29(2), 177-181.
[http://dx.doi.org/10.3109/09513590.2012.709682] [PMID: 22849656]
[69]
Tang, T.; Hartig, C.; Chen, Q.; Zhao, W.; Kaiser, A.; Zhang, X.; Zhang, H.; Qu, H.; Yi, C.; Ma, L.; Han, S.; Zhao, Q.; Beck-Sickinger, A.G.; Wu, B. Structural basis for ligand recognition of the neuropeptide Y Y2 receptor. Nat. Commun., 2021, 12(1), 737-737.
[http://dx.doi.org/10.1038/s41467-021-21030-9] [PMID: 33531491]
[70]
Müller, C.; Gleixner, J.; Tahk, M.J.; Kopanchuk, S.; Laasfeld, T.; Weinhart, M.; Schollmeyer, D.; Betschart, M.U.; Lüdeke, S.; Koch, P.; Rinken, A.; Keller, M. Structure-based design of high-affinity fluorescent probes for the neuropeptide Y Y 1 receptor. J. Med. Chem., 2022, 65(6), 4832-4853.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02033] [PMID: 35263541]
[71]
Poindexter, G.S.; Bruce, M.A.; LeBoulluec, K.L.; Monkovic, I.; Martin, S.W.; Parker, E.M.; Iben, L.G.; McGovern, R.T.; Ortiz, A.A.; Stanley, J.A.; Mattson, G.K.; Kozlowski, M.; Arcuri, M.; Antal-Zimanyi, I.; Dihydropyridine, N.Y. Y1 Receptor antagonists. Bioorganic &amp. Medicinal Chemistry Letters, 2002, 12(3), 379-382.
[http://dx.doi.org/10.1016/S0960-894X(01)00761-2]
[72]
Shoblock, J.R.; Welty, N.; Nepomuceno, D.; Lord, B.; Aluisio, L.; Fraser, I.; Motley, S.T.; Sutton, S.W.; Morton, K.; Galici, R.; Atack, J.R.; Dvorak, L.; Swanson, D.M.; Carruthers, N.I.; Dvorak, C.; Lovenberg, T.W.; Bonaventure, P. in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y2 receptor. Psychopharmacology, 2009, 208(2), 265-277.
[http://dx.doi.org/10.1007/s00213-009-1726-x] [PMID: 19953226]
[73]
Parker, S.L.; Balasubramaniam, A.; Neuropeptide, Y. Neuropeptide Y Y2 receptor in health and disease. Br. J. Pharmacol., 2008, 153(3), 420-431.
[http://dx.doi.org/10.1038/sj.bjp.0707445] [PMID: 17828288]
[74]
Brothers, S.P.; Wahlestedt, C. Therapeutic potential of neuropeptide Y (NPY) receptor ligands. EMBO Mol. Med., 2010, 2(11), 429-439.
[http://dx.doi.org/10.1002/emmm.201000100] [PMID: 20972986]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy