Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Systematic Review Article

A Systematic Review of the Chemo/Radioprotective Effects of Melatonin against Ototoxic Adverse Effects Induced by Chemotherapy and Radiotherapy

Author(s): Usama Basirat, Umer Bin Tariq, Nawal Moeen, Zanko Hassan Jawhar, Sarah Jawad Shoja, Ali Kamil Kareem, Andrés Alexis Ramírez-Coronel, Rosario Mireya Romero-Parra, Rahman S. Zabibah, Jitendra Gupta, Yasser Fakri Mustafa and Bagher Farhood*

Volume 29, Issue 15, 2023

Published on: 12 May, 2023

Page: [1218 - 1229] Pages: 12

DOI: 10.2174/1381612829666230503145707

Price: $65

conference banner
Abstract

Background: Although chemotherapy and radiotherapy are effective in cancer treatment, different adverse effects induced by these therapeutic modalities (such as ototoxicity) restrict their clinical use. Co-treatment of melatonin may alleviate the chemotherapy/radiotherapy-induced ototoxicity.

Objective: In the present study, the otoprotective potentials of melatonin against the ototoxicity induced by chemotherapy and radiotherapy were reviewed.

Methods: According to the PRISMA guideline, a systematic search was carried out to identify all relevant studies on “the role of melatonin against ototoxic damage associated with chemotherapy and radiotherapy” in the different electronic databases up to September 2022. Sixty-seven articles were screened based on a predefined set of inclusion and exclusion criteria. Seven eligible studies were finally included in this review.

Results: The in vitro findings showed that cisplatin chemotherapy significantly decreased the auditory cell viability compared to the control group; in contrast, the melatonin co-administration increased the cell viability of cisplatin-treated cells. The results obtained from the distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) tests demonstrated a decreased amplitude of DPOAE and increased values of ABR I-IV interval and ABR threshold in mice/rats receiving radiotherapy and cisplatin; nevertheless, melatonin co-treatment indicated an opposite pattern on these evaluated parameters. It was also found that cisplatin and radiotherapy could significantly induce the histological and biochemical changes in the auditory cells/tissue. However, melatonin co-treatment resulted in alleviating the cisplatin/radiotherapy-induced biochemical and histological changes.

Conclusion: According to the findings, it was shown that melatonin co-treatment alleviates the ototoxic damage induced by chemotherapy and radiotherapy. Mechanically, melatonin may exert its otoprotective effects via its anti-oxidant, anti-apoptotic, and anti-inflammatory activities and other mechanisms.

Keywords: Cancer, chemotherapy, ototoxicity, radiotherapy, melatonin, systematic review.

« Previous
[1]
Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol 2022; 23(1): 74-88.
[http://dx.doi.org/10.1038/s41580-021-00404-3] [PMID: 34508254]
[2]
Mortezaee K, Narmani A, Salehi M, et al. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci 2021; 269: 119020.
[http://dx.doi.org/10.1016/j.lfs.2021.119020] [PMID: 33450258]
[3]
Sheikholeslami S, Khodaverdian S, Dorri-Giv M, et al. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int Immunopharmacol 2021; 96: 107741.
[http://dx.doi.org/10.1016/j.intimp.2021.107741] [PMID: 33989970]
[4]
Sheikholeslami S, Aryafar T, Abedi-Firouzjah R, et al. The role of melatonin on radiation-induced pneumonitis and lung fibrosis: A systematic review. Life Sci 2021; 281: 119721.
[http://dx.doi.org/10.1016/j.lfs.2021.119721] [PMID: 34146555]
[5]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Farhood B, Bahreyni Toossi MT, Soleymanifard S, Mohebbi S, Davenport D. Assessment of accuracy of out-of-field dose calculations by TiGRT treatment planning system in radiotherapy. J Cancer Res Ther 2018; 14(3): 634-9.
[http://dx.doi.org/10.4103/0973-1482.176423] [PMID: 29893331]
[7]
Abdi Goushbolagh N, Abedi Firouzjah R, Ebrahimnejad Gorji K, Khosravanipour M, Moradi S, Banaei A. Estimation of radiation dose-reduction factor for cerium oxide nanoparticles in MRC-5 human lung fibroblastic cells and MCF-7 breast-cancer cells. Artif Cells Nanomed Biotechnol 2018; 46(Sup 3): S125-S1225.
[8]
Abdi Goushbolagh N, Keshavarz M, Zare MH, Bahreyni-Toosi MH, Kargar M, Farhood B. Photosensitizer effects of MWCNTs- COOH particles on CT26 fibroblastic cells exposed to laser irradiation. Artif Cells Nanomed Biotechnol 2019; 47(1): 1326-34.
[http://dx.doi.org/10.1080/21691401.2019.1593997] [PMID: 30964347]
[9]
Gao Y, Chen L, Gu W, Xi Y, Lin L, Li Y. Targeted nanoassembly loaded with docetaxel improves intracellular drug delivery and efficacy in murine breast cancer model. Mol Pharm 2008; 5(6): 1044-54.
[http://dx.doi.org/10.1021/mp800072e] [PMID: 19434922]
[10]
Saxena V, Hussain MD. Polymeric mixed micelles for delivery of curcumin to multidrug resistant ovarian cancer. J Biomed Nanotechnol 2013; 9(7): 1146-54.
[http://dx.doi.org/10.1166/jbn.2013.1632] [PMID: 23909128]
[11]
Jiang L, Li L, He B, et al. Anti-cancer efficacy of paclitaxel loaded in pH triggered liposomes. J Biomed Nanotechnol 2016; 12(1): 79-90.
[http://dx.doi.org/10.1166/jbn.2016.2123] [PMID: 27301174]
[12]
Moutabian H, Ghahramani-Asl R, Mortezazadeh T, et al. The cardioprotective effects of nano-curcumin against doxorubicin-induced cardiotoxicity: A systematic review. Biofactors 2022; 48(3): 597-610.
[http://dx.doi.org/10.1002/biof.1823] [PMID: 35080781]
[13]
Farhood B, Geraily G, Abtahi SMM. A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl Radiat Isot 2019; 143: 47-59.
[http://dx.doi.org/10.1016/j.apradiso.2018.08.018]
[14]
Bagheri H, Rabie Mahdavi S, Shekarchi B, Manouchehri F, Farhood B. Measurement of the contralateral breast photon and thermal neutron doses in breast cancer radiotherapy: A comparison between physical and dynamic wedges. Radiat Prot Dosimetry 2018; 178(1): 73-81.
[http://dx.doi.org/10.1093/rpd/ncx076] [PMID: 28591863]
[15]
Pan CC, Eisbruch A, Lee JS, Snorrason RM, Ten Haken RK, Kileny PR. Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys 2005; 61(5): 1393-402.
[http://dx.doi.org/10.1016/j.ijrobp.2004.08.019] [PMID: 15817342]
[16]
Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci 2020; 241: 117173.
[http://dx.doi.org/10.1016/j.lfs.2019.117173] [PMID: 31843530]
[17]
Nygren P. What is cancer chemotherapy? Acta Oncol 2001; 40(2-3): 166-74.
[http://dx.doi.org/10.1080/02841860151116204] [PMID: 11441929]
[18]
Haghi-Aminjan H, Asghari MH, Farhood B, Rahimifard M, Hashemi Goradel N, Abdollahi M. The role of melatonin on chemotherapy-induced reproductive toxicity. J Pharm Pharmacol 2018; 70(3): 291-306.
[http://dx.doi.org/10.1111/jphp.12855] [PMID: 29168173]
[19]
Haghi-Aminjan H, Farhood B, Rahimifard M, et al. The protective role of melatonin in chemotherapy-induced nephrotoxicity: A systematic review of non-clinical studies. Expert Opin Drug Metab Toxicol 2018; 14(9): 937-50.
[http://dx.doi.org/10.1080/17425255.2018.1513492] [PMID: 30118646]
[20]
Waissbluth S, Peleva E, Daniel SJ. Platinum-induced ototoxicity: A review of prevailing ototoxicity criteria. Head Neck Surg 2017; 274(3): 1187-96.
[21]
Schaefer SD, Post JD, Close LG, Wright CG. Ototoxicity of low- and moderate-dose cisplatin. Cancer 1985; 56(8): 1934-9.
[http://dx.doi.org/10.1002/1097-0142(19851015)56:8<1934::AID-CNCR2820560807>3.0.CO;2-F] [PMID: 4040801]
[22]
Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci 2017; 11: 338.
[http://dx.doi.org/10.3389/fncel.2017.00338] [PMID: 29163050]
[23]
Alonso-González C, González A, Martínez-Campa C, Gómez-Arozamena J, Cos S. Melatonin sensitizes human breast cancer cells to ionizing radiation by downregulating proteins involved in double-strand DNA break repair. J Pineal Res 2015; 58(2): 189-97.
[http://dx.doi.org/10.1111/jpi.12205] [PMID: 25623566]
[24]
Aliasgharzadeh A, Farhood B, Amini P, et al. Melatonin attenuates upregulation of duox1 and duox2 and protects against lung injury following chest irradiation in rats. Cell J 2019; 21(3): 236-42.
[PMID: 31210428]
[25]
Farhood B, Aliasgharzadeh A, Amini P, et al. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina 2019; 55(8): 417.
[http://dx.doi.org/10.3390/medicina55080417] [PMID: 31366142]
[26]
Farhood B, Aliasgharzadeh A, Amini P, et al. Radiation-induced dual oxidase upregulation in rat heart tissues: Protective effect of melatonin. Medicina 2019; 55(7): 317.
[http://dx.doi.org/10.3390/medicina55070317] [PMID: 31252673]
[27]
Motallebzadeh E, Tameh AA, Zavareh SAT, Farhood B, Aliasgharzedeh A, Mohseni M. Neuroprotective effect of melatonin on radiation-induced oxidative stress and apoptosis in the brainstem of rats. J Cell Physiol 2020; 235(11): 8791-8.
[http://dx.doi.org/10.1002/jcp.29722] [PMID: 32324264]
[28]
Najafi M, Shirazi A, Motevaseli E, Rezaeyan AH, Salajegheh A, Rezapoor S. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology 2017; 25(4): 403-13.
[http://dx.doi.org/10.1007/s10787-017-0332-5] [PMID: 28255737]
[29]
Pollom EL, Deng L, Pai RK, et al. Gastrointestinal toxicities with combined antiangiogenic and stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2015; 92(3): 568-76.
[http://dx.doi.org/10.1016/j.ijrobp.2015.02.016] [PMID: 26068491]
[30]
Yahyapour R, Amini P, Saffar H, et al. Metformin protects against radiation-induced heart injury and attenuates the upregulation of dual oxidase genes following rat’s chest irradiation. Int J Mol Cell Med 2018; 7(3): 193-202.
[PMID: 31565651]
[31]
Sheikhzadeh PD, Khezerloo D, Mortezazadeh T, Farhood B, Seyfizadeh N, Pezhman L. The effect of date palm seed extract as a new potential radioprotector in gamma-irradiated mice. J Cancer Res Ther 2019; 15(3): 517-21.
[http://dx.doi.org/10.4103/jcrt.JCRT_1341_16] [PMID: 31169213]
[32]
Amini P, Nodooshan SJ, Ashrafizadeh M, et al. Resveratrol induces apoptosis and attenuates proliferation of MCF-7 cells in combination with radiation and hyperthermia. Curr Mol Med 2021; 21(2): 142-50.
[http://dx.doi.org/10.2174/18755666MTA2pODE0z] [PMID: 32436827]
[33]
Farhood B, Hassanzadeh G, Amini P, et al. Mitigation of radiation-induced gastrointestinal system injury using resveratrol or alpha-lipoic acid: A pilot histopathological study. Antiinflamm Antiallergy Agents Med Chem 2020; 19(4): 413-24.
[http://dx.doi.org/10.2174/1871523018666191111124028] [PMID: 31713500]
[34]
Nodooshan SJ, Amini P, Ashrafizadeh M, et al. Suberosin attenuates the proliferation of MCF-7 breast cancer cells in combination with radiotherapy or hyperthermia. Curr Drug Res Rev 2021; 13(2): 148-53.
[http://dx.doi.org/10.2174/2589977512666201228104528] [PMID: 33371865]
[35]
Najafi M, Salehi E, Farhood B, et al. Adjuvant chemotherapy with melatonin for targeting human cancers: A review. J Cell Physiol 2019; 234(3): 2356-72.
[http://dx.doi.org/10.1002/jcp.27259] [PMID: 30192001]
[36]
Yahyapour R, Shabeeb D, Cheki M, et al. Radiation protection and mitigation by natural antioxidants and flavonoids: Implications to radiotherapy and radiation disasters. Curr Mol Pharmacol 2018; 11(4): 285-304.
[http://dx.doi.org/10.2174/1874467211666180619125653] [PMID: 29921213]
[37]
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol 2019; 21(3): 268-79.
[http://dx.doi.org/10.1007/s12094-018-1934-0]
[38]
Kartini D, Taher A, Panigoro S, et al. Melatonin effect on hypoxia inducible factor-1a and clinical response in patients with oral squamous cell carcinoma receiving neoadjuvant chemotherapy: A randomized controlled trial. J Carcinog 2021; 20(1): 5.
[http://dx.doi.org/10.4103/jcar.JCar_19_20] [PMID: 34429714]
[39]
Najafi M, Shirazi A, Motevaseli E, et al. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev 2017; 9(2): 139-48.
[http://dx.doi.org/10.1007/s12551-017-0256-8] [PMID: 28510090]
[40]
Shirazi A, Rezapoor S, Abbasi S, et al. Modulation of radiation-induced base excision repair pathway gene expression by melatonin. J Med Phys 2017; 42(4): 245-50.
[http://dx.doi.org/10.4103/jmp.JMP_9_17] [PMID: 29296039]
[41]
Shirazi A, Ghobadi A, Najafi M, Kahkesh M, Rezapoor S. Melatonin ameliorates radiation-induced oxidative stress at targeted and nontargeted lung tissue. J Med Phys 2017; 42(4): 241-4.
[http://dx.doi.org/10.4103/jmp.JMP_60_17] [PMID: 29296038]
[42]
Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 2013; 54(3): 245-57.
[http://dx.doi.org/10.1111/jpi.12010] [PMID: 22998574]
[43]
Goradel NH, Asghari MH, Moloudizargari M, Negahdari B, Haghi-Aminjan H, Abdollahi M. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence. Toxicol Appl Pharmacol 2017; 335: 56-63.
[http://dx.doi.org/10.1016/j.taap.2017.09.022] [PMID: 28974455]
[44]
Liu D, Ma Z, Di S, et al. AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic Biol Med 2018; 129: 59-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.032] [PMID: 30172748]
[45]
Martínez-Campa C, Menéndez-Menéndez J, Alonso-González C, González A, Álvarez-García V, Cos S. What is known about melatonin, chemotherapy and altered gene expression in breast cancer. Oncol Lett 2017; 13(4): 2003-14.
[http://dx.doi.org/10.3892/ol.2017.5712] [PMID: 28454355]
[46]
Alonso-González C, González A, Martínez-Campa C, et al. Melatonin enhancement of the radiosensitivity of human breast cancer cells is associated with the modulation of proteins involved in estrogen biosynthesis. Cancer Lett 2016; 370(1): 145-52.
[http://dx.doi.org/10.1016/j.canlet.2015.10.015] [PMID: 26497762]
[47]
Gao Y, Xiao X, Zhang C, et al. Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways. J Pineal Res 2017; 62(2): e12380.
[http://dx.doi.org/10.1111/jpi.12380] [PMID: 27865009]
[48]
Hosseini F, Shanehbandi D, Soleimanpour J, Yousefi B, Alemi F. Melatonin increases the sensitivity of osteosarcoma cells to chemotherapy drug cisplatin. Drug Res 2022; 72(6): 312-8.
[http://dx.doi.org/10.1055/a-1830-8716] [PMID: 35636434]
[49]
Liu K, Song J, Yan Y, et al. Melatonin increases the chemosensitivity of diffuse large B-cell lymphoma cells to epirubicin by inhibiting P-glycoprotein expression via the NF-κB pathway. Transl Oncol 2021; 14(1): 100876.
[http://dx.doi.org/10.1016/j.tranon.2020.100876] [PMID: 33007707]
[50]
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann Intern Med 2009; 151(4): 264-9.
[51]
Lopez-Gonzalez MA, Guerrero JM, Rojas F, Delgado F. Ototoxicity caused by cisplatin is ameliorated by melatonin and other antioxidants. J Pineal Res 2000; 28(2): 73-80.
[http://dx.doi.org/10.1034/j.1600-079X.2001.280202.x] [PMID: 10709968]
[52]
Demir MG, Altintoprak N, Aydin S, Kösemihal E, Başak K. Effect of transtympanic injection of melatonin on cisplatin-induced ototoxicity. J Int Adv Otol 2016; 11(3): 202-6.
[http://dx.doi.org/10.5152/iao.2015.1094] [PMID: 26915150]
[53]
Karaer I, Simsek G, Gul M, et al. Melatonin protects inner ear against radiation damage in rats. Laryngoscope 2015; 125(10): E345-9.
[http://dx.doi.org/10.1002/lary.25376] [PMID: 25994110]
[54]
De Araujo JG, Serra LSM, Lauand L, Kückelhaus SAS, Sampaio ALL. Protective effect of melatonin on cisplatin-induced ototoxicity in rats. Anticancer Res 2019; 39(5): 2453-8.
[http://dx.doi.org/10.21873/anticanres.13364] [PMID: 31092439]
[55]
Tokgoz SA, Simsek G, Vuralkan E, Caliskan M, Besalti O, Akin I. Does melatonin alleviate ototoxic effect caused by administration of cisplatin? Ann Med Res 2019; 26(11): 2604.
[http://dx.doi.org/10.5455/annalsmedres.2019.08.485]
[56]
Chen T, Luo Y, Li Q, et al. Melatonin reduces radiation damage in inner ear. J Radiat Res 2021; 62(2): 217-25.
[http://dx.doi.org/10.1093/jrr/rraa137] [PMID: 33454767]
[57]
Wang N, Xu A, Zhang H, et al. Melatonin attenuates cisplatin-induced ototoxicity via regulating the cell apoptosis of the inner ear. Comput Math Methods Med 2022; 2022: 1-9.
[http://dx.doi.org/10.1155/2022/7160816] [PMID: 36092781]
[58]
Deas SD, Huprikar N, Skabelund A. Radiation exposure and lung disease in today’s nuclear world. Curr Opin Pulm Med 2017; 23(2): 167-72.
[http://dx.doi.org/10.1097/MCP.0000000000000349] [PMID: 27906856]
[59]
Farhood B, Mortezaee K, Haghi-Aminjan H, et al. A systematic review of radiation-induced testicular toxicities following radiotherapy for prostate cancer. J Cell Physiol 2019; 234(9): 14828-37.
[http://dx.doi.org/10.1002/jcp.28283] [PMID: 30740683]
[60]
Moutabian H, Majdaeen M, Ghahramani-Asl R, et al. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: with a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int 2022; 22(1): 142.
[http://dx.doi.org/10.1186/s12935-022-02561-7] [PMID: 35366874]
[61]
Arabzadeh A, Mortezazadeh T, Aryafar T, Gharepapagh E, Majdaeen M, Farhood B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer Cell Int 2021; 21(1): 391.
[http://dx.doi.org/10.1186/s12935-021-02099-0] [PMID: 34289841]
[62]
Ryu SH, Park EY, Kwak S, et al. Protective effect of α-lipoic acid against radiation-induced fibrosis in mice. Oncotarget 2016; 7(13): 15554-65.
[http://dx.doi.org/10.18632/oncotarget.6952] [PMID: 26799284]
[63]
Abid SH, Malhotra V, Perry MC. Radiation-induced and chemotherapy-induced pulmonary injury. Curr Opin Oncol 2001; 13(4): 242-8.
[http://dx.doi.org/10.1097/00001622-200107000-00006] [PMID: 11429481]
[64]
McKeage MJ. Comparative adverse effect profiles of platinum drugs. Drug Saf 1995; 13(4): 228-44.
[http://dx.doi.org/10.2165/00002018-199513040-00003] [PMID: 8573296]
[65]
Santos N, Ferreira RS, Santos ACD. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 2020; 136: 111079.
[http://dx.doi.org/10.1016/j.fct.2019.111079]
[66]
Pyun JH, Kang SU, Hwang HS, et al. Epicatechin inhibits radiation-induced auditory cell death by suppression of reactive oxygen species generation. Neuroscience 2011; 199: 410-20.
[http://dx.doi.org/10.1016/j.neuroscience.2011.09.012] [PMID: 21946009]
[67]
Low WK, Tan MG, Sun L, Chua AW, Goh LK, Wang DY. Dose-dependant radiation-induced apoptosis in a cochlear cell-line. Apoptosis 2006; 11(12): 2127-36.
[http://dx.doi.org/10.1007/s10495-006-0285-4]
[68]
Cheng AG, Cunningham LL, Rubel EW. Mechanisms of hair cell death and protection. Curr Opin Otolaryngol Head Neck Surg 2005; 13(6): 343-8.
[http://dx.doi.org/10.1097/01.moo.0000186799.45377.63] [PMID: 16282762]
[69]
Devarajan P, Savoca M, Castaneda MP, et al. Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways. Hear Res 2002; 174(1-2): 45-54.
[http://dx.doi.org/10.1016/S0378-5955(02)00634-2] [PMID: 12433395]
[70]
Tabuchi K, Nishimura B, Nakamagoe M, Hayashi K, Nakayama M, Hara A. Ototoxicity: mechanisms of cochlear impairment and its prevention. Curr Med Chem 2011; 18(31): 4866-71.
[http://dx.doi.org/10.2174/092986711797535254] [PMID: 21919841]
[71]
Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 2000; 275(21): 16202-12.
[http://dx.doi.org/10.1074/jbc.275.21.16202] [PMID: 10821866]
[72]
Serra LSM, Araújo JG, Vieira ALS, et al. Role of melatonin in prevention of age-related hearing loss. PLoS One 2020; 15(2): e0228943.
[http://dx.doi.org/10.1371/journal.pone.0228943] [PMID: 32040524]
[73]
Bas E, Martinez-Soriano F, Láinez JM, Marco . An experimental comparative study of dexamethasone, melatonin and tacrolimus in noise-induced hearing loss. Acta Otolaryngol 2009; 129(4): 385-9.
[http://dx.doi.org/10.1080/00016480802566279] [PMID: 19051071]
[74]
Jung S, Bahk CW, Suh M-W, Jung J-Y. Melatonin prevents noise induced hearing threshold shift and hair cell loss in rat. J Int Adv Otol 2012; 8(2): 209.
[75]
Lopez-Gonzalez MA, Guerrero JM, Torronteras R, Osuna C, Delgado F. Ototoxicity caused by aminoglycosides is ameliorated by melatonin without interfering with the antibiotic capacity of the drugs. J Pineal Res 2000; 28(1): 26-33.
[http://dx.doi.org/10.1034/j.1600-079x.2000.280104.x] [PMID: 10626598]
[76]
Ye L-F, Tao Z-Z, Hua Q-Q, et al. Protective effect of melatonin against gentamicin ototoxicity. J Laryngol Otol 2009; 123(6): 598-602.
[http://dx.doi.org/10.1017/S002221510800385X] [PMID: 18957160]
[77]
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Najafi M, Sahebkar A. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J Cell Physiol 2019; 234(5): 5613-27.
[http://dx.doi.org/10.1002/jcp.27391] [PMID: 30238978]
[78]
Amini P, Mirtavoos-Mahyari H, Motevaseli E, et al. Mechanisms for radioprotection by melatonin; can it be used as a radiation countermeasure? Curr Mol Pharmacol 2019; 12(1): 2-11.
[http://dx.doi.org/10.2174/1874467211666180802164449] [PMID: 30073934]
[79]
Reiter RJ, Tan D, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress. J Biomed Sci 2000; 7(6): 444-58.
[http://dx.doi.org/10.1007/BF02253360] [PMID: 11060493]
[80]
Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Neurosignals 2000; 9(3-4): 137-59.
[http://dx.doi.org/10.1159/000014635] [PMID: 10899700]
[81]
Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes: A significant role for melatonin. J Pineal Res 2004; 36(1): 1-9.
[http://dx.doi.org/10.1046/j.1600-079X.2003.00092.x] [PMID: 14675124]
[82]
Kilic U, Kilic E, Tuzcu Z, et al. Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway. Nutr Metab 2013; 10(1): 7.
[http://dx.doi.org/10.1186/1743-7075-10-7] [PMID: 23311701]
[83]
Lee YM, Bae SY, Won NH, Pyo HJ, Kwon YJ. Alpha-lipoic acid attenuates cisplatin-induced tubulointerstitial injuries through inhibition of mitochondrial bax translocation in rats. Nephron, Exp Nephrol 2009; 113(4): e104-12.
[http://dx.doi.org/10.1159/000235754] [PMID: 19713707]
[84]
El-Sayed ESM, Mansour AM, El-Sawy WS. Alpha lipoic acid prevents doxorubicin-induced nephrotoxicity by mitigation of oxidative stress, inflammation, and apoptosis in rats. J Biochem Mol Toxicol 2017; 31(9): e21940.
[http://dx.doi.org/10.1002/jbt.21940] [PMID: 28598563]
[85]
Erdem Guzel E, Kaya Tektemur N, Tektemur A. Alpha-lipoic acid may ameliorate testicular damage by targeting dox-induced altered antioxidant parameters, mitofusin-2 and apoptotic gene expression. Andrologia 2021; 53(3): e13990.
[http://dx.doi.org/10.1111/and.13990] [PMID: 33529370]
[86]
Kim JB, Jung JY, Ahn JC, Rhee CK, Hwang HJ. Antioxidant and anti-apoptotic effect of melatonin on the vestibular hair cells of rat utricles. Clin Exp Otorhinolaryngol 2009; 2(1): 6-12.
[http://dx.doi.org/10.3342/ceo.2009.2.1.6] [PMID: 19434285]
[87]
Zhou X, Gao Y, Hu Y, Ma X. Melatonin protects cochlear hair cells from nicotine-induced injury through inhibiting apoptosis, inflammation, oxidative stress and endoplasmic reticulum stress. Basic Clin Pharmacol Toxicol 2021; 129(4): 308-18.
[http://dx.doi.org/10.1111/bcpt.13638] [PMID: 34254721]
[88]
Jang SS, Kim HG, Lee JS, et al. Melatonin reduces X-ray radiation-induced lung injury in mice by modulating oxidative stress and cytokine expression. Int J Radiat Biol 2013; 89(2): 97-105.
[http://dx.doi.org/10.3109/09553002.2013.734943] [PMID: 23046278]
[89]
El-Missiry MA, Shabana S, Ghazala SJ, Othman AI, Amer ME. Melatonin exerts a neuroprotective effect against γ-radiation-induced brain injury in the rat through the modulation of neurotransmitters, inflammatory cytokines, oxidative stress, and apoptosis. Environ Sci Pollut Res Int 2021; 28(24): 31108-21.
[http://dx.doi.org/10.1007/s11356-021-12951-5] [PMID: 33598836]
[90]
Ortiz F, Acuña-Castroviejo D, Doerrier C, et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res 2015; 58(1): 34-49.
[http://dx.doi.org/10.1111/jpi.12191] [PMID: 25388914]
[91]
Ben-David MA, Elkayam R, Gelernter I, Pfeffer RM. Melatonin for prevention of breast radiation dermatitis: A phase II, prospective, double-blind randomized trial. Isr Med Assoc J 2016; 18(3-4): 188-92.
[PMID: 27228641]
[92]
Zakria M, Ahmad N, Al Kury LT, et al. Retracted: Melatonin rescues the mice brain against cisplatin-induced neurodegeneration, an insight into antioxidant and anti-inflammatory effects. Neurotoxicology 2021; 87: 1-10.
[http://dx.doi.org/10.1016/j.neuro.2021.08.010] [PMID: 34428482]
[93]
Wang Y, Li Y, Cui W, et al. Melatonin attenuates pain hypersensitivity and decreases astrocyte-mediated spinal neuroinflammation in a rat model of oxaliplatin-induced pain. Inflammation 2017; 40(6): 2052-61.
[http://dx.doi.org/10.1007/s10753-017-0645-y] [PMID: 28812173]
[94]
Parlakpinar H, Sahna E, Ozer MK, Ozugurlu F, Vardi N, Acet A. Physiological and pharmacological concentrations of melatonin protect against cisplatin-induced acute renal injury. J Pineal Res 2002; 33(3): 161-6.
[http://dx.doi.org/10.1034/j.1600-079X.2002.02910.x] [PMID: 12220331]
[95]
Wu X, Ji H, Wang Y, et al. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 axis. Oxid Med Cell Longev 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/4087298] [PMID: 30755784]
[96]
Najafi M, Shirazi A, Motevaseli E, et al. Evaluating the expression of NOX2 and NOX4 signaling pathways in rats’ lung tissues following local chest irradiation; modulatory effect of melatonin. Int J Mol Cell Med 2018; 7(4): 220-5.
[PMID: 31516881]
[97]
Najafi M, Shirazi A, Motevaseli E, et al. Melatonin modulates regulation of NOX2 and NOX4 following irradiation in the lung. Curr Clin Pharmacol 2019; 14(3): 224-31.
[http://dx.doi.org/10.2174/1574884714666190502151733] [PMID: 31057124]
[98]
Fardid R, Salajegheh A, Mosleh-Shirazi MA, et al. Melatonin ameliorates the production of COX-2, iNOS, and the formation of 8-OHdG in non-targeted lung tissue after pelvic irradiation. Cell J 2017; 19(2): 324-31.
[PMID: 28670525]
[99]
Farid A, El-Dewak M, Diab A, Diab A. Anti-apoptotic and antioxidant effects of melatonin protect spleen of whole body γ-irradiated male Sprague-dawley rats. Int J Radiat Res 2021; 19(4): 861-72.
[http://dx.doi.org/10.52547/ijrr.19.4.12]
[100]
Abdel-Rahman Mohamed A, Khater SI, Metwally MMM, et al. TGF-β1, NAG-1, and antioxidant enzymes expression alterations in Cisplatin-induced nephrotoxicity in a rat model: Comparative modulating role of Melatonin, Vit. E and Ozone. Gene 2022; 820: 146293.
[http://dx.doi.org/10.1016/j.gene.2022.146293] [PMID: 35143943]
[101]
Filobbos S, Amin N, Yacoub M. Possible protective effect of melatonin on cisplatin-induced testicular toxicity in adult albino rats. a histological and immunohistochemical study. Egypt J Histol 2020; 43(3): 891-901.
[102]
Erdem T, Ozturan O, Iraz M, Miman MC, Olmez E. Dose-dependent dual effect of melatonin on ototoxicity induced by amikacin in adult rats. Head Neck Surg 2005; 262(4): 314-21.
[103]
Hosseini A, Samadi M, Baeeri M, Rahimifard M, Haghi-Aminjan H. The neuroprotective effects of melatonin against diabetic neuropathy: A systematic review of non-clinical studies. Front Pharmacol 2022; 13: 984499.
[http://dx.doi.org/10.3389/fphar.2022.984499] [PMID: 36120309]
[104]
Cipolla-Neto J, Amaral FG. Melatonin as a hormone: New physiological and clinical insights. Endocr Rev 2018; 39(6): 990-1028.
[http://dx.doi.org/10.1210/er.2018-00084] [PMID: 30215696]
[105]
Andersen LPH, Gögenur I, Rosenberg J, Reiter RJ. The safety of melatonin in humans. Clin Drug Investig 2016; 36(3): 169-75.
[http://dx.doi.org/10.1007/s40261-015-0368-5] [PMID: 26692007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy