Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Insight into Quantum Computing and Deep Learning Approach for Drug Design

Author(s): Deepika Paliwal*, Siva Naga Koteswara Rao Gudhanti, Devdhar Yadav and Prince Raj

Volume 21, Issue 10, 2024

Published on: 12 May, 2023

Page: [1632 - 1651] Pages: 20

DOI: 10.2174/1570180820666230427151812

Price: $65

Abstract

In recent years, substantial modelling breakthroughs have been achieved in artificial intelligence due to new algorithms, improved computer power, and expanded storage capacity. These factors have made it possible to process large amounts of data in a short amount of time. By using quantum computing in conjunction with deep learning models, it has been possible to explain the characteristics of ligands and their interactions with biological targets. This contributes to the process of ligand identification and ultimately results in the optimization of drug design. This review explains the extensive use of quantum deep learning in the development of drug design from traditional to quantum-powered deep learning neural networks that cover some domains like variational quantum Eigen solver, variational quantum circuits, quantum convolutional deep neural networks, QC-based deep neural networks for QSAR, as well as quantized generative models for the discovery of small drug molecules. Quantum computing can execute incredible computational work tenfold faster than current technology, transforming drug design, development, and post-marketing surveillance. This will reduce the time and resources needed to develop a medicine. Scientific research is moving toward quantum computing since it is anticipated that QC-based deep learning technologies can predict and mimic the characteristics, structures, and activities of molecules more efficiently than different ML techniques or conventional computers.

Keywords: Drug design, artificial intelligence, algorithms, deep neural networks, quantum computing, ligands, quantum deep learning, drug design optimization, QSAR, quantum generative model.

Graphical Abstract
[1]
Paliwal, D.; Srivastava, S. Role of artificial intelligence in cancer diagnosis and drug development. Comb. Chem. High Throughput Screen., 2022, 25(13), 2141-2152.
[http://dx.doi.org/10.2174/1386207325666220304112914] [PMID: 35249476]
[2]
Depeursinge, A.; Racoceanu, D.; Iavindrasana, J.; Cohen, G.; Platon, A.; Poletti, P.A.; Müller, H. Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography. Artif. Intell. Med., 2010, 50(1), 13-21.
[http://dx.doi.org/10.1016/j.artmed.2010.04.006] [PMID: 20547044]
[3]
Cova, T.F.G.G.; Pais, A.A.C.C. Deep learning for deep chemistry: Optimizing the prediction of chemical patterns. Front Chem., 2019, 7, 809.
[http://dx.doi.org/10.3389/fchem.2019.00809] [PMID: 32039134]
[4]
Zinner, M.; Dahlhausen, F.; Boehme, P.; Ehlers, J.; Bieske, L.; Fehring, L. Toward the institutionalization of quantum computing in pharmaceutical research. Drug Discov. Today, 2022, 27(2), 378-383.
[PMID: 34688911]
[5]
Lele, A. Artificial Intelligence (AI). In: Disruptive technologies for the militaries and security; Springer: Singapore, 2019; pp. 139-154.
[http://dx.doi.org/10.1007/978-981-13-3384-2_8]
[6]
Miller, A. The intrinsically linked future for human and Artificial Intelligence interaction. J. Big Data, 2019, 6(1), 38.
[http://dx.doi.org/10.1186/s40537-019-0202-7]
[7]
Grinter, S.; Zou, X. Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules, 2014, 19(7), 10150-10176.
[http://dx.doi.org/10.3390/molecules190710150] [PMID: 25019558]
[8]
Acharya, C.; Coop, A.; Polli, J.E.; Mackerell, A.D., Jr Recent advances in ligand-based drug design: Relevance and utility of the conformationally sampled pharmacophore approach. Curr. Computeraided Drug Des., 2011, 7(1), 10-22.
[http://dx.doi.org/10.2174/157340911793743547] [PMID: 20807187]
[9]
D’Arco, M.; Lo Presti, L.; Marino, V.; Resciniti, R. Embracing AI and big data in customer journey mapping: From literature review to a theoretical framework. Innov. Market., 2019, 15(4), 102-115.
[http://dx.doi.org/10.21511/im.15(4).2019.09]
[10]
Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with quantum-enhanced feature spaces. Nature, 2019, 567(7747), 209-212.
[http://dx.doi.org/10.1038/s41586-019-0980-2] [PMID: 30867609]
[11]
Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; Chen, T. Recent advances in convolutional neural networks. Pattern Recognit., 2018, 77, 354-377.
[http://dx.doi.org/10.1016/j.patcog.2017.10.013]
[12]
Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine learning methods in drug discovery. Molecules, 2020, 25(22), 5277.
[http://dx.doi.org/10.3390/molecules25225277] [PMID: 33198233]
[13]
Radaeva, M.; Ton, A.T.; Hsing, M.; Ban, F.; Cherkasov, A. Drugging the ‘undruggable’. Therapeutic targeting of protein-DNA interactions with the use of computer-aided drug discovery methods. Drug Discov. Today, 2021, 26(11), 2660-2679.
[http://dx.doi.org/10.1016/j.drudis.2021.07.018] [PMID: 34332092]
[14]
Sousa, T.; Correia, J.; Pereira, V.; Rocha, M. Generative deep learning for targeted compound design. J. Chem. Inf. Model., 2021, 61(11), 5343-5361.
[http://dx.doi.org/10.1021/acs.jcim.0c01496] [PMID: 34699719]
[15]
Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design: From conventional to machine learning methods. Int. J. Mol. Sci., 2021, 22(4), 1676.
[http://dx.doi.org/10.3390/ijms22041676] [PMID: 33562347]
[16]
Tang, B.; Ewalt, J.; Ng, H.L. Generative AI models for drug discovery. In: Biophysical and Computational Tools in Drug Discovery; Springer: Cham, 2021; pp. 221-243.
[http://dx.doi.org/10.1007/7355_2021_124]
[17]
Tong, X.; Liu, X.; Tan, X.; Li, X.; Jiang, J.; Xiong, Z.; Xu, T.; Jiang, H.; Qiao, N.; Zheng, M. Generative models for De Novo drug design. J. Med. Chem., 2021, 64(19), 14011-14027.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00927] [PMID: 34533311]
[18]
Ding, B. Pharma Industry 4.0: Literature review and research opportunities in sustainable pharmaceutical supply chains. Process Saf. Environ. Prot., 2018, 119, 115-130.
[http://dx.doi.org/10.1016/j.psep.2018.06.031]
[19]
Lin, Y.; Leibrandt, D.R.; Leibfried, D.; Chou, C. Quantum entanglement between an atom and a molecule. Nature, 2020, 581(7808), 273-277.
[http://dx.doi.org/10.1038/s41586-020-2257-1] [PMID: 32433622]
[20]
Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C. Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE, 2008, 96(9), 1457-1486.
[http://dx.doi.org/10.1109/JPROC.2008.927494]
[21]
Ma, H.; Govoni, M.; Galli, G. Quantum simulations of materials on near-term quantum computers. NPJ Comput. Mater., 2020, 6(1), 1-8.
[22]
Cramer, R.D., III; Redl, G.; Berkoff, C.E. Substructural analysis. Novel approach to the problem of drug design. J. Med. Chem., 1974, 17(5), 533-535.
[http://dx.doi.org/10.1021/jm00251a014] [PMID: 4830256]
[23]
Mahmud, S.M.H.; Chen, W.; Liu, Y.; Awal, M.A.; Ahmed, K.; Rahman, M.H.; Moni, M.A. PreDTIs: Prediction of drug–target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques. Brief. Bioinform., 2021, 22(5), bbab046.
[http://dx.doi.org/10.1093/bib/bbab046] [PMID: 33709119]
[24]
Chen, S.Y.C.; Yang, C.H.H.; Qi, J.; Chen, P.Y.; Ma, X.; Goan, H.S. Variational quantum circuits for deep reinforcement learning. IEEE Access, 2020, 8, 141007-141024.
[http://dx.doi.org/10.1109/ACCESS.2020.3010470]
[25]
Goh, G.B.; Hodas, N.O.; Vishnu, A. Deep learning for computational chemistry. J. Comput. Chem., 2017, 38(16), 1291-1307.
[http://dx.doi.org/10.1002/jcc.24764] [PMID: 28272810]
[26]
Shashkevich, A. Ancient myths reveal early fantasies about artificial life. Stanford News. 2019. Available from: https://news.stanford.edu/2019/02/28/ancient-myths-reveal-early-fantasies-artificial-life/
[27]
Jean, A. A brief introduction to artificial intelligence. medicine/ science, 2020, 36(11), 1059-67.
[28]
Kaul, V.; Enslin, S.; Gross, S.A. History of artificial intelligence in medicine. Gastrointest. Endosc., 2020, 92(4), 807-812.
[http://dx.doi.org/10.1016/j.gie.2020.06.040] [PMID: 32565184]
[29]
French, R.M. The turing test: The first 50 years. Trends Cogn. Sci., 2000, 4(3), 115-122.
[http://dx.doi.org/10.1016/S1364-6613(00)01453-4] [PMID: 10689346]
[30]
Llargues Asensio, J.M.; Peralta, J.; Arrabales, R.; Bedia, M.G.; Cortez, P.; Peña, A.L. Artificial Intelligence approaches for the generation and assessment of believable human-like behaviour in virtual characters. Expert Syst. Appl., 2014, 41(16), 7281-7290.
[http://dx.doi.org/10.1016/j.eswa.2014.05.004]
[31]
Warwick, K.; Shah, H. Can machines think? A report on Turing test experiments at the Royal Society. J. Exp. Theor. Artif. Intell., 2016, 28(6), 989-1007.
[http://dx.doi.org/10.1080/0952813X.2015.1055826]
[32]
Cao, M. Merging game theory and control theory in the era of AI and autonomy. Natl. Sci. Rev., 2020, 7(7), 1122-1124.
[http://dx.doi.org/10.1093/nsr/nwaa046] [PMID: 34692134]
[33]
Campbell-Kelly, M. Programming the mark I: Early programming activity at the university of Manchester. IEEE Ann. Hist. Comput., 1980, 2(2), 130-168.
[http://dx.doi.org/10.1109/MAHC.1980.10018]
[34]
Frey, P.W. Memory based expertise: Computer Chess vs. AI. ICGA J., 1991, 14(4), 192-197.
[http://dx.doi.org/10.3233/ICG-1991-14403]
[35]
Gajawada, S. Artificial satisfaction-the brother of artificial intelligence; Global J. Comp. Sci. Technol: USA and UK, 2020, p. 9.
[36]
Boyce, B.L.; Uchic, M.D. Progress toward autonomous experimental systems for alloy development. MRS Bull., 2019, 44(4), 273-280.
[http://dx.doi.org/10.1557/mrs.2019.75]
[37]
Singh, S.; Thakur, H.K. Survey of various AI Chatbots based on technology used. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) , 2020.
[http://dx.doi.org/10.1109/ICRITO48877.2020.9197943]
[38]
Heßler, M. The Triumph of” Stupidity”: Deep Blues Victory over Garri Kasparov. The Controversy about its Impact on Artficial Intelligence Research. NTM, 2017, 25(1), 1-33.
[PMID: 28389682]
[39]
Parisien, C.; Thagard, P. Robosemantics: How Stanley the Volkswagen represents the world. Minds Mach., 2008, 18(2), 169-178.
[http://dx.doi.org/10.1007/s11023-008-9098-2]
[40]
Keim, B. Dr. Watson will see you... someday. IEEE Spectr., 2015, 52(6), 76-77.
[http://dx.doi.org/10.1109/MSPEC.2015.7115575]
[41]
Sejnowski, T.J. The unreasonable effectiveness of deep learning in artificial intelligence. Proc. Natl. Acad. Sci. USA, 2020, 117(48), 30033-30038.
[http://dx.doi.org/10.1073/pnas.1907373117] [PMID: 31992643]
[42]
Smith, J.S.; Roitberg, A.E.; Isayev, O. Transforming computational drug discovery with machine learning and AI. ACS Med. Chem. Lett., 2018, 9(11), 1065-1069.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00437] [PMID: 30429945]
[43]
Kang, M.; Lee, Y.; Park, M. Energy efficiency of machine learning in embedded systems using neuromorphic hardware. Electronics, 2020, 9(7), 1069.
[http://dx.doi.org/10.3390/electronics9071069]
[44]
Kuhn, M. Big Data, AI, and the pleasures of engineering. Chemie ingenieur technik, 2021, 93(3), 364-372.
[http://dx.doi.org/10.1002/cite.202000221]
[45]
Vedran, D.; Briegel Hans, J. Machine learning & artificial intelligence in the quantum domain. arXiv. 2017. Available from: https://arxiv.org/abs/1709.02779
[46]
Oneto, L.; Bunte, K.; Navarin, N. Advances in artificial neural networks, machine learning and computational intelligence. Neurocomputing, 2022, 470, 300-303.
[http://dx.doi.org/10.1016/j.neucom.2021.07.053]
[47]
Lipinski, C.F.; Maltarollo, V.G.; Oliveira, P.R.; da Silva, A.B.F.; Honorio, K.M. Advances and perspectives in applying deep learning for drug design and discovery. Front. Robot. AI, 2019, 6, 108.
[http://dx.doi.org/10.3389/frobt.2019.00108] [PMID: 33501123]
[48]
Wiebe, N.; Kapoor, A.; Svore, K.M. Quantum deep learning. arXiv., 2014. Aavailable from: https://arxiv.org/abs/1412.3489
[49]
Steane, A.M.; Rieffel, E.G. Beyond bits: The future of quantum information processing. Computer, 2000, 33(1), 38-45.
[http://dx.doi.org/10.1109/2.816267]
[50]
Aerts, D.; Sassoli de Bianchi, M. The extended Bloch representation of quantum mechanics: Explaining superposition, interference, and entanglement. J. Math. Phys., 2016, 57(12), 122110.
[http://dx.doi.org/10.1063/1.4973356]
[51]
Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning; MIT press., 2016. Available from: https://mitpress.mit.edu/9780262035613/deep-learning
[52]
Bengio, Y; LeCun, Y Scaling learning algorithms towards AI. Large-scale kernel machines, 2007, 34(5), 1-41.
[53]
Tompson, J.J.; Jain, A.; LeCun, Y.; Bregler, C. Joint training of a convolutional network and a graphical model for human pose estimation. Adv. Neural Inf. Process. Syst., 2014, 27.
[54]
Katiyar, S.; Farhana, A. Artificial Intelligence in e-Health: A review of current status in healthcare and future possible scope of research. J. Comput. Sci., 2022, 18(10), 928-939.
[http://dx.doi.org/10.3844/jcssp.2022.928.939]
[55]
Cordier, B.A.; Sawaya, N.P.; Guerreschi, G.G.; McWeeney, S.K. Biology and medicine in the landscape of quantum advantages. arXiv., 2021. Available from: https://arxiv.org/abs/2112.00760
[56]
Kak, S.C. Quantum neural computing. Adv. Imaging Electron Phys., 1995, 94, 259-313.
[http://dx.doi.org/10.1016/S1076-5670(08)70147-2]
[57]
Chrisley, R. Quantum learning. Proceedings of the international symposium, Saariselka 1995, 4, pp. 1-13.
[58]
Yuge, T. Superposition of macroscopically distinct states in adiabatic quantum computation. J. Phys. Soc. Jpn., 2018, 87(12), 124002.
[http://dx.doi.org/10.7566/JPSJ.87.124002]
[59]
Li, D.; Wang, R.; Baagyere, E. Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state. Quantum Inform. Process., 2019, 18(5), 147.
[http://dx.doi.org/10.1007/s11128-019-2252-3]
[60]
Takita, M.; Córcoles, A.D.; Magesan, E.; Abdo, B.; Brink, M.; Cross, A.; Chow, J.M.; Gambetta, J.M. Demonstration of weight-four parity measurements in the surface code architecture. Phys. Rev. Lett., 2016, 117(21), 210505.
[http://dx.doi.org/10.1103/PhysRevLett.117.210505] [PMID: 27911561]
[61]
Soe, W.H.; Manzano, C.; Joachim, C. A tetrabenzophenazine low voltage single molecule XOR quantum Hamiltonian logic gate. Chem. Phys. Lett., 2020, 748, 137388.
[http://dx.doi.org/10.1016/j.cplett.2020.137388]
[62]
Li, C.K.; Roberts, R.; Yin, X. Decomposition of unitary matrices and quantum gates. Int. J. Quant. Inf., 2013, 11(1), 1350015.
[http://dx.doi.org/10.1142/S0219749913500159]
[63]
Botu, V.; Ramprasad, R. Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int. J. Quantum Chem., 2015, 115(16), 1074-1083.
[http://dx.doi.org/10.1002/qua.24836]
[64]
Zhao, Z.; Pozas-Kerstjens, A.; Rebentrost, P.; Wittek, P. Bayesian deep learning on a quantum computer. Quantum Mach. Intell., 2019, 1(1-2), 41-51.
[http://dx.doi.org/10.1007/s42484-019-00004-7]
[65]
Wang, Z.T.; Ashida, Y.; Ueda, M. Deep reinforcement learning control of quantum cartpoles. Phys. Rev. Lett., 2020, 125(10), 100401.
[http://dx.doi.org/10.1103/PhysRevLett.125.100401] [PMID: 32955300]
[66]
Han, Y.; Roig, G.; Geiger, G.; Poggio, T. Scale and translation-invariance for novel objects in human vision. Sci. Rep., 2020, 10(1), 1411.
[http://dx.doi.org/10.1038/s41598-019-57261-6] [PMID: 31996698]
[67]
Chen, H.; Zhang, Y.; Cao, Y.; Xie, J. Security issues and defensive approaches in deep learning frameworks. Tsinghua Sci. Technol., 2021, 26(6), 894-905.
[http://dx.doi.org/10.26599/TST.2020.9010050]
[68]
Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.; Wang, Y.; Iqbal, F. A deep learning framework for malware classification. Int. J. Digit. Crime Forensics, 2020, 12(1), 90-108.
[http://dx.doi.org/10.4018/IJDCF.2020010105]
[69]
Shao, C. A quantum model of feed-forward neural networks with unitary learning algorithms. Quantum Inform. Process., 2020, 19(3), 102.
[http://dx.doi.org/10.1007/s11128-020-2592-z]
[70]
Wasielewski, M.R.; Forbes, M.D.E.; Frank, N.L.; Kowalski, K.; Scholes, G.D.; Yuen-Zhou, J.; Baldo, M.A.; Freedman, D.E.; Goldsmith, R.H.; Goodson, T., III; Kirk, M.L.; McCusker, J.K.; Ogilvie, J.P.; Shultz, D.A.; Stoll, S.; Whaley, K.B. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem., 2020, 4(9), 490-504.
[http://dx.doi.org/10.1038/s41570-020-0200-5]
[71]
Schneider, P.; Schneider, G. De novo design at the edge of chaos. Miniperspective. J. Med. Chem., 2016, 59(9), 4077-4086.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01849] [PMID: 26881908]
[72]
Inaoka, D.K.; Iida, M.; Tabuchi, T.; Honma, T.; Lee, N.; Hashimoto, S.; Matsuoka, S.; Kuranaga, T.; Sato, K.; Shiba, T.; Sakamoto, K.; Balogun, E.O.; Suzuki, S.; Nara, T.; Rocha, J.R.; Montanari, C.A.; Tanaka, A.; Inoue, M.; Kita, K.; Harada, S. The open form inducer approach for structure-based drug design. PLoS One, 2016, 11(11), e0167078.
[http://dx.doi.org/10.1371/journal.pone.0167078] [PMID: 27893848]
[73]
Swainston, N.; Hastings, J.; Dekker, A.; Muthukrishnan, V.; May, J.; Steinbeck, C.; Mendes, P. libChEBI: An API for accessing the ChEBI database. J. Cheminform., 2016, 8(1), 11.
[http://dx.doi.org/10.1186/s13321-016-0123-9] [PMID: 26933452]
[74]
Finan, C.; Gaulton, A.; Kruger, F.A.; Lumbers, R.T.; Shah, T.; Engmann, J.; Galver, L.; Kelley, R.; Karlsson, A.; Santos, R.; Overington, J.P.; Hingorani, A.D.; Casas, J.P. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med., 2017, 9(383), eaag1166.
[http://dx.doi.org/10.1126/scitranslmed.aag1166] [PMID: 28356508]
[75]
Wang, Q.; Huang, J.; Feng, Y.; Fei, J. Efficient data mining algorithms for screening potential proteins of drug target. Math. Probl. Eng., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/9852063]
[76]
Andrade, B.S.; Ghosh, P.; Barh, D.; Tiwari, S.; Silva, R.J.; de Assis Soares, W.R.; Melo, T.S.; Freitas, A.S.; González-Grande, P.; Palmeira, L.S.; Alcantara, L.C. Computational screening for potential drug candidates against the SARS-CoV-2 main protease. F1000 Res., 2020, 9.
[77]
Johansson, J.; Larsson, M.H.; Hornberg, J.J. Predictive in vitro toxicology screening to guide chemical design in drug discovery. Curr. Opin. Toxicol., 2019, 15, 99-108.
[http://dx.doi.org/10.1016/j.cotox.2019.08.005]
[78]
Winiwarter, S.; Ahlberg, E.; Watson, E.; Oprisiu, I.; Mogemark, M.; Noeske, T.; Greene, N. In silico ADME in drug design-enhancing the impact. ADMET DMPK, 2018, 6(1), 15-33.
[http://dx.doi.org/10.5599/admet.6.1.470]
[79]
Pennington, L.D.; Aquila, B.M.; Choi, Y.; Valiulin, R.A.; Muegge, I. Positional analogue scanning: An effective strategy for multiparameter optimization in drug design. J. Med. Chem., 2020, 63(17), 8956-8976.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02092] [PMID: 32330036]
[80]
Derhaschnig, U.; Gilbert, J.; Jäger, U.; Böhmig, G.; Stingl, G.; Jilma, B. Combined integrated protocol/basket trial design for a first-in-human trial. Orphanet J. Rare Dis., 2016, 11(1), 134.
[http://dx.doi.org/10.1186/s13023-016-0494-z] [PMID: 27716293]
[81]
Ataya, F.S.; Fouad, D.; Malik, A.; Saeed, H.M. Molecular cloning and 3D structure modeling of APEX1, DNA base excision repair enzyme from the Camel, Camelus dromedarius. Int. J. Mol. Sci., 2012, 13(7), 8578-8596.
[http://dx.doi.org/10.3390/ijms13078578] [PMID: 22942721]
[82]
Hoque, I.; Chatterjee, A.; Bhattacharya, S.; Biswas, R. An approach of Computer-Aided Drug Design (CADD) tools for in silico pharmaceutical drug design and development. Int. J. Adv. Res. Biol. Sci. (IJARBS), 2017, 4(2), 60-71.
[83]
Elbashir Elfaki, M.K. Protein sequences features extraction for predicting beta- turns and their types: A review. J. Comput. Sci., 2019, 15(9), 1331-1340.
[http://dx.doi.org/10.3844/jcssp.2019.1331.1340]
[84]
Masoudi-Sobhanzadeh, Y.; Omidi, Y.; Amanlou, M.; Masoudi-Nejad, A. Drug databases and their contributions to drug repurposing. Genomics, 2020, 112(2), 1087-1095.
[http://dx.doi.org/10.1016/j.ygeno.2019.06.021] [PMID: 31226485]
[85]
Koutsoukas, A.; Simms, B.; Kirchmair, J.; Bond, P.J.; Whitmore, A.V.; Zimmer, S.; Young, M.P.; Jenkins, J.L.; Glick, M.; Glen, R.C.; Bender, A. From in silico target prediction to multi-target drug design: Current databases, methods and applications. J. Proteomics, 2011, 74(12), 2554-2574.
[http://dx.doi.org/10.1016/j.jprot.2011.05.011] [PMID: 21621023]
[86]
Hessler, G.; Baringhaus, K.H. Artificial intelligence in drug design. Molecules, 2018, 23(10), 2520.
[http://dx.doi.org/10.3390/molecules23102520] [PMID: 30279331]
[87]
Zhao, J.; Cao, Y.; Zhang, L. Exploring the computational methods for protein-ligand binding site prediction. Comput. Struct. Biotechnol. J., 2020, 18, 417-426.
[http://dx.doi.org/10.1016/j.csbj.2020.02.008] [PMID: 32140203]
[88]
Wan, F. Jianyang (Michael) Zeng. Deep learning with feature embedding for compound-protein interaction prediction. bioRxiv, 2016, 086033.
[89]
Hutson, M. AI protein-folding algorithms solve structures faster than ever. Nature, 2019.
[http://dx.doi.org/10.1038/d41586-019-01357-6] [PMID: 32690960]
[90]
Avdagic, Z.; Purisevic, E.; Omanovic, S.; Coralic, Z. Artificial intelligence in prediction of secondary protein structure using CB513 database. Summit Translat. Bioinforma., 2009, 2009, 1-5.
[PMID: 21347158]
[91]
Wan, F.; Zeng, J.M. Deep learning with feature embedding for compound-protein interaction prediction. bioRxiv, 2016, 086033.
[http://dx.doi.org/10.1101/086033]
[92]
Tian, K.; Shao, M.; Wang, Y.; Guan, J.; Zhou, S. Boosting compound-protein interaction prediction by deep learning. Methods, 2016, 110, 64-72.
[http://dx.doi.org/10.1016/j.ymeth.2016.06.024] [PMID: 27378654]
[93]
Wang, F.; Liu, D.; Wang, H.; Luo, C.; Zheng, M.; Liu, H.; Zhu, W.; Luo, X.; Zhang, J.; Jiang, H. Computational screening for active compounds targeting protein sequences: Methodology and experimental validation. J. Chem. Inf. Model., 2011, 51(11), 2821-2828.
[http://dx.doi.org/10.1021/ci200264h] [PMID: 21955088]
[94]
Xiao, X.; Wu, Z.C.; Chou, K.C. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One, 2011, 6(6), e20592.
[http://dx.doi.org/10.1371/journal.pone.0020592] [PMID: 21698097]
[95]
Xiao, X.; Min, J.L.; Lin, W.Z.; Liu, Z.; Cheng, X.; Chou, K.C. iDrug-Target: Predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J. Biomol. Struct. Dyn., 2015, 33(10), 2221-2233.
[http://dx.doi.org/10.1080/07391102.2014.998710] [PMID: 25513722]
[96]
Mak, K.K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today, 2019, 24(3), 773-780.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]
[97]
Persidis, A. The benefits of drug repositioning. Drug Discov. World, 2011, 12, 9-12.
[98]
Koromina, M.; Pandi, M.T.; Patrinos, G.P. Rethinking drug repositioning and development with artificial intelligence, machine learning, and omics. OMICS, 2019, 23(11), 539-548.
[http://dx.doi.org/10.1089/omi.2019.0151] [PMID: 31651216]
[99]
Park, K. A review of computational drug repurposing. Transl. Clin. Pharmacol., 2019, 27(2), 59-63.
[http://dx.doi.org/10.12793/tcp.2019.27.2.59] [PMID: 32055582]
[100]
Li, X.; Xu, Y.; Cui, H.; Huang, T.; Wang, D.; Lian, B.; Li, W.; Qin, G.; Chen, L.; Xie, L. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif. Intell. Med., 2017, 83, 35-43.
[http://dx.doi.org/10.1016/j.artmed.2017.05.008] [PMID: 28583437]
[101]
Reddy, A.S.; Zhang, S. Polypharmacology: Drug discovery for the future. Expert Rev. Clin. Pharmacol., 2013, 6(1), 41-47.
[http://dx.doi.org/10.1586/ecp.12.74] [PMID: 23272792]
[102]
Achenbach, J.; Tiikkainen, P.; Franke, L.; Proschak, E. Computational tools for polypharmacology and repurposing. Future Med. Chem., 2011, 3(8), 961-968.
[http://dx.doi.org/10.4155/fmc.11.62] [PMID: 21707399]
[103]
Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci., 2018, 4(1), 120-131.
[http://dx.doi.org/10.1021/acscentsci.7b00512] [PMID: 29392184]
[104]
Grzybowski, B.A.; Szymkuć, S.; Gajewska, E.P.; Molga, K.; Dittwald, P.; Wołos, A.; Klucznik, T. Chematica: A story of computer code that started to think like a chemist. Chem, 2018, 4(3), 390-398.
[http://dx.doi.org/10.1016/j.chempr.2018.02.024]
[105]
Klucznik, T.; Mikulak-Klucznik, B.; McCormack, M.P.; Lima, H.; Szymkuć, S.; Bhowmick, M.; Molga, K.; Zhou, Y.; Rickershauser, L.; Gajewska, E.P.; Toutchkine, A.; Dittwald, P.; Startek, M.P.; Kirkovits, G.J.; Roszak, R.; Adamski, A.; Sieredzińska, B.; Mrksich, M.; Trice, S.L.J.; Grzybowski, B.A. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem, 2018, 4(3), 522-532.
[http://dx.doi.org/10.1016/j.chempr.2018.02.002]
[106]
Segler, M.H.S.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 2018, 555(7698), 604-610.
[http://dx.doi.org/10.1038/nature25978] [PMID: 29595767]
[107]
Xu, Y.; Verma, D.; Sheridan, R.P.; Liaw, A.; Ma, J.; Marshall, N.M.; McIntosh, J.; Sherer, E.C.; Svetnik, V.; Johnston, J.M. Deep dive into machine learning models for protein engineering. J. Chem. Inf. Model., 2020, 60(6), 2773-2790.
[http://dx.doi.org/10.1021/acs.jcim.0c00073] [PMID: 32250622]
[108]
Morales, J.A.; Saldaña, R.; Santana-Castolo, M.H.; Torres-Cerna, C.E.; Borrayo, E.; Mendizabal-Ruiz, A.P.; Vélez-Pérez, H.A.; Mendizabal-Ruiz, G. Deep learning for the classification of genomic signals. Math. Probl. Eng., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/7698590]
[109]
Zeng, X.; Zhu, S.; Lu, W.; Liu, Z.; Huang, J.; Zhou, Y.; Fang, J.; Huang, Y.; Guo, H.; Li, L.; Trapp, B.D.; Nussinov, R.; Eng, C.; Loscalzo, J.; Cheng, F. Target identification among known drugs by deep learning from heterogeneous networks. Chem. Sci., 2020, 11(7), 1775-1797.
[http://dx.doi.org/10.1039/C9SC04336E] [PMID: 34123272]
[110]
Ke, Y.Y.; Peng, T.T.; Yeh, T.K.; Huang, W.Z.; Chang, S.E.; Wu, S.H.; Hung, H.C.; Hsu, T.A.; Lee, S.J.; Song, J.S.; Lin, W.H.; Chiang, T.J.; Lin, J.H.; Sytwu, H.K.; Chen, C.T. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J., 2020, 43(4), 355-362.
[http://dx.doi.org/10.1016/j.bj.2020.05.001] [PMID: 32426387]
[111]
Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv., 2018, 4(7), eaap7885.
[http://dx.doi.org/10.1126/sciadv.aap7885] [PMID: 30050984]
[112]
Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G. De novo design of bioactive small molecules by artificial intelligence. Mol. Inform., 2018, 37(1-2), 1700153.
[http://dx.doi.org/10.1002/minf.201700153] [PMID: 29319225]
[113]
Schneider, G.; Clark, D.E. Automated de novo drug design: Are we nearly there yet? Angew. Chem. Int. Ed., 2019, 58(32), 10792-10803.
[http://dx.doi.org/10.1002/anie.201814681] [PMID: 30730601]
[114]
Li, Z.; Li, X.; Liu, X.; Fu, Z.; Xiong, Z.; Wu, X.; Tan, X.; Zhao, J.; Zhong, F.; Wan, X.; Luo, X.; Chen, K.; Jiang, H.; Zheng, M.; Kinome, X. A web application for predicting kinome-wide polypharmacology effect of small molecules. Bioinformatics, 2019, 35(24), 5354-5356.
[http://dx.doi.org/10.1093/bioinformatics/btz519] [PMID: 31228181]
[115]
Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today, 2021, 26(1), 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[116]
Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci., 2019, 40(8), 592-604.
[http://dx.doi.org/10.1016/j.tips.2019.06.004] [PMID: 31320117]
[117]
Putin, E.; Asadulaev, A.; Ivanenkov, Y.; Aladinskiy, V.; Sanchez-Lengeling, B.; Aspuru-Guzik, A.; Zhavoronkov, A. Reinforced adversarial neural computer for de novo molecular design. J. Chem. Inf. Model., 2018, 58(6), 1194-1204.
[http://dx.doi.org/10.1021/acs.jcim.7b00690] [PMID: 29762023]
[118]
Kwak, Y.; Yun, W.J.; Jung, S.; Kim, J. Quantum neural networks: Concepts, applications, and challenges. Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), 2021, pp. 413-416.
[119]
Biamonte, J. Universal variational quantum computation. Phys. Rev. A, 2021, 103(3), L030401.
[http://dx.doi.org/10.1103/PhysRevA.103.L030401]
[120]
Li, J.; Ghosh, S. Scalable variational quantum circuits for autoencoder-based drug discovery. In: Design, Automation & Test in Europe Conference & Exhibition (DATE); 14-23 March 2022; Antwerp, Belgium, 2022; pp. 340-345.
[http://dx.doi.org/10.23919/DATE54114.2022.9774564]
[121]
Kubo, K.; Nakagawa, Y.O.; Endo, S.; Nagayama, S. Variational quantum simulations of stochastic differential equations. arXiv., 2020. Available from: https://arxiv.org/abs/2012.04429
[122]
Leguy, J.; Glavatskikh, M.; Cauchy, T.; Da Mota, B. Scalable estimator of the diversity for de novo molecular generation resulting in a more robust QM dataset (OD9) and a more efficient molecular optimization. J. Cheminform., 2021, 13(1), 76.
[http://dx.doi.org/10.1186/s13321-021-00554-8] [PMID: 34600576]
[123]
Doolittle, B.; Chitambar, E. Certifying the classical simulation cost of a quantum channel. Phys. Rev. Res., 2021, 3(4), 043073.
[http://dx.doi.org/10.1103/PhysRevResearch.3.043073]
[124]
Bartók, A.P.; De, S.; Poelking, C.; Bernstein, N.; Kermode, J.R.; Csányi, G.; Ceriotti, M. Machine learning unifies the modeling of materials and molecules. Sci. Adv., 2017, 3(12), e1701816.
[http://dx.doi.org/10.1126/sciadv.1701816] [PMID: 29242828]
[125]
DiCarlo, L.; Reed, M.D.; Sun, L.; Johnson, B.R.; Chow, J.M.; Gambetta, J.M.; Frunzio, L.; Girvin, S.M.; Devoret, M.H.; Schoelkopf, R.J. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature, 2010, 467(7315), 574-578.
[http://dx.doi.org/10.1038/nature09416] [PMID: 20882013]
[126]
Wang, R.; Fang, X.; Lu, Y.; Yang, C.Y.; Wang, S. The PDBbind database: Methodologies and updates. J. Med. Chem., 2005, 48(12), 4111-4119.
[http://dx.doi.org/10.1021/jm048957q] [PMID: 15943484]
[127]
Surana, S.; Arora, P.; Singh, D.; Sahasrabuddhe, D.; Valadi, J. Pandoragan: Generating antiviral peptides using generative adversarial network. bioRxiv, 2022. Available from: https://www.biorxiv.org/content/10.1101/2021.02.15.431193v1
[128]
Haug, T.; Bharti, K.; Kim, M.S. Capacity and quantum geometry of parametrized quantum circuits. PRX Quantum, 2021, 2(4), 040309.
[http://dx.doi.org/10.1103/PRXQuantum.2.040309]
[129]
Khan, T.M.; Robles-Kelly, A. Machine learning: Quantum vs classical. IEEE Access, 2020, 8, 219275-219294.
[http://dx.doi.org/10.1109/ACCESS.2020.3041719]
[130]
Bento, A.P.; Hersey, A.; Félix, E.; Landrum, G.; Gaulton, A.; Atkinson, F.; Bellis, L.J.; De Veij, M.; Leach, A.R. An open source chemical structure curation pipeline using RDKit. J. Cheminform., 2020, 12(1), 51.
[http://dx.doi.org/10.1186/s13321-020-00456-1] [PMID: 33431044]
[131]
Mitarai, K.; Nakagawa, Y.O.; Mizukami, W. Theory of analytical energy derivatives for the variational quantum eigensolver. Phys. Rev. Res., 2020, 2(1), 013129.
[http://dx.doi.org/10.1103/PhysRevResearch.2.013129]
[132]
Martínez, P.G.A.; Smetanina, E.; Thiele, I.; Chimier, B.; Duchateau, G. Modeling the time-dependent electron dynamics in dielectric materials induced by two-color femtosecond laser pulses: Applications to material modifications. Phys. Rev. A, 2021, 103(3), 033107.
[http://dx.doi.org/10.1103/PhysRevA.103.033107]
[133]
Sack, R.A. An alternative formalism for the method of intermediate Hamiltonians. Int. J. Quantum Chem., 1972, 6(5), 989-999.
[http://dx.doi.org/10.1002/qua.560060516]
[134]
Rupp, M.; Tkatchenko, A.; Müller, K.R.; von Lilienfeld, O.A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett., 2012, 108(5), 058301.
[http://dx.doi.org/10.1103/PhysRevLett.108.058301] [PMID: 22400967]
[135]
Eickenberg, M.; Exarchakis, G.; Hirn, M.; Mallat, S. Solid harmonic wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3D electronic densities. Adv. Neural Inf. Process. Syst., 2017, 30.
[136]
Oord, A.V.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv, 2016. Available from: https://arxiv.org/abs/1609.03499
[137]
Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv, 2013. Available from https://arxiv.org/abs/1312.6203
[138]
Henaff, M.; Bruna, J.; LeCun, Y. Deep convolutional networks on graph-structured data. arXiv, 2015. Available from: https://arxiv.org/abs/1506.05163
[139]
Masci, J.; Boscaini, D.; Bronstein, M.; Vandergheynst, P. Geodesic convolutional neural networks on riemannian manifolds. In: Proceedings of the IEEE international conference on computer vision workshops; 07-13 Dec 2015, Santiago, Chile, 2015; pp. 37-45.
[http://dx.doi.org/10.1109/ICCVW.2015.112]
[140]
Jordan, M.I.; Kearns, M.J.; Solla, S.A. NIPS. In: Proceedings of the 1997 conference on advances in neural information processing system 10; 06-31 July 1998, Denver Colorado, USA, 1998; pp. 11-12.
[141]
Chollet, F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition; , 2017; pp. 1251-1258.
[http://dx.doi.org/10.1109/CVPR.2017.195]
[142]
Schütt, K.; Kindermans, P.J.; Sauceda Felix, H.E.; Chmiela, S.; Tkatchenko, A.; Müller, K.R. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. Adv. Neural Inf. Process. Syst., 2017, 30.
[143]
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition., 2015. Available from: http://image-net. org/challenges (accessed May 24, 2021).
[144]
Duvenaud, D.K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P. Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inf. Process. Syst., 2015, 28.
[145]
Schütt, K.T.; Glawe, H.; Brockherde, F.; Sanna, A.; Müller, K.R.; Gross, E.K.U. How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B Condens. Matter Mater. Phys., 2014, 89(20), 205118.
[http://dx.doi.org/10.1103/PhysRevB.89.205118]
[146]
Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial Neural Networks: A Tutorial. Computer, 1996, 29(3), 31-44.
[147]
Abe, Y.; Iiguni, Y. Fast computation of RBF coefficients using FFT. Signal Processing, 2006, 86(11), 3264-3274.
[http://dx.doi.org/10.1016/j.sigpro.2006.01.012]
[148]
Gupta, U; Paliwal, D Current trends in computational chemistry for breast cancer. Letter in drug design, 2023, 20(1), 2-15.
[149]
Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev., 1958, 65(6), 386-408.
[http://dx.doi.org/10.1037/h0042519] [PMID: 13602029]
[150]
Hwang, J.; Lee, J.; Lee, K.S. A deep learning-based method for grip strength prediction: Comparison of multilayer perceptron and polynomial regression approaches. PLoS One, 2021, 16(2), e0246870.
[http://dx.doi.org/10.1371/journal.pone.0246870] [PMID: 33571318]
[151]
Goya Jorge, E.; Rayar, A.; Barigye, S.; Jorge Rodríguez, M.; Sylla-Iyarreta Veitía, M. Development of an in silico model of DPPH• free radical scavenging capacity: Prediction of antioxidant activity of coumarin type compounds. Int. J. Mol. Sci., 2016, 17(6), 881.
[http://dx.doi.org/10.3390/ijms17060881] [PMID: 27338348]
[152]
Radchenko, E.V.; Dyabina, A.S.; Palyulin, V.A.; Zefirov, N.S. Prediction of human intestinal absorption of drug compounds. Russ. Chem. Bull., 2016, 65(2), 576-580.
[http://dx.doi.org/10.1007/s11172-016-1340-0]
[153]
Agrafiotis, D.K.; Cedeño, W.; Lobanov, V.S. On the use of neural network ensembles in QSAR and QSPR. J. Chem. Inf. Comput. Sci., 2002, 42(4), 903-911.
[http://dx.doi.org/10.1021/ci0203702] [PMID: 12132892]
[154]
Tiño, P.; Nabney, I.T.; Williams, B.S.; Lösel, J.; Sun, Y. Nonlinear prediction of quantitative structure-activity relationships. J. Chem. Inf. Comput. Sci., 2004, 44(5), 1647-1653.
[http://dx.doi.org/10.1021/ci034255i] [PMID: 15446822]
[155]
Gini, G.; Craciun, M.V.; König, C.; Benfenati, E. Combining unsupervised and supervised artificial neural networks to predictaquatic toxicity. J. Chem. Inf. Comput. Sci., 2004, 44(6), 1897-1902.
[http://dx.doi.org/10.1021/ci0401219] [PMID: 15554658]
[156]
Toropova, A.P.; Toropov, A.A. CORAL software: Prediction of carcinogenicity of drugs by means of the Monte Carlo method. Eur. J. Pharm. Sci., 2014, 52, 21-25.
[http://dx.doi.org/10.1016/j.ejps.2013.10.005] [PMID: 24514451]
[157]
Patankar, S.J.; Jurs, P.C. Prediction of glycine/NMDA receptor antagonist inhibition from molecular structure. J. Chem. Inf. Comput. Sci., 2002, 42(5), 1053-1068.
[http://dx.doi.org/10.1021/ci010114+] [PMID: 12376992]
[158]
Ross Quinlan, J.; Rivest, R.L. Inferring decision trees using the minimum description lenght principle. Inf. Comput., 1989, 80(3), 227-248.
[http://dx.doi.org/10.1016/0890-5401(89)90010-2]
[159]
Gelfand, S.B.; Ravishankar, C.S.; Delp, E.J. An iterative growing and pruning algorithm for classification tree design. In: IEEE International Conference on Systems, Man and Cybernetics, Cambridge, MA, USA14-17 Nov19891989, pp. 818-823.
[http://dx.doi.org/10.1109/ICSMC.1989.71407]
[160]
Tanha, J.; van Someren, M.; Afsarmanesh, H. Semi-supervised self-training for decision tree classifiers. Int. J. Mach. Learn. Cybern., 2017, 8(1), 355-370.
[http://dx.doi.org/10.1007/s13042-015-0328-7]
[161]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
[http://dx.doi.org/10.1007/BF00994018]
[162]
Franck, V.M.; Hungate, B.A.; Chapin, F.S., III; Field, C.B. Decomposition of litter produced under elevated CO2: Dependence on plant species and nutrient supply. Biogeochemistry, 1997, 36(3), 223-237.
[http://dx.doi.org/10.1023/A:1005705300959]
[163]
Xue, C.X.; Zhang, R.S.; Liu, H.X.; Yao, X.J.; Liu, M.C.; Hu, Z.D.; Fan, B.T.J. An accurate QSPR study of O-H bond dissociation energy in substituted phenols based on support vector machines. Inf. Comput. Sci, 2004, 44, 669-677.
[http://dx.doi.org/10.1021/ci034248u]
[164]
Liu, H.X.; Xue, C.X.; Zhang, R.S.; Yao, X.J.; Liu, M.C.; Hu, Z.D.; Fan, B.T.J. Quantitative prediction of logk of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine. Inf. Comput. Sci, 2004, 44, 1979-1986.
[165]
Nigam, A.; Pollice, R.; Krenn, M.; Gomes, G.P.; Aspuru-Guzik, A. Beyond generative models: Superfast traversal, Optimization, Novelty, Exploration And Discovery (STONED) algorithm for molecules using SELFIES. Chem. Sci., 2021, 12(20), 7079-7090.
[http://dx.doi.org/10.1039/D1SC00231G] [PMID: 34123336]
[166]
Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. In: Proceedings of the International Conference on Neural Information Processing Systems; 2672-2680.
[167]
De Cao, N.; Kipf, T. MolGAN: An implicit generative model for small molecular graphs. arXiv, 2018. Available from: https://arxiv.org/abs/1805.11973
[168]
Li, J.; Alam, M.; Congzhou, M.S.; Wang, J.; Dokholyan, N.V.; Ghosh, S. Drug discovery approaches using quantum machine learning. ACM/IEEE Design Automation Conference (DAC), 2021, pp. 1356-1359.
[http://dx.doi.org/10.1109/DAC18074.2021.9586268]
[169]
Hernandez, M.; Liang Gan, G.; Linvill, K.; Dukatz, C.; Feng, J.; Bhisetti, G. A quantum-inspired method for three-dimensional ligand-based virtual screening. J. Chem. Inf. Model., 2019, 59(10), 4475-4485.
[http://dx.doi.org/10.1021/acs.jcim.9b00195] [PMID: 31625746]
[170]
Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B), B864-B871.
[http://dx.doi.org/10.1103/PhysRev.136.B864]
[171]
Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A), A1133-A1138.
[http://dx.doi.org/10.1103/PhysRev.140.A1133]
[172]
Zhang, D.W.; Zhang, J.Z.H. Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy. J. Chem. Phys., 2003, 119(7), 3599-3605.
[http://dx.doi.org/10.1063/1.1591727]

© 2025 Bentham Science Publishers | Privacy Policy