Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Insight into UV-induced Oxidative Stress and Role of Herbal Bioactives in the Management of Skin Aging

Author(s): Ranjit K. Harwansh and Rohitas Deshmukh*

Volume 25, Issue 1, 2024

Published on: 26 May, 2023

Page: [16 - 41] Pages: 26

DOI: 10.2174/1389201024666230427110815

Price: $65

Abstract

Skin is a defensive barrier that protects the body against sun rays and other harmful environmental elements. Sun rays contain ultraviolet rays, UVA (320-400 nm) and UVB (280- 320 nm), which are highly harmful to the skin, leading to photoaging. Nowadays, sunscreen products are being utilized to protect the skin against photodamage. Conventional sunscreens are useful but cannot provide skin protection against UV rays for a longer period of time. Therefore, they need to be applied frequently. Aromatic compounds (ACs)-based sunscreens may filter out the UV rays but give rise to several side effects, like premature aging, stress, atopic dermatitis, keratinocytes (KCs) damage, genetic interruption, and malignant melanoma due to deposition of their toxic metabolites on the skin. The concept of natural medicines has become popular worldwide because of their safety and efficacy. Natural medicines have been proven to possess a wide array of biological properties, including antioxidant, antityrosinase, antielastase, antiwrinkle, antiaging, anti-inflammatory, anticancer, etc., against sun rays-mediated skin damage. The present review article is focused on UV-induced oxidative stress, and pathological and molecular targets with updates on herbal bioactives for the management of skin aging.

Keywords: Natural leads, sun rays, photodamage, ultraviolet, antiaging, herbal bioactives.

Graphical Abstract
[1]
Khavkin, J.; Ellis, D.A.F. Aging skin: Histology, physiology, and pathology. Facial Plast. Surg. Clin. North Am., 2011, 19(2), 229-234.
[http://dx.doi.org/10.1016/j.fsc.2011.04.003] [PMID: 21763983]
[2]
Boismal, F.; Serror, K.; Dobos, G.; Zuelgaray, E.; Bensussan, A.; Michel, L. Skin aging: Pathophysiology and innovative therapies. Med. Sci., 2020, 36(12), 1163-1172.
[http://dx.doi.org/10.1051/medsci/2020232] [PMID: 33296633]
[3]
Garg, C.; Khurana, P.; Garg, M. Molecular mechanisms of skin photoaging and plant inhibitors. Int. J. Green Pharm., 2017, 11, S217-S232.
[4]
Yang, L.; Yang, F.; Teng, L.; Katayama, I. 6-Shogaol protects human melanocytes against oxidative stress through activation of the Nrf2-antioxidant response element signaling pathway. Int. J. Mol. Sci., 2020, 21(10), 3537.
[http://dx.doi.org/10.3390/ijms21103537] [PMID: 32429495]
[5]
Harwansh, R.K.; Mukherjee, P.K.; Bahadur, S.; Biswas, R. Enhanced permeability of ferulic acid loaded nanoemulsion based gel through skin against UVA mediated oxidative stress. Life Sci., 2015, 141, 202-211.
[http://dx.doi.org/10.1016/j.lfs.2015.10.001] [PMID: 26437269]
[6]
Harwansh, R.K.; Mukherjee, P.K.; Kar, A.; Bahadur, S.; Al-Dhabi, N.A.; Duraipandiyan, V. Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress. J. Photochem. Photobiol. B, 2016, 160, 318-329.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.026] [PMID: 27167597]
[7]
Bhattacharyya, S.; Majhi, S.; Saha, B.P.; Mukherjee, P.K. Chlorogenic acid–phospholipid complex improve protection against UVA induced oxidative stress. J. Photochem. Photobiol. B, 2014, 130, 293-298.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.11.020] [PMID: 24378330]
[8]
Bazzicalupo, M.; Cornara, L.; Burlando, B.; Cascini, A.; Denaro, M.; Smeriglio, A.; Trombetta, D. Carpobrotus edulis (L.) N.E.Br. extract as a skin preserving agent: From traditional medicine to scientific validation. J. Integr. Med., 2021, 19(6), 526-536.
[http://dx.doi.org/10.1016/j.joim.2021.09.002] [PMID: 34538643]
[9]
Nema, N.K.; Chaudhary, S.K.; Kar, A.; Bahadur, S.; Harwansh, R.K.; Haldar, P.K.; Sharma, N.; Mukherjee, P.K. Bioactive leads for skin aging—Current scenario and future perspectives. In: Evidence-Based Validation of Herbal Medicine, 2nd ed; Mukherjee, P.K., Ed.; Elsevier: Amsterdam, 2022, pp. 185-222.
[http://dx.doi.org/10.1016/B978-0-323-85542-6.00020-2]
[10]
Hidalgo, L.; Saldías-Fuentes, C.; Carrasco, K.; Halpern, A.C.; Mao, J.J.; Navarrete-Dechent, C. Complementary and alternative therapies in skin cancer a literature review of biologically active compounds. Dermatol. Ther., 2022, 35(11), e15842.
[http://dx.doi.org/10.1111/dth.15842] [PMID: 36124923]
[11]
Ng, C.; Yen, H.; Hsiao, H.Y.; Su, S.C. Phytochemicals in skin cancer prevention and treatment: An updated review. Int. J. Mol. Sci., 2018, 19(4), 941.
[http://dx.doi.org/10.3390/ijms19040941] [PMID: 29565284]
[12]
Ahuja, A.; Gupta, J.; Gupta, R. Miracles of herbal phytomedicines in treatment of skin disorders: Natural healthcare perspective. Infect. Disord. Drug Targets, 2021, 21(3), 328-338.
[http://dx.doi.org/10.2174/1871526520666200622142710] [PMID: 32568024]
[13]
Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from plants protect against skin photoaging. Oxid. Med. Cell. Longev., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/1454936] [PMID: 30174780]
[14]
Lucas, R.M.; McMichael, A.J.; Armstrong, B.K.; Smith, W.T. Estimating the global disease burden due to ultraviolet radiation exposure. Int. J. Epidemiol., 2008, 37(3), 654-667.
[http://dx.doi.org/10.1093/ije/dyn017] [PMID: 18276627]
[15]
Mukherjee, P.; Harwansh, R.; Bahadur, S.; Banerjee, S.; Kar, A. Evidence based validation of Indian traditional medicine-way forward. World J. Tradit. Chin. Med., 2016, 2(1), 48-61.
[16]
He, J.Y.; Yv, X.Y.; Wu, J.D.; Lv, L.; Zhang, X.Q.; Ma, T.M.; Zhang, Y. The effectiveness and safety of Chinese herbal formulas on skin photoaging. Medicine, 2021, 100(3), e24197-e24197.
[http://dx.doi.org/10.1097/MD.0000000000024197] [PMID: 33546036]
[17]
Zide, T.; Zhixian, M.J.C.J.E.T.M.F. Signaling pathways in anti-tumor mechanism of traditional. Chin. Med., 2018, 24, 205-218.
[18]
Panda, S.P.; Soni, U. A review of dementia, focusing on the distinct roles of viral protein corona and MMP9 in dementia: Potential pharmacotherapeutic priorities. Ageing Res. Rev., 2022, 75, 101560.
[http://dx.doi.org/10.1016/j.arr.2022.101560] [PMID: 35031512]
[19]
Yan, M.; Guo, L.; Yang, Y.; Zhang, B.; Hou, Z.; Gao, Y.; Gu, H.; Gong, H. Glycyrrhetinic acid protects α-naphthylisothiocyanate-induced cholestasis through regulating transporters, inflammation and apoptosis. Front. Pharmacol., 2021, 12, 701240.
[http://dx.doi.org/10.3389/fphar.2021.701240] [PMID: 34630081]
[20]
Assefa, Z.; Van Laethem, A.; Garmyn, M.; Agostinis, P. Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim. Biophys. Acta, 2005, 1755(2), 90-106.
[PMID: 15964692]
[21]
Lu, J.; Guo, J.H.; Tu, X.L.; Zhang, C.; Zhao, M.; Zhang, Q.W.; Gao, F.H. Tiron inhibits UVB-Induced AP-1 binding sites transcriptional activation on MMP-1 and MMP-3 promoters by MAPK signaling pathway in human dermal fibroblasts. PLoS One, 2016, 11(8), e0159998.
[http://dx.doi.org/10.1371/journal.pone.0159998] [PMID: 27486852]
[22]
Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol., 2002, 138(11), 1462-1470.
[http://dx.doi.org/10.1001/archderm.138.11.1462] [PMID: 12437452]
[23]
Chen, D.; Du, Z.; Lin, Z.; Su, P.; Huang, H.; Ou, Z.; Pan, W.; Huang, S.; Zhang, K.; Zheng, X.; Lin, L.; Zhang, L. The chemical compositions of Angelica pubescens Oil and its prevention of UV-B radiation-induced cutaneous photoaging. Chem. Biodivers., 2018, 15(10), e1800235.
[http://dx.doi.org/10.1002/cbdv.201800235] [PMID: 29996001]
[24]
Skopelja-Gardner, S.; Tai, J.; Sun, X.; Tanaka, L.; Kuchenbecker, J.A.; Snyder, J.M.; Kubes, P.; Mustelin, T.; Elkon, K.B. Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc. Natl. Acad. Sci. USA, 2021, 118(3), e2019097118.
[http://dx.doi.org/10.1073/pnas.2019097118] [PMID: 33397815]
[25]
Rochette, L.; Mazini, L.; Meloux, A.; Zeller, M.; Cottin, Y.; Vergely, C.; Malka, G. Anti-aging effects of GDF11 on Skin. Int. J. Mol. Sci., 2020, 21(7), 2598.
[http://dx.doi.org/10.3390/ijms21072598] [PMID: 32283613]
[26]
Addor, F. Beyond photoaging: Additional factors involved in the process of skin aging. Clin. Cosmet. Investig. Dermatol., 2018, 11, 437-443.
[http://dx.doi.org/10.2147/CCID.S177448] [PMID: 30288075]
[27]
Gilchrest, B.A. Photoaging. J. Invest. Dermatol., 2013, 133(E1), E2-E6.
[http://dx.doi.org/10.1038/skinbio.2013.176] [PMID: 23820721]
[28]
Hu, J.; Zhang, J.; Zhao, W.; Zhang, Y.; Zhang, L.; Shang, H. Cochrane systematic reviews of Chinese herbal medicines: An overview. PLoS One, 2011, 6(12), e28696.
[http://dx.doi.org/10.1371/journal.pone.0028696] [PMID: 22174870]
[29]
Cavinato, M.; Waltenberger, B.; Baraldo, G.; Grade, C.V.C.; Stuppner, H.; Jansen-Dürr, P. Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology, 2017, 18(4), 499-516.
[http://dx.doi.org/10.1007/s10522-017-9715-7] [PMID: 28702744]
[30]
Xue, P.; Wang, Y.; Zeng, F.; Xiu, R.; Chen, J.; Guo, J.; Yuan, P.; Liu, L.; Xiao, J.; Lu, H.; Wu, D.; Pan, H.; Lu, M.; Zhu, F.; Shi, F.; Duan, Q. Paeonol suppresses solar ultraviolet-induced skin inflammation by targeting T-LAK cell-originated protein kinase. Oncotarget, 2017, 8(16), 27093-27104.
[http://dx.doi.org/10.18632/oncotarget.15636] [PMID: 28404919]
[31]
Li, H.; Li, Z.; Peng, L.; Jiang, N.; Liu, Q.; Zhang, E.; Liang, B.; Li, R.; Zhu, H. Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage. Free Radic. Res., 2017, 51(2), 200-210.
[http://dx.doi.org/10.1080/10715762.2017.1294755] [PMID: 28287048]
[32]
Mahendra, C.K.; Ser, H.L.; Pusparajah, P.; Htar, T.T.; Chuah, L.H.; Yap, W.H.; Tang, Y.Q.; Zengin, G.; Tang, S.Y.; Lee, W.L.; Liew, K.B.; Ming, L.C.; Goh, B.H. Cosmeceutical Therapy: Engaging the repercussions of UVR photoaging on the skin’s circadian rhythm. Int. J. Mol. Sci., 2022, 23(5), 2884.
[http://dx.doi.org/10.3390/ijms23052884] [PMID: 35270025]
[33]
Zeng, J.; Bi, B.; Chen, L.; Yang, P.; Guo, Y.; Zhou, Y.; Liu, T. Repeated exposure of mouse dermal fibroblasts at a sub-cytotoxic dose of UVB leads to premature senescence: A robust model of cellular photoaging. J. Dermatol. Sci., 2014, 73(1), 49-56.
[http://dx.doi.org/10.1016/j.jdermsci.2013.08.013] [PMID: 24054498]
[34]
Losso, J.N.; Munene, C.N.; Bansode, R.R.; Bawadi, H.A. Inhibition of matrix metalloproteinase-1 activity by the soybean Bowman–Birk inhibitor. Biotechnol. Lett., 2004, 26(11), 901-905.
[http://dx.doi.org/10.1023/B:bile.0000025900.33812.7c] [PMID: 15269538]
[35]
Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res., 2010, 302(2), 71-83.
[http://dx.doi.org/10.1007/s00403-009-1001-3] [PMID: 19898857]
[36]
Lan, C.C.E.; Wu, C.S.; Yu, H.S. Solar-simulated radiation and heat treatment induced metalloproteinase-1 expression in cultured dermal fibroblasts via distinct pathways: Implications on reduction of sun-associated aging. J. Dermatol. Sci., 2013, 72(3), 290-295.
[http://dx.doi.org/10.1016/j.jdermsci.2013.07.015] [PMID: 24001791]
[37]
Balcombe, N.R.; Sinclair, A. Ageing: definitions, mechanisms and the magnitude of the problem. Best Pract. Res. Clin. Gastroenterol., 2001, 15(6), 835-849.
[http://dx.doi.org/10.1053/bega.2001.0244] [PMID: 11866480]
[38]
Bendová, H.; Akrman, J.; Krejcí, A.; Kubác, L.; Jírová, D.; Kejlová, K.; Kolárová, H.; Brabec, M.; Malý, M. In vitro approaches to evaluation of sun protection factor. Toxicol. In Vitro, 2007, 21(7), 1268-1275.
[39]
Tanaka, K.; Hasegawa, J.; Asamitsu, K.; Okamoto, T. Prevention of the ultraviolet B-mediated skin photoaging by a nuclear factor kappaB inhibitor, parthenolide. J. Pharmacol. Exp. Ther., 2005, 315(2), 624-630.
[http://dx.doi.org/10.1124/jpet.105.088674] [PMID: 16027228]
[40]
Kundu, J.K.; Choi, K.S.; Fujii, H.; Sun, B.; Surh, Y.J. Oligonol, a lychee fruit-derived low molecular weight polyphenol formulation, inhibits UVB-induced cyclooxygenase-2 expression, and induces NAD(P)H:quinone oxidoreductase-1 expression in hairless mouse skin. J. Funct. Foods, 2009, 1(1), 98-108.
[http://dx.doi.org/10.1016/j.jff.2008.09.016]
[41]
Li, Q.; Bai, D.; Qin, L.; Shao, M.; Zhang, S.; Yan, C.; Yu, G.; Hao, J. Protective effect of d-tetramannuronic acid tetrasodium salt on UVA-induced photo-aging in HaCaT cells. Biomed. pharmaco. Biomed. pharmacotherapie, 2020, 126, 110094.
[42]
Labat-Robert, J.; Fourtanier, A.; Boyer-Lafargue, B.; Robert, L. Age dependent increase of elastase type protease activity in mouse skin. J. Photochem. Photobiol. B, 2000, 57(2-3), 113-118.
[http://dx.doi.org/10.1016/S1011-1344(00)00085-3] [PMID: 11154076]
[43]
Kim, Y-S.; Noh, Y-K.; Lee, G-I.; Kim, Y-K.; Lee, K-S.; Min, K-R.J.K.J.P. Inhibitory effects of herbal medicines on hyaluronidase activity. Korean Journal of Pharmacognosy, 1995, 26(3), 265-272.
[44]
Shin, E.J.; Jo, S.; Choi, H.; Choi, S.; Byun, S.; Lim, T.G. Caffeic Acid Phenethyl Ester Inhibits UV-Induced MMP-1 expression by targeting histone acetyltransferases in human skin. Int. J. Mol. Sci., 2019, 20(12), 3055.
[http://dx.doi.org/10.3390/ijms20123055] [PMID: 31234539]
[45]
Saraf, S.; Kaur, C.D. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Res., 2010, 2(1), 22-25.
[http://dx.doi.org/10.4103/0974-8490.60586] [PMID: 21808534]
[46]
Agrawal, N.; Goyal, A.; Jain, A. Nutraceuticals: Supplements For Building A Healthy World 2020, 9, 1-8.
[47]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[48]
Singh, S.; Bajpai, M.; Mishra, P. Pharmacognostic profile, in-vitro antioxidant and hepatoprotective potential of ethanolic fruit extract of Pyrus communis linn. Curr. Bioact. Compd., 2021, 17(10), e190721192137.
[http://dx.doi.org/10.2174/1573407217666210308160905]
[49]
Mukherjee, P.; Harwansh, R.; Bahadur, S.; Duraipandiyan, V.; Al-Dhabi, N. Factors to consider in development of nutraceutical and dietary supplements. In: Pharmacognosy; Elsevier: Amsterdam, 2017, pp. 653-661.
[http://dx.doi.org/10.1016/B978-0-12-802104-0.00034-2]
[50]
Singh, B.; Upadhyay, P.K.; Kumar, M. Nanocrystal for dermatological application: A comprehensive review. Curr. Nanosci., 2022, 18(1), 48-60.
[http://dx.doi.org/10.2174/1573413717666210121143038]
[51]
Maity, N.; Nema, N.K.; Abedy, M.K.; Sarkar, B.K.; Mukherjee, P.K. Exploring Tagetes erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. J. Ethnopharmacol., 2011, 137(3), 1300-1305.
[http://dx.doi.org/10.1016/j.jep.2011.07.064] [PMID: 21843618]
[52]
Melo, C.M. Carvalho, K.M.; Neves, J.C.; Morais, T.C.; Rao, V.S.; Santos, F.A.; Brito, G.A.; Chaves, M.H. αβ-amyrin, a natural triterpenoid ameliorates L-arginine-induced acute pancreatitis in rats. World J. Gastroenterol., 2010, 16(34), 4272-4280.
[http://dx.doi.org/10.3748/wjg.v16.i34.4272] [PMID: 20818810]
[53]
Mirza, A.C.; Panchal, S.S. Safety evaluation of syringic acid: Subacute oral toxicity studies in Wistar rats. Heliyon, 2019, 5(8), e02129.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02129] [PMID: 31463381]
[54]
Sugimoto, K.; Nishimura, T.; Nomura, K.; Sugimoto, K.; Kuriki, T. Inhibitory effects of alpha-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biol. Pharm. Bull., 2004, 27(4), 510-514.
[http://dx.doi.org/10.1248/bpb.27.510] [PMID: 15056856]
[55]
Maeda, K.; Fukuda, M. Arbutin: Mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther., 1996, 276(2), 765-769.
[PMID: 8632348]
[56]
Kenndler, E.; Schwer, C.; Fritsche, B.; Pöhm, M.J.J. o.C. Determination of arbutin in uvae-ursi folium (bearberry leaves) by capillary zone electrophoresis. J. Chromatogr. A, 1990, 514(2), 383-388.
[57]
Sccs; Degen, G.H. Opinion of the Scientific Committee on Consumer Safety (SCCS)-Opinion on the safety of the use of β-arbutin in cosmetic products. Regul. Toxicol. Pharmacol., 2015, 73(3), 866-867.
[http://dx.doi.org/10.1016/j.yrtph.2015.10.008] [PMID: 26482403]
[58]
Ullah, M.O.; Sultana, S.; Haque, A.; Tasmin, S. Antimicrobial, cytotoxic and antioxidant activity of centella asiatica. Eur. J. Sci. Res., 2009, 30, 260-264.
[59]
Gohil, K.; Patel, J.; Gajjar, A. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J. Pharm. Sci., 2010, 72(5), 546-556.
[http://dx.doi.org/10.4103/0250-474X.78519] [PMID: 21694984]
[60]
Szuster-Ciesielska, A.; Plewka, K.; Daniluk, J. Kandefer-Szerszeń M. Betulin and betulinic acid attenuate ethanol-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS), cytokine (TNF-α TGF-β) production and by influencing intracellular signaling. Toxicology, 2011, 280(3), 152-163.
[http://dx.doi.org/10.1016/j.tox.2010.12.006] [PMID: 21172400]
[61]
Mishra, V.; Soren, A.D.; Yadav, A.K. Toxicological evaluations of betulinic acid and ursolic acid; common constituents of Houttuynia cordata used as an anthelmintic by the Naga tribes in North-east India. Fut. J. Pharm. Sci, 2021, 7(1), 1-13.
[62]
Kitagawa, S.; Yoshii, K.; Morita, S.; Teraoka, R. Efficient topical delivery of chlorogenic acid by an oil-in-water microemulsion to protect skin against UV-induced damage. Chem. Pharm. Bull., 2011, 59(6), 793-796.
[http://dx.doi.org/10.1248/cpb.59.793] [PMID: 21628922]
[63]
Solovchenko, A.E.; Merzlyak, M.N. Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ. J. Plant Physiol., 2008, 55(6), 719-737.
[http://dx.doi.org/10.1134/S1021443708060010]
[64]
Koriem, K.M.M.; Soliman, R.E. Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine. J. Toxicol., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/583494] [PMID: 25136360]
[65]
Wang, Y.; Li, J.; Li, N. Phytochemistry and pharmacological activity of plants of Genus Curculigo: An updated review since 2013. Molecules, 2021, 26(11), 3396.
[http://dx.doi.org/10.3390/molecules26113396] [PMID: 34205154]
[66]
Kim, S.; Chung, J.H. Berberine prevents UV-induced MMP-1 and reduction of type I procollagen expression in human dermal fibroblasts. Phytomedicine, 2008, 15(9), 749-753.
[http://dx.doi.org/10.1016/j.phymed.2007.11.004] [PMID: 18164189]
[67]
Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem., 2004, 52(2), 255-260.
[http://dx.doi.org/10.1021/jf030117h] [PMID: 14733505]
[68]
Naik, G.J.B.N. Radioprotecting ability and phytochemical analysis of an Indian medicinal plant: Terminalia chebula; Barc Newsletter, 2003, pp. 221-226.
[69]
Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmaco. Biomed. Pharmacother., 2021, 133, 110985.
[70]
Juncan, A.M. Moisă D.G.; Santini, A.; Morgovan, C.; Rus, L.L.; Vonica-Țincu, A.L.; Loghin, F. Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals. Molecules, 2021, 26(15), 4429.
[http://dx.doi.org/10.3390/molecules26154429] [PMID: 34361586]
[71]
Saija, A.; Tomaino, A.; Lo Cascio, R.; Rapisarda, P.; Dederen, J.C. In vitro antioxidant activity and in vivo photoprotective effect of a red orange extract. Int. J. Cosmet. Sci., 1998, 20(6), 331-342.
[http://dx.doi.org/10.1046/j.1467-2494.1998.177057.x] [PMID: 18505518]
[72]
Saliou, C.; Kitazawa, M.; McLaughlin, L.; Yang, J.P.; Lodge, J.K.; Tetsuka, T.; Iwasaki, K.; Cillard, J.; Okamoto, T.; Packer, L. Antioxidants modulate acute solar ultraviolet radiation-induced NF-kappa-B activation in a human keratinocyte cell line. Free Radic. Biol. Med., 1999, 26(1-2), 174-183.
[http://dx.doi.org/10.1016/S0891-5849(98)00212-3] [PMID: 9890652]
[73]
Anthony, R.M.; MacLeay, J.M.; Gross, K.L. Alpha-lipoic acid as a nutritive supplement for humans and animals: An overview of its use in dog food. Animals, 2021, 11(5), 1454.
[http://dx.doi.org/10.3390/ani11051454] [PMID: 34069383]
[74]
Packer, L.; Witt, E.H.; Tritschler, H.J. Alpha-lipoic acid as a biological antioxidant. Free Radic. Biol. Med., 1995, 19(2), 227-250.
[http://dx.doi.org/10.1016/0891-5849(95)00017-R] [PMID: 7649494]
[75]
Adhami, V.M.; Syed, D.N.; Khan, N.; Afaq, F. Phytochemicals for prevention of solar ultraviolet radiation-induced damages. Photochem. Photobiol., 2008, 84(2), 489-500.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00293.x] [PMID: 18266816]
[76]
Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; Hashempur, M.H.; Rebezov, M. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants, 2020, 9(8), 706.
[77]
Anggakusuma; Yanti; Hwang, J.K. Effects of macelignan isolated from Myristica fragrans Houtt. on UVB-induced matrix metalloproteinase-9 and cyclooxygenase-2 in HaCaT cells. J. Dermatol. Sci., 2010, 57(2), 114-122.
[http://dx.doi.org/10.1016/j.jdermsci.2009.10.005] [PMID: 19914807]
[78]
Ha, M.T.; Vu, N.K.; Tran, T.H.; Kim, J.A.; Woo, M.H.; Min, B.S. Phytochemical and pharmacological properties of Myristica fragrans Houtt.: An updated review. Arch. Pharm. Res., 2020, 43(11), 1067-1092.
[http://dx.doi.org/10.1007/s12272-020-01285-4] [PMID: 33206347]
[79]
Song, J.H.; Bae, E.Y.; Choi, G.; Hyun, J.W.; Lee, M.Y.; Lee, H.W.; Chae, S. Protective effect of mango (M angifera indica L.) against UVB-induced skin aging in hairless mice. Photodermatol. Photoimmunol. Photomed., 2013, 29(2), 84-89.
[http://dx.doi.org/10.1111/phpp.12030] [PMID: 23458392]
[80]
Hou, S.; Wang, F.; Li, Y.; Li, Y.; Wang, M.; Sun, D.; Sun, C. Pharmacokinetic study of mangiferin in human plasma after oral administration. Food Chem., 2012, 132(1), 289-294.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.079] [PMID: 26434292]
[81]
Ebrahimi, A.; Schluesener, H. Natural polyphenols against neurodegenerative disorders: Potentials and pitfalls. Ageing Res. Rev., 2012, 11(2), 329-345.
[http://dx.doi.org/10.1016/j.arr.2012.01.006] [PMID: 22336470]
[82]
Li, P.; Wu, H.; Wang, Y.; Peng, W.; Su, W. Toxicological evaluation of naringin: Acute, subchronic, and chronic toxicity in Beagle dogs. Regul. Toxicol. Pharmacol., 2020, 111, 104580.
[http://dx.doi.org/10.1016/j.yrtph.2020.104580] [PMID: 31954754]
[83]
de Melo, C.L.; Queiroz, M.G.R.; Fonseca, S.G.C.; Bizerra, A.M.C.; Lemos, T.L.G.; Melo, T.S.; Santos, F.A.; Rao, V.S. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet. Chem. Biol. Interact., 2010, 185(1), 59-65.
[http://dx.doi.org/10.1016/j.cbi.2010.02.028] [PMID: 20188082]
[84]
Kim, S.T.; Suh, K.S.; Chae, Y.S.; Kim, H.C. Photoprotective effects of oleanolic acid and ursodeoxycholic acid on the chronic ultraviolet radiation induced cutaneous damages. J. Dermatol. Sci., 1998, 16, S226.
[http://dx.doi.org/10.1016/S0923-1811(98)84350-8]
[85]
Lu, Y.F.; Wan, X.L.; Xu, Y.; Liu, J. Repeated oral administration of oleanolic acid produces cholestatic liver injury in mice. Molecules, 2013, 18(3), 3060-3071.
[http://dx.doi.org/10.3390/molecules18033060] [PMID: 23470335]
[86]
Koul, I.; Kapil, A. Evaluation of the liver protective potential of piperine, an active principle of black and long peppers. Planta Med., 1993, 59(5), 413-417.
[http://dx.doi.org/10.1055/s-2006-959721] [PMID: 8255933]
[87]
Ziegenhagen, R.; Heimberg, K.; Lampen, A.; Hirsch-Ernst, K.I. Safety aspects of the use of isolated piperine ingested as a bolus. In: Foods, 2021, 10(9), 2121.
[88]
Vostálová, J. Zdařilová, A.; Svobodová, A. Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch. Dermatol. Res., 2010, 302(3), 171-181.
[http://dx.doi.org/10.1007/s00403-009-0999-6] [PMID: 19862537]
[89]
Yehya, A.H.S.; Asif, M.; Kaur, G.; Hassan, L.E.A.; Al-Suede, F.S.R.; Abdul Majid, A.M.S.; Oon, C.E. Toxicological studies of Orthosiphon stamineus (Misai Kucing) standardized ethanol extract in combination with gemcitabine in athymic nude mice model. J. Adv. Res., 2019, 15, 59-68.
[http://dx.doi.org/10.1016/j.jare.2018.05.006] [PMID: 30581613]
[90]
Hinneburg, I.; Kempe, S.; Rüttinger, H.H.; Neubert, R.H. Antioxidant and photoprotective properties of an extract from buckwheat herb (Fagopyrum esculentum MOENCH). Pharmazie, 2006, 61(3), 237-240.
[PMID: 16599267]
[91]
Tiwari, R.; Siddiqui, M.H.; Mahmood, T.; Farooqui, A.; Bagga, P.; Ahsan, F.; Shamim, A.J.C.P. An exploratory analysis on the toxicity & safety profile of Polyherbal combination of curcumin, quercetin and rutin. Clinical Phytoscience, 2020, 6, 1-18.
[http://dx.doi.org/10.1186/s40816-020-00228-2]
[92]
Gu, M.; Singh, R.P.; Dhanalakshmi, S.; Agarwal, C.; Agarwal, R. Silibinin inhibits inflammatory and angiogenic attributes in photocarcinogenesis in SKH-1 hairless mice. Cancer Res., 2007, 67(7), 3483-3491.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3955] [PMID: 17409458]
[93]
Soleimani, V.; Delghandi, P.S.; Moallem, S.A.; Karimi, G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytother. Res., 2019, 33(6), 1627-1638.
[http://dx.doi.org/10.1002/ptr.6361] [PMID: 31069872]
[94]
Ramachandran, S.; Prasad, N.R. Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes. Chem. Biol. Interact., 2008, 176(2-3), 99-107.
[http://dx.doi.org/10.1016/j.cbi.2008.08.010] [PMID: 18793624]
[95]
Wang, Z.H. Anti-glycative effects of asiatic acid in human keratinocyte cells. Biomedicine, 2014, 4(3), 19-19.
[http://dx.doi.org/10.7603/s40681-014-0019-9] [PMID: 25520932]
[96]
Geerlofs, L.; He, Z.; Xiao, S.; Xiao, Z.C. Repeated dose (90 days) oral toxicity study of ursolic acid in Han-Wistar rats. Toxicol. Rep., 2020, 7, 610-623.
[http://dx.doi.org/10.1016/j.toxrep.2020.04.005] [PMID: 32435599]
[97]
Guo, Y.; Ji, R.; Lü, X.; Wan, Y.F.; Jiang, X. The protective effects of sodium selenite and aloin against ultraviolet A radiation. Sichuan Da Xue Xue Bao Yi Xue Ban, 2011, 42(1), 61-64, 118.
[PMID: 21355303]
[98]
Dong, X.; Zeng, Y.; Liu, Y.; You, L.; Yin, X.; Fu, J.; Ni, J. Aloe‐emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res., 2020, 34(2), 270-281.
[http://dx.doi.org/10.1002/ptr.6532] [PMID: 31680350]
[99]
Guo, X.; Mei, N. Aloe vera: A review of toxicity and adverse clinical effects. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2016, 34(2), 77-96.
[http://dx.doi.org/10.1080/10590501.2016.1166826] [PMID: 26986231]
[100]
Qi, S.; Xin, Y.; Guo, Y.; Diao, Y.; Kou, X.; Luo, L.; Yin, Z. Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways. Int. Immunopharmacol., 2012, 12(1), 278-287.
[http://dx.doi.org/10.1016/j.intimp.2011.12.001] [PMID: 22193240]
[101]
Khan, T.H.; Jahangir, T.; Prasad, L.; Sultana, S. Inhibitory effect of apigenin on benzo(a)pyrene-mediated genotoxicity in Swiss albino mice. J. Pharm. Pharmacol., 2010, 58(12), 1655-1660.
[http://dx.doi.org/10.1211/jpp.58.12.0013] [PMID: 17331330]
[102]
Zenner, L.; Callait, M.P.; Granier, C.; Chauve, C. In vitro effect of essential oils from Cinnamomum aromaticum, Citrus limon and Allium sativum on two intestinal flagellates of poultry, Tetratrichomonas gallinarum and Histomonas meleagridis. Parasite, 2003, 10(2), 153-157.
[http://dx.doi.org/10.1051/parasite/2003102153] [PMID: 12847923]
[103]
Campbell, G.D., Jr; Steinberg, M.H.; Bower, J.D. Letter: Ascorbic acid-induced hemolysis in G-6-PD deficiency. Ann. Intern. Med., 1975, 82(6), 810-810.
[http://dx.doi.org/10.7326/0003-4819-82-6-810_1] [PMID: 1138591]
[104]
Singh, N.; Sharma, B. Toxicological effects of berberine and sanguinarine. Front. Mol. Biosci., 2018, 5, 21.
[http://dx.doi.org/10.3389/fmolb.2018.00021] [PMID: 29616225]
[105]
Russo, A.; Cardile, V.; Caggia, S.; Gunther, G.; Troncoso, N.; Garbarino, J. Boldo prevents UV light and nitric oxide-mediated plasmid DNA damage and reduces the expression of Hsp70 protein in melanoma cancer cells. J. Pharm. Pharmacol., 2011, 63(9), 1219-1229.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01320.x] [PMID: 21827495]
[106]
Si, Y-X.; Ji, S.; Wang, W.; Fang, N-Y.; Jin, Q-X.; Park, Y-D.; Qian, G-Y.; Lee, J.; Han, H-Y.; Yin, S-J. Effects of boldine on tyrosinase: Inhibition kinetics and computational simulation. Process Biochem., 2013, 48(1), 152-161.
[107]
Leboeuf, M.; Cavé, A.; Provost, J.; Tiberghien, R.; Forgacs, P. Alkaloids of Monimia rotundifolia pet.-th.; preparation of laurotetanine derived compounds with antiarrhythmic properties (author’s transl). Ann. Pharm. Fr., 1980, 38(6), 537-544.
[PMID: 7283352]
[108]
Hüsch, J.; Bohnet, J.; Fricker, G.; Skarke, C.; Artaria, C.; Appendino, G.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome®) of Boswellia extract. Fitoterapia, 2013, 84, 89-98.
[http://dx.doi.org/10.1016/j.fitote.2012.10.002] [PMID: 23092618]
[109]
Saija, A.; Tomaino, A.; Trombetta, D.; De Pasquale, A.; Uccella, N.; Barbuzzi, T.; Paolino, D.; Bonina, F. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int. J. Pharm., 2000, 199(1), 39-47.
[http://dx.doi.org/10.1016/S0378-5173(00)00358-6] [PMID: 10794925]
[110]
Mandade, R.; Sreenivas, S.A.; Sakarkar, D.M.; Choudhury, A. Radical scavenging and antioxidant activity of Hibiscus rosasinensis extract. Afr. J. Pharm. Pharmacol., 2011, 5(17), 2027-2034.
[111]
Shin, J.W.; Kwon, S.H.; Choi, J.Y.; Na, J.I.; Huh, C.H.; Choi, H.R.; Park, K.C. Molecular mechanisms of dermal aging and antiaging approaches. Int. J. Mol. Sci., 2019, 20(9), 2126.
[http://dx.doi.org/10.3390/ijms20092126] [PMID: 31036793]
[112]
Ohta, S.; Furukawa, M.; Shinoda, M. Studies on chemical protectors against radiation. XXIII. Radioprotective activities of ferulic acid and its related compounds. Yakugaku Zasshi, 1984, 104(7), 793-797.
[http://dx.doi.org/10.1248/yakushi1947.104.7_793] [PMID: 6502467]
[113]
Conney, A.H.; Kramata, P.; Lou, Y.R.; Lu, Y.P. Effect of caffeine on UVB-induced carcinogenesis, apoptosis, and the elimination of UVB-induced patches of p53 mutant epidermal cells in SKH-1 mice. Photochem. Photobiol., 2008, 84(2), 330-338.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00263.x] [PMID: 18179623]
[114]
Adamson, R.H. The acute lethal dose 50 (LD50) of caffeine in albino rats. Regul. Toxicol. Pharmacol., 2016, 80, 274-276.
[http://dx.doi.org/10.1016/j.yrtph.2016.07.011] [PMID: 27461039]
[115]
Offord, E.A.; Gautier, J.C.; Avanti, O.; Scaletta, C.; Runge, F.; Krämer, K.; Applegate, L.A. Photoprotective potential of lycopene, β-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts. Free Radic. Biol. Med., 2002, 32(12), 1293-1303.
[http://dx.doi.org/10.1016/S0891-5849(02)00831-6] [PMID: 12057767]
[116]
Svobodová, A.; Psotová, J.; Walterová, D. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2003, 147(2), 137-145.
[http://dx.doi.org/10.5507/bp.2003.019] [PMID: 15037894]
[117]
Wang, Q.L.; Li, H.; Li, X.X.; Cui, C.Y.; Wang, R.; Yu, N.X.; Chen, L.X. Acute and 30-day oral toxicity studies of administered carnosic acid. Food Chem. Toxicol., 2012, 50(12), 4348-4355.
[118]
Seybold, C.; Fröhlich, K.; Bitsch, R.; Otto, K.; Böhm, V. Changes in contents of carotenoids and vitamin E during tomato processing. J. Agric. Food Chem., 2004, 52(23), 7005-7010.
[http://dx.doi.org/10.1021/jf049169c] [PMID: 15537310]
[119]
Burton, G.W.; Mogg, T.J.; Stupak, J.; Stark, F.C.; Twine, S.M.; Li, J. Safety and uptake of fully oxidized β-carotene. Food Chem. Toxicol., 2022, 168, 113387.
[120]
Luximon-Ramma, A.; Bahorun, T.; Crozier, A.; Zbarsky, V.; Datla, K.P.; Dexter, D.T.; Aruoma, O.I. Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Res. Int., 2005, 38(4), 357-367.
[http://dx.doi.org/10.1016/j.foodres.2004.10.005]
[121]
Uzun, F.G.; Demir, F.; Kalender, S.; Bas, H.; Kalender, Y. Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats. Food Chem. Toxicol., 2010, 48(6), 1714-1720.
[122]
Svobodová, A.; Rambousková, J.; Walterová, D.; Vostálová, J. Protective effects of phenolic fraction of blue honeysuckle fruits against UVA-induced damage to human keratinocytes. Arch. Dermatol. Res., 2008, 300(5), 225-233.
[http://dx.doi.org/10.1007/s00403-008-0850-5] [PMID: 18404271]
[123]
Krishnaraju, A.V.; Sundararaju, D.; Sengupta, K.; Venkateswarlu, S.; Trimurtulu, G. Safety and toxicological evaluation of demethylatedcurcuminoids; a novel standardized curcumin product. Toxicol. Mech. Methods, 2009, 19(6-7), 447-460.
[http://dx.doi.org/10.1080/15376510903200766] [PMID: 19778247]
[124]
Afaq, F.; Mukhtar, H. Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp. Dermatol., 2006, 15(9), 678-684.
[http://dx.doi.org/10.1111/j.1600-0625.2006.00466.x] [PMID: 16881964]
[125]
Qamar, M.; Akhtar, S.; Ismail, T.; Wahid, M.; Ali, S.; Nazir, Y.; Murtaza, S.; Abbas, M.W.; Ziora, Z.M. Syzygium cumini (L.) Skeels extracts; in vivo anti-nociceptive, anti-inflammatory, acute and subacute toxicity assessment. J. Ethnopharmacol., 2022, 287, 114919.
[http://dx.doi.org/10.1016/j.jep.2021.114919] [PMID: 34995693]
[126]
Sethiya, N.K.; Shekh, M.R.; Singh, P.K. Wild banana [Ensete superbum (Roxb.) Cheesman.: Ethnomedicinal, phytochemical and pharmacological overview. J. Ethnopharmacol., 2019, 233, 218-233.
[127]
Bae, J.Y.; Choi, J.S.; Kang, S.W.; Lee, Y.J.; Park, J.; Kang, Y.H. Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Exp. Dermatol., 2010, 19(8), e182-e190.
[http://dx.doi.org/10.1111/j.1600-0625.2009.01044.x] [PMID: 20113347]
[128]
Hseu, Y.C.; Chou, C.W.; Senthil Kumar, K.J.; Fu, K.T.; Wang, H.M.; Hsu, L.S.; Kuo, Y.H.; Wu, C.R.; Chen, S.C.; Yang, H.L. Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the upregulation of the HO-1 and Nrf-2 antioxidant genes. Food Chem. Toxicol., 2012, 50(5), 1245-1255.
[129]
Bourne, L.C.; Rice-Evans, C. Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun., 1998, 253(2), 222-227.
[http://dx.doi.org/10.1006/bbrc.1998.9681] [PMID: 9878519]
[130]
Juliana, C.; Lister, I.N.E.; Girsang, E.; Nasution, A.N.; Widowati, W. Antioxidant and elastase inhibitor from Black Soybean (Glycine max L.) and its compound (Daidzein). J. Biomed. Translat. Res., 2020, 6(1), 11-14.
[131]
Sarkar, N.; Das, B.; Bishayee, A.; Sinha, D.J.A. Arsenal of phytochemicals to combat against arsenic-induced mitochondrial stress and cancer. Antioxid. Redox Signal., 2020, 33(17), 1230-1256.
[http://dx.doi.org/10.1089/ars.2019.7950]
[132]
Laddha, A.P.; Murugesan, S.; Kulkarni, Y.A. In-vivo and in-silico toxicity studies of daidzein: An isoflavone from soy. Drug Chem. Toxicol., 2022, 45(3), 1408-1416.
[http://dx.doi.org/10.1080/01480545.2020.1833906] [PMID: 33059469]
[133]
Zick, S.M.; Djuric, Z.; Ruffin, M.T.; Litzinger, A.J.; Normolle, D.P.; Alrawi, S.; Feng, M.R.; Brenner, D.E. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev., 2008, 17(8), 1930-1936.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2934] [PMID: 18708382]
[134]
Zhao, Q.; Yang, M.; Deng, Y.; Yu, H.; Wang, L.; Teng, F.; Cho, K.; Ma, H.; Wu, P.; Li, X.; Wu, W.; Liu, X.; Xu, F.; Jiang, B.; Guo, D.A. The safety evaluation of Salvianolic Acid B and Ginsenoside Rg1 Combination on Mice. Int. J. Mol. Sci., 2015, 16(12), 29345-29356.
[http://dx.doi.org/10.3390/ijms161226176] [PMID: 26690140]
[135]
Marianecci, C.; Rinaldi, F.; Mastriota, M.; Pieretti, S.; Trapasso, E.; Paolino, D.; Carafa, M. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models. J. Control. Release, 2012, 164(1), 17-25.
[136]
Karimani, A.; Heidarpour, M.; Moghaddam Jafari, A. Protective effects of glycyrrhizin on sub-chronic diazinon-induced biochemical, hematological alterations and oxidative stress indices in male Wistar rats. Drug Chem. Toxicol., 2019, 42(3), 300-308.
[http://dx.doi.org/10.1080/01480545.2018.1497053] [PMID: 30203683]
[137]
Tsai, Y.H.; Lee, K.F.; Huang, Y.B.; Huang, C.T.; Wu, P.C. In vitro permeation and in vivo whitening effect of topical hesperetin microemulsion delivery system. Int. J. Pharm., 2010, 388(1-2), 257-262.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.051] [PMID: 20060453]
[138]
Li, Y.; Kandhare, A.D.; Mukherjee, A.A.; Bodhankar, S.L. Acute and sub-chronic oral toxicity studies of hesperidin isolated from orange peel extract in Sprague Dawley rats. Regul. Toxicol. Pharmacol., 2019, 105, 77-85.
[http://dx.doi.org/10.1016/j.yrtph.2019.04.001] [PMID: 30991075]
[139]
Hwang, Y.P.; Oh, K.N.; Yun, H.J.; Jeong, H.G. The flavonoids apigenin and luteolin suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and AP-1-dependent signaling in HaCaT cells. J. Dermatol. Sci., 2011, 61(1), 23-31.
[http://dx.doi.org/10.1016/j.jdermsci.2010.10.016] [PMID: 21112745]
[140]
Riso, P.; Brusamolino, A.; Scalfi, L.; Porrini, M. Bioavailability of carotenoids from spinach and tomatoes. Nutr. Metab. Cardiovasc. Dis., 2004, 14(3), 150-156.
[http://dx.doi.org/10.1016/S0939-4753(04)80035-8] [PMID: 15330274]
[141]
Astner, S.; Wu, A.; Chen, J.; Philips, N.; Rius-Diaz, F.; Parrado, C.; Mihm, M.C.; Goukassian, D.A.; Pathak, M.A.; González, S. Dietary lutein/zeaxanthin partially reduces photoaging and photocarcinogenesis in chronically UVB-irradiated Skh-1 hairless mice. Skin Pharmacol. Physiol., 2007, 20(6), 283-291.
[http://dx.doi.org/10.1159/000107576] [PMID: 17717424]
[142]
Kamoshita, M.; Toda, E.; Osada, H.; Narimatsu, T.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Lutein acts via multiple antioxidant pathways in the photo-stressed retina. Sci. Rep., 2016, 6(1), 30226.
[http://dx.doi.org/10.1038/srep30226] [PMID: 27444056]
[143]
Owumi, S.E.; Nwozo, S.O.; Arunsi, U.O.; Oyelere, A.K.; Odunola, O.A. Co-administration of Luteolin mitigated toxicity in rats’ lungs associated with doxorubicin treatment. Toxicol. Appl. Pharmacol., 2021, 411, 115380.
[http://dx.doi.org/10.1016/j.taap.2020.115380] [PMID: 33358696]
[144]
Basile, A.; Ferrara, L.; Pezzo, M.D.; Mele, G.; Sorbo, S.; Bassi, P.; Montesano, D. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana Mart. J. Ethnopharmacol., 2005, 102(1), 32-36.
[http://dx.doi.org/10.1016/j.jep.2005.05.038] [PMID: 16040216]
[145]
Kimura, Y.; Sumiyoshi, M. French maritime pine bark (Pinus maritima Lam.) extract (Flavangenol) prevents chronic UVB radiation-induced skin damage and carcinogenesis in melanin-possessing hairless mice. Photochem. Photobiol., 2010, 86(4), 955-963.
[http://dx.doi.org/10.1111/j.1751-1097.2010.00751.x] [PMID: 20497364]
[146]
Lluís, L.; Muñoz, M.; Nogués, M.R.; Sánchez-Martos, V.; Romeu, M.; Giralt, M.; Valls, J.; Solà, R. Toxicology evaluation of a procyanidin-rich extract from grape skins and seeds. Food Chem. Toxicol., 2011, 49(6), 1450-1454.
[147]
Bonina, F.; Puglia, C.; Ventura, D.; Aquino, R.; Tortora, S.; Sacchi, A.; Saija, A.; Tomaino, A.; Pellegrino, M.L.; de Caprariis, P. In vitro antioxidant and in vivo photoprotective effects of a lyophilized extract of Capparis spinosa L buds. J. Cosmet. Sci., 2002, 53(6), 321-335.
[PMID: 12512010]
[148]
Bose, S.; Du, Y.; Takhistov, P.; Michniak-Kohn, B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int. J. Pharm., 2013, 441(1-2), 56-66.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.013] [PMID: 23262430]
[149]
Fonseca, Y.M.; Catini, C.D.; Vicentini, F.T.M.C.; Cardoso, J.C.; Cavalcanti De Albuquerque, Junior, R.L.; Vieira Fonseca, M.J. Efficacy of marigold extract-loaded formulations against UV-induced oxidative stress. J. Pharm. Sci., 2011, 100(6), 2182-2193.
[http://dx.doi.org/10.1002/jps.22438] [PMID: 21491442]
[150]
Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M. Kılıç, C.S.; Sytar, O.; Sharifi-Rad, M.; Sharopov, F.; Martins, N.; Martorell, M.; Cho, W.C. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega, 2020, 5(20), 11849-11872.
[http://dx.doi.org/10.1021/acsomega.0c01818] [PMID: 32478277]
[151]
Chen, R.; Lin, J.; Hong, J.; Han, D.; Zhang, A.D.; Lan, R.; Fu, L.; Wu, Z.; Lin, J.; Zhang, W.; Wang, Z.; Chen, W.; Chen, C.; Zhang, H. Potential toxicity of quercetin: The repression of mitochondrial copy number via decreased POLG expression and excessive TFAM expression in irradiated murine bone marrow. Toxicol. Rep., 2014, 1, 450-458.
[http://dx.doi.org/10.1016/j.toxrep.2014.07.014] [PMID: 28962259]
[152]
Waffo Teguo, P.; Fauconneau, B.; Deffieux, G.; Huguet, F.; Vercauteren, J.; Mérillon, J.M. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from vitis vinifera cell cultures. J. Nat. Prod., 1998, 61(5), 655-657.
[http://dx.doi.org/10.1021/np9704819] [PMID: 9599270]
[153]
Jawad, R.A.; Sahib, H.B. Estimation the safety of parenteral resveratrol in mice. J Iraqi Journal of Pharmaceutical Sciences, 2022, 31(1), 167-175.
[154]
EL-Hak. H.N.G.; ELaraby, E.E.; Hassan, A.K.; Abbas, O.A. Study of the toxic effect and safety of vitamin E supplement in male albino rats after 30 days of repeated treatment. Heliyon, 2019, 5(10), e02645.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02645] [PMID: 31667433]
[155]
Mohamad, E.A.; Aly, A.A.; Khalaf, A.A.; Ahmed, M.I.; Kamel, R.M.; Abdelnaby, S.M.; Abdelzaher, Y.H.; Sedrak, M.G.; Mousa, S.A. Evaluation of natural bioactive-derived punicalagin niosomes in skin-aging processes accelerated by oxidant and ultraviolet radiation. Drug Des. Devel. Ther., 2021, 15, 3151-3162.
[http://dx.doi.org/10.2147/DDDT.S316247] [PMID: 34321865]
[156]
Álvarez-Cervantes, P.; Izquierdo-Vega, J.A.; Morán-León, J.; Guerrero-Solano, J.A.; García-Pérez, B.E.; Cancino-Díaz, J.C.; Belefant-Miller, H.; Betanzos-Cabrera, G. Subacute and subchronic toxicity of microencapsulated pomegranate juice in rats and mice. Toxicol. Res., 2021, 10(2), 312-324.
[http://dx.doi.org/10.1093/toxres/tfab013] [PMID: 33884181]
[157]
Duan, X.; Wu, T.; Liu, T.; Yang, H.; Ding, X.; Chen, Y.; Mu, Y. Vicenin-2 ameliorates oxidative damage and photoaging via modulation of MAPKs and MMPs signaling in UVB radiation exposed human skin cells. J. Photochem. Photobiol. B, 2019, 190, 76-85.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.018] [PMID: 30502588]
[158]
Klinngam, W.; Rungkamoltip, P.; Thongin, S.; Joothamongkhon, J.; Khumkhrong, P.; Khongkow, M.; Namdee, K.; Tepaamorndech, S.; Chaikul, P.; Kanlayavattanakul, M.; Lourith, N.; Piboonprai, K.; Ruktanonchai, U.; Asawapirom, U.; Iempridee, T. Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, 145, 112461.
[159]
Suekawa, M.; Ishige, A.; Yuasa, K.; Sudo, K.; Aburada, M.; Hosoya, E. Pharmacological studies on Ginger. I. Pharmacological actions of pungent constituents, (6)-gingerol and (6)-shogaol. J. Pharmacobiodyn., 1984, 7(11), 836-848.
[http://dx.doi.org/10.1248/bpb1978.7.836] [PMID: 6335723]
[160]
Wang, M-L.; Zhong, Q-Y.; Lin, B-Q.; Liu, Y-H.; Huang, Y-F.; Chen, Y.; Yuan, J.; Su, Z-R.; Zhan, J.Y-X. Andrographolide sodium bisulfate attenuates UV induced photo damage by activating the keap1/Nrf2 pathway and downregulating the NF κB pathway in HaCaT keratinocytes. Int. J. Mol. Med., 2020, 45(2), 343-352.
[PMID: 31789424]
[161]
Worasuttayangkurn, L.; Nakareangrit, W.; Kwangjai, J.; Sritangos, P.; Pholphana, N.; Watcharasit, P.; Rangkadilok, N.; Thiantanawat, A.; Satayavivad, J. Acute oral toxicity evaluation of Andrographis paniculata-standardized first true leaf ethanolic extract. Toxicol. Rep., 2019, 6, 426-430.
[http://dx.doi.org/10.1016/j.toxrep.2019.05.003] [PMID: 31193040]
[162]
Zeng, B.; Wei, A.; Zhou, Q.; Yuan, M.; Lei, K.; Liu, Y.; Song, J.; Guo, L.; Ye, Q. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytother. Res., 2022, 36(1), 336-364.
[http://dx.doi.org/10.1002/ptr.7324]
[163]
Couteau, C.; Faure, A.; Fortin, J.; Paparis, E.; Coiffard, L.J.M. Study of the photostability of 18 sunscreens in creams by measuring the SPF in vitro. J. Pharm. Biomed. Anal., 2007, 44(1), 270-273.
[http://dx.doi.org/10.1016/j.jpba.2007.01.052] [PMID: 17367977]
[164]
Bleasel, M.D.; Aldous, S. In vitro evaluation of sun protection factors of sunscreen agents using a novel UV spectrophotometric technique. Int. J. Cosmet. Sci., 2008, 30(4), 259-270.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00453.x] [PMID: 18713072]
[165]
Chen-Yang, Y.W.; Chen, Y.T.; Li, C.C.; Yu, H.C.; Chuang, Y.C.; Su, J.H.; Lin, Y.T. Preparation of UV-filter encapsulated mesoporous silica with high sunscreen ability. Mater. Lett., 2011, 65(6), 1060-1062.
[http://dx.doi.org/10.1016/j.matlet.2010.12.034]
[166]
Mishra, A.; Mishra, A.; Chattopadhyay, P.J. Herbal cosmeceuticals for photoprotection from ultraviolet B radiation: a review. Tropical Journal of Pharmaceutical Research, 2011, 10(3)
[http://dx.doi.org/10.4314/tjpr.v10i3.7]
[167]
Mishra, A. K.; Mishra, A.; Chattopadhyay, P. J. Evaluation of sun protection factor of some marketed formulations of sunscreens by ultraviolet spectroscopic method., 2011, 5(1), 32-35.
[168]
Li, H.; Colantonio, S.; Dawson, A.; Lin, X.; Beecker, J. Sunscreen application, safety, and sun protection: The evidence. J. Cutan. Med. Surg., 2019, 23(4), 357-369.
[http://dx.doi.org/10.1177/1203475419856611] [PMID: 31219707]
[169]
Kertész, Z.; Szikszai, Z.; Gontier, E.; Moretto, P.; Surlève-Bazeille, J.E.; Kiss, B.; Juhász, I.; Hunyadi, J.; Kiss, Á.Z. Nuclear microprobe study of TiO2-penetration in the epidermis of human skin xenografts. Nucl. Instrum. Methods Phys. Res. B, 2005, 231(1-4), 280-285.
[http://dx.doi.org/10.1016/j.nimb.2005.01.071]
[170]
Szikszai, Z.; Kertész, Z.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á.Z.; Hunyadi, J. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin. Nucl. Instrum. Methods Phys. Res. B, 2010, 268(11-12), 2160-2163.
[http://dx.doi.org/10.1016/j.nimb.2010.02.040]
[171]
Geoffrey, K.; Mwangi, A. N.; Maru, S. M. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 2019, 27(7), 1009-1018.
[172]
Morpurgo, G.; Babudri, N.; Fioretti, B.; Franciolini, F.; Catacuzzeno, L. Synthetic aromatic compounds interfering with melanogenesis are responsible of the rising trend of malignant melanoma incidence. Med. Hypotheses, 2011, 76(3), 374-377.
[http://dx.doi.org/10.1016/j.mehy.2010.10.044] [PMID: 21095068]
[173]
Saric, S.; Clark, A.K.; Sivamani, R.K.; Lio, P.A.; Lev-Tov, H.A. The role of polyphenols in rosacea treatment: A systematic review. J. Altern. Complement. Med., 2017, 23(12), 920-929.
[http://dx.doi.org/10.1089/acm.2016.0398] [PMID: 28650692]
[174]
Wu, J. Treatment of rosacea with herbal ingredients. J. Drugs Dermatol., 2006, 5(1), 29-32.
[PMID: 16468289]
[175]
Chien, A.L.; Qi, J.; Grandhi, R.; Kim, N.; César, S.S.A.; Harris-Tryon, T.; Jang, M.S.; Olowoyeye, O.; Kuhn, D.; Leung, S.; Rainer, B.M.; Poon, F.; Suh, J.; Cheng, N.; Okoye, G.A.; Kang, S. Effect of age, gender, and sun exposure on ethnic skin photoaging: evidence gathered using a new photonumeric scale. J. Natl. Med. Assoc., 2018, 110(2), 176-181.
[http://dx.doi.org/10.1016/j.jnma.2017.05.001] [PMID: 29580452]
[176]
Ma, Y.; Yoo, J. History of sunscreen: An updated view. J. Cosmet. Dermatol., 2021, 20(4), 1044-1049.
[http://dx.doi.org/10.1111/jocd.14004] [PMID: 33583116]
[177]
Emri, G.; Paragh, G.; Tósaki, Á.; Janka, E.; Kollár, S. Hegedűs, C.; Gellén, E.; Horkay, I.; Koncz, G.; Remenyik, É. Ultraviolet radiation-mediated development of cutaneous melanoma: An update. J. Photochem. Photobiol. B, 2018, 185, 169-175.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.06.005] [PMID: 29936410]
[178]
Mukherjee, P.K.; Bahadur, S.; Chaudhary, S.K.; Harwansh, R.K.; Nema, N.K. Validation of Medicinal Herbs for Skin Aging. In: Evidence-Based Validation of Herbal Medicine; Mukherjee, P.K., Ed.; Elsevier: Boston, 2015, pp. 119-147.
[http://dx.doi.org/10.1016/B978-0-12-800874-4.00005-2]
[179]
Pradhan, M.; Alexander, A.; Singh, M. R.; Singh, D.; Saraf, S.; Saraf, S. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2018, 107, 447-463.
[180]
Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy