Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

An Investigation into the Effects of Chemical, Pharmaceutical, and Herbal Compounds on Neuroglobin: A Literature Review

Author(s): Sahar Golpour Hamedani, Makan Pourmasoumi, Gholamreza Askari*, Mohammad Bagherniya, Thozhukat Sathyapalan and Amirhossein Sahebkar*

Volume 31, Issue 20, 2024

Published on: 22 June, 2023

Page: [2944 - 2954] Pages: 11

DOI: 10.2174/0929867330666230413093409

Price: $65

Abstract

Neuroglobin (Ngb) is an oxygen-binding globin protein that is mainly expressed in the neurons of the central and peripheral nervous system. However, moderate levels of Ngb have also been detected in non-neural tissues. Ngb and Ngb modulating factors have been increasingly studied over the last decade due to their neuroprotective role in neurological disorders and hypoxia. Studies have shown that a number of chemicals, pharmaceuticals, and herbal compounds can modulate the expression of Ngb at different dose levels, indicating a protective role against neurodegenerative diseases. Iron chelators, hormones, antidiabetic drugs, anticoagulants, antidepressants, plant derivatives and short-chain fatty acids are among these compounds. Therefore, this study aimed to review the literature focused on the possible effects and mechanisms of chemical, pharmaceutical, and herbal compounds on Ngbs.

Keywords: Pharmaceutical, herbal, chemical compounds, nutrition, neuroglobin (Ngb), iron chelators.

[1]
Rassaf, T.; Totzeck, M.; Hendgen-Cotta, U.B.; Shiva, S.; Heusch, G.; Kelm, M. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ. Res., 2014, 114(10), 1601-1610.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303822] [PMID: 24643960]
[2]
Burmester, T.; Weich, B.; Reinhardt, S.; Hankeln, T. A vertebrate globin expressed in the brain. Nature, 2000, 407(6803), 520-523.
[http://dx.doi.org/10.1038/35035093] [PMID: 11029004]
[3]
Burmester, T.; Hankeln, T. Function and evolution of vertebrate globins. Acta Physiol., 2014, 211(3), 501-514.
[http://dx.doi.org/10.1111/apha.12312] [PMID: 24811692]
[4]
Ascenzi, P.; di Masi, A.; Leboffe, L.; Fiocchetti, M.; Nuzzo, M.T.; Brunori, M.; Marino, M. Neuroglobin: From structure to function in health and disease. Mol. Aspects Med., 2016, 52, 1-48.
[http://dx.doi.org/10.1016/j.mam.2016.10.004] [PMID: 27825818]
[5]
Gorabi, A.M.; Aslani, S.; Barreto, G.E.; Báez-Jurado, E.; Kiaie, N.; Jamialahmadi, T.; Sahebkar, A. The potential of mitochondrial modulation by neuroglobin in treatment of neurological disorders. Free Radic. Biol. Med., 2021, 162, 471-477.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.002] [PMID: 33166649]
[6]
Jin, K.; Mao, Y.; Mao, X.; Xie, L.; Greenberg, D.A. Neuroglobin expression in ischemic stroke. Stroke, 2010, 41(3), 557-559.
[http://dx.doi.org/10.1161/STROKEAHA.109.567149] [PMID: 20075359]
[7]
Luyckx, E.; Van Acker, Z.P.; Ponsaerts, P.; Dewilde, S. Neuroglobin expression models as a tool to study its function. Oxid. Med. Cell. Long., 2019, 2019
[http://dx.doi.org/10.1155/2019/5728129]
[8]
Khan, A.A.; Mao, X.O.; Banwait, S.; Jin, K.; Greenberg, D.A. Neuroglobin attenuates β-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proc. Natl. Acad. Sci. USA, 2007, 104(48), 19114-19119.
[http://dx.doi.org/10.1073/pnas.0706167104] [PMID: 18025470]
[9]
Li, R.C.; Pouranfar, F.; Lee, S.K.; Morris, M.W.; Wang, Y.; Gozal, D. Neuroglobin protects PC12 cells against β-amyloid-induced cell injury. Neurobiol. Aging, 2008, 29(12), 1815-1822.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.05.001] [PMID: 17560688]
[10]
Guidolin, D.; Tortorella, C.; Marcoli, M.; Maura, G.; Agnati, L. Neuroglobin, a factor playing for nerve cell survival. Int. J. Mol. Sci., 2016, 17(11), 1817.
[http://dx.doi.org/10.3390/ijms17111817] [PMID: 27809238]
[11]
Jin, K.; Mao, X.O.; Xie, L.; Khan, A.A.; Greenberg, D.A. Neuroglobin protects against nitric oxide toxicity. Neurosci. Lett., 2008, 430(2), 135-137.
[http://dx.doi.org/10.1016/j.neulet.2007.10.031] [PMID: 18035490]
[12]
Orlandini, E.; Ciccone, L.; Nencetti, S.; Socci, S. Neuroglobin and neuroprotection: The role of natural and synthetic compounds in neuroglobin pharmacological induction. Neural Regen. Res., 2021, 16(12), 2353-2358.
[http://dx.doi.org/10.4103/1673-5374.300981] [PMID: 33907006]
[13]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[14]
Yu, Z; Poppe, JL; Wang, X Mitochondrial mechanisms of neuroglobin’s neuroprotection. Oxid. Med. Cell. Long., 2013, 1-11.
[http://dx.doi.org/10.1155/2013/756989]
[15]
Sun, Y.; Jin, K.; Mao, X.O.; Zhu, Y.; Greenberg, D.A. Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc. Natl. Acad. Sci. USA, 2001, 98(26), 15306-15311.
[http://dx.doi.org/10.1073/pnas.251466698] [PMID: 11742077]
[16]
Ye, S.; Zhou, X.; Lai, X.; Zheng, L.; Chen, X. Silencing neuroglobin enhances neuronal vulnerability to oxidative injury by down-regulating 14-3-3γ. Acta Pharmacol. Sin., 2009, 30(7), 913-918.
[http://dx.doi.org/10.1038/aps.2009.70] [PMID: 19574997]
[17]
Greenberg, D.; Jin, K.; Khan, A. Neuroglobin: An endogenous neuroprotectant. Curr. Opin. Pharmacol., 2008, 8(1), 20-24.
[http://dx.doi.org/10.1016/j.coph.2007.09.003] [PMID: 17942367]
[18]
Watanabe, S.; Wakasugi, K. Zebrafish neuroglobin is a cell-membrane-penetrating globin. Biochemistry, 2008, 47(19), 5266-5270.
[http://dx.doi.org/10.1021/bi800286m] [PMID: 18416560]
[19]
Yu, Z.; Liu, N.; Liu, J.; Yang, K.; Wang, X. Neuroglobin, a novel target for endogenous neuroprotection against stroke and neurodegenerative disorders. Int. J. Mol. Sci., 2012, 13(6), 6995-7014.
[http://dx.doi.org/10.3390/ijms13066995] [PMID: 22837676]
[20]
Thomas, I.; Gregg, B. Metformin; a review of its history and future: From lilac to longevity. Pediatr. Diabetes, 2017, 18(1), 10-16.
[http://dx.doi.org/10.1111/pedi.12473] [PMID: 28052534]
[21]
Rotermund, C.; Machetanz, G.; Fitzgerald, J.C. The therapeutic potential of metformin in neurodegenerative diseases. Front. Endocrinol., 2018, 9, 400.
[http://dx.doi.org/10.3389/fendo.2018.00400] [PMID: 30072954]
[22]
Sanati, M.; Aminyavari, S.; Afshari, A.R.; Sahebkar, A. Mechanistic insight into the role of metformin in Alzheimer’s disease. Life Sci., 2022, 291, 120299.
[http://dx.doi.org/10.1016/j.lfs.2021.120299] [PMID: 34999113]
[23]
Bonea, M.; Filip, G.A.; Toma, V.A.; Baldea, I.; Berghian, A.S.; Decea, N.; Olteanu, D.; Moldovan, R.; Crivii, C.; Vinași, R.C.; Micluția, I.V. The modulatory effect of metformin on ethanol-induced anxiety, redox imbalance, and extracellular matrix levels in the brains of Wistar rats. J. Mol. Neurosci., 2020, 70(12), 1943-1961.
[http://dx.doi.org/10.1007/s12031-020-01593-w] [PMID: 32621100]
[24]
Brittain, T.; Skommer, J.; Raychaudhuri, S.; Birch, N. An antiapoptotic neuroprotective role for neuroglobin. Int. J. Mol. Sci., 2010, 11(6), 2306-2321.
[http://dx.doi.org/10.3390/ijms11062306] [PMID: 20640154]
[25]
Zara, S.; De Colli, M.; Rapino, M.; Pacella, S.; Nasuti, C.; Sozio, P.; Di Stefano, A.; Cataldi, A. Ibuprofen and lipoic acid conjugate neuroprotective activity is mediated by Ngb/Akt intracellular signaling pathway in Alzheimer’s disease rat model. Gerontology, 2013, 59(3), 250-260.
[http://dx.doi.org/10.1159/000346445] [PMID: 23428737]
[26]
Weggen, S.; Eriksen, J.L.; Das, P.; Sagi, S.A.; Wang, R.; Pietrzik, C.U.; Findlay, K.A.; Smith, T.E.; Murphy, M.P.; Bulter, T.; Kang, D.E.; Marquez-Sterling, N.; Golde, T.E.; Koo, E.H. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature, 2001, 414(6860), 212-216.
[http://dx.doi.org/10.1038/35102591] [PMID: 11700559]
[27]
Olivieri, N.F.; Brittenham, G.M. Iron-chelating therapy and the treatment of thalassemia. Blood, 1997, 89(3), 739-761.
[http://dx.doi.org/10.1182/blood.V89.3.739] [PMID: 9028304]
[28]
Jin, K.; Mao, X.; Xie, L.; Greenberg, D.A. Interactions between vascular endothelial growth factor and neuroglobin. Neurosci. Lett., 2012, 519(1), 47-50.
[http://dx.doi.org/10.1016/j.neulet.2012.05.018] [PMID: 22583764]
[29]
Vasudevan, N.; Pfaff, D.W. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front. Neuroendocrinol., 2008, 29(2), 238-257.
[http://dx.doi.org/10.1016/j.yfrne.2007.08.003] [PMID: 18083219]
[30]
Uddin, M.S.; Rahman, M.M.; Jakaria, M.; Rahman, M.S.; Hossain, M.S.; Islam, A.; Ahmed, M.; Mathew, B.; Omar, U.M.; Barreto, G.E.; Ashraf, G.M. Estrogen signaling in Alzheimer’s disease: Molecular insights and therapeutic targets for Alzheimer’s dementia. Mol. Neurobiol., 2020, 57(6), 2654-2670.
[http://dx.doi.org/10.1007/s12035-020-01911-8] [PMID: 32297302]
[31]
De Marinis, E.; Ascenzi, P.; Pellegrini, M.; Galluzzo, P.; Bulzomi, P.; Arevalo, M.A.; Garcia-Segura, L.M.; Marino, M. 17β-estradiol-a new modulator of neuroglobin levels in neurons: Role in neuroprotection against H2O2-induced toxicity. Neurosignals, 2010, 18(4), 223-235.
[http://dx.doi.org/10.1159/000323906] [PMID: 21335947]
[32]
De Marinis, E.; Acaz-Fonseca, E.; Arevalo, M.A.; Ascenzi, P.; Fiocchetti, M.; Marino, M.; Garcia-Segura, L.M. 17β-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor β-mediated neuroglobin up-regulation. J. Neuroendocrinol., 2013, 25(3), 260-270.
[http://dx.doi.org/10.1111/jne.12007] [PMID: 23190172]
[33]
Fiocchetti, M.; Nuzzo, M.; Totta, P.; Acconcia, F.; Ascenzi, P.; Marino, M. Neuroglobin, a pro-survival player in estrogen receptor α-positive cancer cells. Cell Death & Disease, 2014, 5(10), e1449-e1449.
[http://dx.doi.org/10.1038/cddis.2014.418]
[34]
Toro-Urrego, N.; Garcia-Segura, L.M.; Echeverria, V.; Barreto, G.E. Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front. Aging Neurosci., 2016, 8, 152.
[http://dx.doi.org/10.3389/fnagi.2016.00152] [PMID: 27445795]
[35]
Oliveira, K.C.; da Conceição, R.R.; Piedade, G.C.; de Souza, J.S.; Sato, M.A.; de Barros Maciel, R.M.; Giannocco, G. Thyroid hormone modulates neuroglobin and cytoglobin in rat brain. Metab. Brain Dis., 2015, 30(6), 1401-1408.
[http://dx.doi.org/10.1007/s11011-015-9718-5] [PMID: 26334191]
[36]
Milano, M.; Collomp, R. Erythropoietin and neuroprotection: A therapeutic perspective. J. Oncol. Pharm. Pract., 2005, 11(4), 145-149.
[http://dx.doi.org/10.1191/1078155205jp162oa] [PMID: 16595066]
[37]
Li, Y.; Tang, Y. The effect of erythropoietin on the expression of neuroglobin after cerebral ischemia-reperfusion injury in rats. China Trop. Med., 2010, 10(1), 75-76.
[38]
Lee, S. Dexmedetomidine: Present and future directions. Korean J. Anesthesiol., 2019, 72(4), 323-330.
[http://dx.doi.org/10.4097/kja.19259] [PMID: 31220910]
[39]
Liaquat, Z.; Xu, X.; Zilundu, P.L.M.; Fu, R.; Zhou, L. The current role of dexmedetomidine as neuroprotective agent: An updated review. Brain Sci., 2021, 11(7), 846.
[http://dx.doi.org/10.3390/brainsci11070846] [PMID: 34202110]
[40]
Gao, Y.; Zhang, Y.; Dong, Y.; Wu, X.; Liu, H. Dexmedetomidine mediates neuroglobin up-regulation and alleviates the hypoxia/reoxygenation injury by inhibiting neuronal apoptosis in developing rats. Front. Pharmacol., 2020, 11, 555532.
[http://dx.doi.org/10.3389/fphar.2020.555532] [PMID: 33117159]
[41]
Luthra, R.; Roy, A. Role of medicinal plants against neurodegenerative diseases. Curr. Pharm. Biotechnol., 2022, 23(1), 123-139.
[http://dx.doi.org/10.2174/1389201022666210211123539] [PMID: 33573549]
[42]
Iranshahy, M.; Javadi, B.; Sahebkar, A. Protective effects of functional foods against Parkinson’s disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother. Res., 2022, 36(5), 1952-1989.
[http://dx.doi.org/10.1002/ptr.7425] [PMID: 35244296]
[43]
Keshavarzi, Z.; Shakeri, F.; Barreto, G.E.; Bibak, B.; Sathyapalan, T.; Sahebkar, A. Medicinal plants in traumatic brain injury: Neuroprotective mechanisms revisited. Biofactors, 2019, 45(4), 517-535.
[http://dx.doi.org/10.1002/biof.1516] [PMID: 31206893]
[44]
Sahebkar, A.; Khalifeh, M.; Barreto, G.E. Therapeutic potential of trehalose in neurodegenerative diseases: The knowns and unknowns. Neural Regen. Res., 2021, 16(10), 2026-2027.
[http://dx.doi.org/10.4103/1673-5374.308085] [PMID: 33642389]
[45]
Nourbakhsh, F.; Read, M.I.; Barreto, G.E.; Sahebkar, A. Boosting the autophagy-lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer’s disease. IUBMB Life, 2020, 72(11), 2360-2281.
[http://dx.doi.org/10.1002/iub.2369] [PMID: 32894821]
[46]
Sabouni, N.; Marzouni, H.Z.; Palizban, S.; Meidaninikjeh, S.; Kesharwani, P.; Jamialahmadi, T. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J. Drug Target., 2022.
[PMID: 36305097]
[47]
Sahebkar, A.; Zahedipour, F.; Hosseini, S.A.; Henney, N.C.; Barreto, G.E. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen. Res., 2022, 17(8), 1675-1684.
[http://dx.doi.org/10.4103/1673-5374.332128] [PMID: 35017414]
[48]
Zirak, N.; Shafiee, M.; Soltani, G.; Mirzaei, M.; Sahebkar, A. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: Current evidence and potential mechanisms of action. J. Cell. Physiol., 2019, 234(6), 8496-8508.
[http://dx.doi.org/10.1002/jcp.27781] [PMID: 30461013]
[49]
Bavarsad, K.; Barreto, G.E.; Hadjzadeh, M.A.R.; Sahebkar, A. Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol. Neurobiol., 2019, 56(2), 1391-1404.
[http://dx.doi.org/10.1007/s12035-018-1169-7] [PMID: 29948942]
[50]
Renaud, J.; Martinoli, M.G. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(8), 1883.
[http://dx.doi.org/10.3390/ijms20081883] [PMID: 30995776]
[51]
Di Meo, F.; Valentino, A.; Petillo, O.; Peluso, G.; Filosa, S.; Crispi, S. Bioactive polyphenols and neuromodulation: Molecular mechanisms in neurodegeneration. Int. J. Mol. Sci., 2020, 21(7), 2564.
[http://dx.doi.org/10.3390/ijms21072564] [PMID: 32272735]
[52]
Chen, C.; Wei, Y.Z.; He, X.M.; Li, D.D.; Wang, G.Q.; Li, J.J.; Zhang, F. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front. Immunol., 2019, 10, 936.
[http://dx.doi.org/10.3389/fimmu.2019.00936] [PMID: 31118933]
[53]
Ciccone, L.; Tonali, N.; Nencetti, S.; Orlandini, E. Natural compounds as inhibitors of transthyretin amyloidosis and neuroprotective agents: Analysis of structural data for future drug design. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1145-1162.
[http://dx.doi.org/10.1080/14756366.2020.1760262] [PMID: 32419519]
[54]
Cipolletti, M.; Montalesi, E.; Nuzzo, M.T.; Fiocchetti, M.; Ascenzi, P.; Marino, M. Potentiation of paclitaxel effect by resveratrol in human breast cancer cells by counteracting the 17β-estradiol/estrogen receptor α/neuroglobin pathway. J. Cell. Physiol., 2019, 234(4), 3147-3157.
[http://dx.doi.org/10.1002/jcp.27309] [PMID: 30421506]
[55]
Abdul, Q.A.; Choi, R.J.; Jung, H.A.; Choi, J.S. Health benefit of fucosterol from marine algae: A review. J. Sci. Food Agric., 2016, 96(6), 1856-1866.
[http://dx.doi.org/10.1002/jsfa.7489] [PMID: 26455344]
[56]
Gan, S.Y.; Wong, L.Z.; Wong, J.W.; Tan, E.L. Fucosterol exerts protection against amyloid β-induced neurotoxicity, reduces intracellular levels of amyloid β and enhances the mRNA expression of neuroglobin in amyloid β-induced SH-SY5Y cells. Int. J. Biol. Macromol., 2019, 121, 207-213.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.021] [PMID: 30300695]
[57]
Liu, N.; Yu, Z.; Gao, X. Establishment of cell-based neuroglobin promoter reporter assay for neuroprotective compounds screening. CNS & Neurological Disorders-Drug Targets, 2016, 15(5), 629-639.
[58]
Jangwan, J.; Kumar, N. Isolation and characterization of new flavonoid glycoside from the seeds of Prunus cerasoides. J. Med. Plants Stud., 2015, 3, 20-22.
[59]
Poonam, V.; Raunak; Kumar, G.; Reddy L, C.S.; Jain, R.; Sharma, S.K.; Prasad, A.K.; Parmar, V.S. Chemical constituents of the genus Prunus and their medicinal properties. Curr. Med. Chem., 2011, 18(25), 3758-3824.
[http://dx.doi.org/10.2174/092986711803414386] [PMID: 21831039]
[60]
Arora, D.S.; Mahajan, H. Major phytoconstituents of Prunus cerasoides responsible for antimicrobial and antibiofilm potential against some reference strains of pathogenic bacteria and clinical isolates of MRSA. Appl. Biochem. Biotechnol., 2019, 188(4), 1185-1204.
[http://dx.doi.org/10.1007/s12010-019-02985-4] [PMID: 30854606]
[61]
Sachdeva, C.; Kumar, S.; Kaushik, N.K. Exploration of anti-plasmodial activity of Prunus cerasoides Buch.-Ham. ex D. Don (family: Rosaceae) and its wood chromatographic fractions. Acta Parasitol., 2021, 66(1), 205-212.
[http://dx.doi.org/10.1007/s11686-020-00272-5] [PMID: 32940831]
[62]
Kim, S.D.; Kim, M.; Wu, H.H.; Jin, B.K.; Jeon, M.S.; Song, Y.S. Prunus cerasoides extract and its component compounds upregulate neuronal neuroglobin levels, mediate antioxidant effects, and ameliorate functional losses in the mouse model of cerebral ischemia. Antioxidants, 2021, 11(1), 99.
[http://dx.doi.org/10.3390/antiox11010099] [PMID: 35052603]
[63]
Su, C.; Zhang, D.; Truong, J.; Jiang, C.; Lee, S.; Jarouche, M.; Hennell, J.R.; Rathbone, M.P.; Sucher, N.J.; Jiang, S. Effects of a novel herbal formulation JSK on acute spinal cord injury in rats. Restor. Neurol. Neurosci., 2013, 31(5), 597-617.
[http://dx.doi.org/10.3233/RNN-120303] [PMID: 23760224]
[64]
Li, G.; Zhu, H.; Luo, L.; Hu, S.; Dong, K.; Zhang, T. Treating Alzheimer′s disease with Yizhijiannao granules by regulating expression of multiple proteins in temporal lobe. Neural Regen. Res., 2014, 9(13), 1283-1287.
[http://dx.doi.org/10.4103/1673-5374.137575] [PMID: 25221580]
[65]
Pace, B.S.; White, G.L.; Dover, G.J.; Boosalis, M.S.; Faller, D.V.; Perrine, S.P. Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood, 2002, 100(13), 4640-4648.
[http://dx.doi.org/10.1182/blood-2002-02-0353] [PMID: 12393583]
[66]
Jin, K.; Mao, X.O.; Xie, L.; John, V.; Greenberg, D.A. Pharmacological induction of neuroglobin expression. Pharmacology, 2011, 87(1-2), 81-84.
[http://dx.doi.org/10.1159/000322998] [PMID: 21228614]
[67]
Escudero-Lourdes, C. Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses. Neurotoxicology, 2016, 53, 223-235.
[http://dx.doi.org/10.1016/j.neuro.2016.02.002] [PMID: 26868456]
[68]
Liu, X.; Gao, Y.; Yao, H.; Zhou, L.; Sun, D.; Wang, J. Neuroglobin involvement in the course of arsenic toxicity in rat cerebellar granule neurons. Biol. Trace Elem. Res., 2013, 155(3), 439-446.
[http://dx.doi.org/10.1007/s12011-013-9810-9] [PMID: 24057451]
[69]
Liu, X.; Gao, Y.; Liu, Y.; Zhang, W.; Yang, Y.; Fu, X.; Sun, D.; Wang, J. Neuroglobin alleviates arsenic-induced neuronal damage. Environ. Toxicol. Pharmacol., 2021, 84, 103604.
[http://dx.doi.org/10.1016/j.etap.2021.103604] [PMID: 33545379]
[70]
Nawfal, A.J.; Al-Okaily, B.N. Effect of the sublethal dose of lead acetate on malondialdehyde, dopamine, and neuroglobin concentrations in rats. WORLD, 2022, 12(3), 311-315.
[71]
De Marinis, E; Fiocchetti, M; Acconcia, F; Ascenzi, P; Marino, M Neuroglobin upregulation induced by 17β-estradiol sequesters cytocrome c in the mitochondria preventing H2O2-induced apoptosis of neuroblastoma cells. Cell Death & Disease, 2013, 4(2), e508.
[72]
Montalesi, E.; Cipolletti, M.; Cracco, P.; Fiocchetti, M.; Marino, M. Divergent effects of daidzein and its metabolites on estrogen-induced survival of breast cancer cells. Cancers, 2020, 12(1), 167.
[http://dx.doi.org/10.3390/cancers12010167] [PMID: 31936631]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy