Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Blue Organic Light Emitting Diode Materials based on Different Light-emitting Groups

Author(s): Lichao Li, Xiuna Zhu, Shang Sun, Chaoyue Zhang, Bingxin Yang, Shuang Liu and Zhenbo Liu*

Volume 27, Issue 4, 2023

Published on: 19 May, 2023

Page: [352 - 362] Pages: 11

DOI: 10.2174/1385272827666230413083558

Price: $65

Abstract

Organic light emitting diode (OLED) is a device that uses organic semiconductor materials to emit light under the action of an electric field. Compared with traditional luminescent materials, they have the advantages of good softness, low-temperature resistance, wider field of vision and low energy consumption, and have been widely used in the field of display and lighting in recent years. In addition, compared with red and green light-emitting materials, the maximum external quantum efficiency of blue-light materials-based devices is high, but the CIE coordinate performance is poor and the blue emission is difficult to achieve high efficiency and high color purity at the same time. Researchers continue to design new molecular structures in order to synthesize new high-efficiency blue light materials. It is found that different molecular structures have different effects on the performance of OLED devices. In the design and synthesis of blue-light materials, various light-emitting groups are often used to regulate the stability, singlet-third-line state of the target molecule energy level difference, excited state lifetime, aggregation state structure, electricity luminescent color and its OLED performance, etc. The introduction of different lightemitting groups into the blue light material greatly improves the performance of the material. This paper mainly reviews the research status of blue organic electroluminescent materials in the past five years from different molecular structures, further discusses the photoelectric properties of each compound and the properties of devices based on this material, and briefly analyzes the advantages of molecular design and device production. And finally discusses the improvement methods of blue OLED light-emitting materials in order to provide a reference for future research.

Keywords: OLED, molecular structures, light-emitting groups, blue organic luminescent material, device performance, molecular design.

Graphical Abstract
[1]
Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J.M.; Bräse, S. A brief history of OLEDs—Emitter development and industry milestones. Adv. Mater., 2021, 33(9), 2005630.
[http://dx.doi.org/10.1002/adma.202005630] [PMID: 33458866]
[2]
Gusev, A.N.; Kiskin, M.A.; Braga, E.V.; Chapran, M.; Wiosna-Salyga, G.; Baryshnikov, G.V.; Minaeva, V.A.; Minaev, B.F.; Ivaniuk, K.; Stakhira, P.; Ågren, H.; Linert, W. Novel zinc complex with an ethylenediamine schiff base for high-luminance blue fluorescent OLED applications. J. Phys. Chem. C, 2019, 123(18), 11850-11859.
[http://dx.doi.org/10.1021/acs.jpcc.9b02171]
[3]
Kaur, H.; Sundriyal, S.; Pachauri, V.; Ingebrandt, S.; Kim, K.H.; Sharma, A.L.; Deep, A. Luminescent metal-organic frameworks and their composites: Potential future materials for organic light emitting displays. Coord. Chem. Rev., 2019, 401, 213077.
[http://dx.doi.org/10.1016/j.ccr.2019.213077]
[4]
Cai, X.; Su, S.J. Marching toward highly efficient, pure-blue, and stable thermally activated delayed fluorescent organic light-emitting diodes. Adv. Funct. Mater., 2018, 28(43), 1802558.
[http://dx.doi.org/10.1002/adfm.201802558]
[5]
Youn, W.; Lee, J.W.; Yu, H.; Kim, D.Y. Effect of refractive index contrast on out-coupling efficiency of corrugated OLEDs using low-refractive-index LiF interlayer. ACS Appl. Electron. Mater., 2020, 2(7), 2218-2223.
[http://dx.doi.org/10.1021/acsaelm.0c00404]
[6]
Bender, V.C.; Barth, N.D.; Mendes, F.B.; Pinto, R.A.; Alonso, J.M.; Marchesan, T.B. A hardware emulator for OLED panels applied to lighting systems. IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6(3), 1252-1258.
[http://dx.doi.org/10.1109/JESTPE.2018.2842157]
[7]
Im, Y.; Byun, S.Y.; Kim, J.H.; Lee, D.R.; Oh, C.S.; Yook, K.S.; Lee, J.Y. Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes. Adv. Funct. Mater., 2017, 27(13), 1603007.
[http://dx.doi.org/10.1002/adfm.201603007]
[8]
Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M.R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater., 2018, 3(4), 18020.
[http://dx.doi.org/10.1038/natrevmats.2018.20]
[9]
Jhulki, S.; Seth, S.; Ghosh, A.; Chow, T.J.; Moorthy, J.N. Benzophenones as generic host materials for phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces, 2016, 8(2), 1527-1535.
[http://dx.doi.org/10.1021/acsami.5b11232] [PMID: 26690799]
[10]
Shih, C.J.; Lee, C.C.; Yeh, T.H.; Biring, S.; Kesavan, K.K.; Amin, N.R.A.; Chen, M.H.; Tang, W.C.; Liu, S.W.; Wong, K.T. Versatile exciplex-forming co-host for improving efficiency and lifetime of fluorescent and phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces, 2018, 10(28), 24090-24098.
[http://dx.doi.org/10.1021/acsami.8b08281] [PMID: 29943574]
[11]
Wu, Z.; Zhu, X.; Li, Y.; Chen, H.; Zhuang, Z.; Shen, P.; Zeng, J.; Chi, J.; Ma, D.; Zhao, Z.; Tang, B.Z. High‐performance hybrid white OLEDs with ultra‐stable emission color and small efficiency roll‐off achieved by incorporating a deep‐blue fluorescent neat film. Adv. Opt. Mater., 2021, 9(15), 2100298.
[http://dx.doi.org/10.1002/adom.202100298]
[12]
Tagare, J.; Vaidyanathan, S. Recent development of phenanthroimidazole-based fluorophores for blue organic light-emitting diodes (OLEDs): An overview. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6(38), 10138-10173.
[http://dx.doi.org/10.1039/C8TC03689F]
[13]
Chen, J.X.; Tao, W.W.; Chen, W.C.; Xiao, Y.F.; Wang, K.; Cao, C.; Yu, J.; Li, S.; Geng, F.X.; Adachi, C.; Lee, C.S.; Zhang, X.H. Cover Picture: Red/Near-Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. In: Angewandte Chemie International Edition; , 2019; p. p. 58.
[http://dx.doi.org/10.1002/anie.201906575]
[14]
Ahn, D.H.; Kim, S.W.; Lee, H.; Ko, I.J.; Karthik, D.; Lee, J.Y.; Kwon, J.H. Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nat. Photonics, 2019, 13(8), 540-546.
[http://dx.doi.org/10.1038/s41566-019-0415-5]
[15]
Wu, T.L.; Huang, M.J.; Lin, C.C.; Huang, P.Y.; Chou, T.Y.; Chen-Cheng, R.W.; Lin, H.W.; Liu, R.S.; Cheng, C.H. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nat. Photonics, 2018, 12(4), 235-240.
[http://dx.doi.org/10.1038/s41566-018-0112-9]
[16]
Zhou, T.; Qian, Y.; Wang, H.; Feng, Q.; Xie, L.; Huang, W. Recent advances in substituent effects of blue thermally activated delayed fluorescence small molecules. Huaxue Xuebao, 2021, 79(5), 557-574.
[http://dx.doi.org/10.6023/A21010009]
[17]
Lee, H.; Karthik, D.; Lampande, R.; Ryu, J.H.; Kwon, J.H. Recent advancement in boron-based efficient and pure blue thermally activated delayed fluorescence materials for organic light-emitting diodes. Front Chem., 2020, 8, 373.
[http://dx.doi.org/10.3389/fchem.2020.00373] [PMID: 32509723]
[18]
Bian, M.; Chen, Z.; Qu, B.; Xiao, L. Highly efficient organic blue electroluminescent materials and devices with mesoscopic structures. Chem. Rec., 2019, 19(8), 1562-1570.
[http://dx.doi.org/10.1002/tcr.201800140] [PMID: 30311745]
[19]
Fan, C.; Li, Y.; Yang, C.; Wu, H.; Qin, J.; Cao, Y. Phosphoryl/sulfonyl-substituted iridium complexes as blue phosphorescent emitters for single-layer blue and white organic light-emitting diodes by solution process. Chem. Mater., 2012, 24(23), 4581-4587.
[http://dx.doi.org/10.1021/cm302850w]
[20]
Han, K.H.; Kim, K.; Han, Y.; Kim, Y.D.; Lim, H.; Huh, D.; Shin, H.; Lee, H.; Kim, J.J. Highly efficient tandem white OLED using a hollow structure. Adv. Mater. Interfaces, 2020, 7(9), 1901509.
[http://dx.doi.org/10.1002/admi.201901509]
[21]
Feng, Y.; Zhuang, X.; Zhu, D.; Liu, Y.; Wang, Y.; Bryce, M.R. Rational design and characterization of heteroleptic phosphorescent iridium( III ) complexes for highly efficient deep-blue OLEDs. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(43), 10246-10252.
[http://dx.doi.org/10.1039/C6TC04119A]
[22]
Xu, Y.; Liang, X.; Zhou, X.; Yuan, P.; Zhou, J.; Wang, C.; Li, B.; Hu, D.; Qiao, X.; Jiang, X.; Liu, L.; Su, S.J.; Ma, D.; Ma, Y. Highly efficient blue fluorescent OLEDs based on upper level triplet–singlet intersystem crossing. Adv. Mater., 2019, 31(12), 1807388.
[http://dx.doi.org/10.1002/adma.201807388] [PMID: 30714207]
[23]
Kim, H.G.; Shin, H.; Ha, Y.H.; Kim, R.; Kwon, S.K.; Kim, Y.H.; Kim, J.J. Triplet harvesting by a fluorescent emitter using a phosphorescent sensitizer for blue organic-light-emitting diodes. ACS Appl. Mater. Interfaces, 2019, 11(1), 26-30.
[http://dx.doi.org/10.1021/acsami.8b17957] [PMID: 30543096]
[24]
Braveenth, R.; Raagulan, K.; Lee, L.R.; Kim, K.; Park, Y.H.; Oh, S.B.; Lee, J.S.; Bae, I.J.; Kim, B.M.; Kim, M.; Chai, K.Y. Fluorene core with several modification by using donor type triphenylamine and carbazole derivatives for organic light emitting diodes. Dyes Pigments, 2021, 194, 109562.
[http://dx.doi.org/10.1016/j.dyepig.2021.109562]
[25]
Niu, R.; Li, J.; Liu, D.; Dong, R.; Wei, W.; Tian, H.; Shi, C. A versatile carbazole donor design strategy for blue emission switching from normal fluorescence to thermally activated delayed fluorescence. Dyes Pigments, 2021, 194, 109581.
[http://dx.doi.org/10.1016/j.dyepig.2021.109581]
[26]
Wen, J.; Chen, W.; Zhao, B.; Xu, Q.; Liu, C.; Zhang, Q.; Xie, Z.; Yan, Y.; Guo, J.; Huang, J.; Miao, J.; Wu, X. A carbazole compound, 9-ethyl-9H-carbazole-3-carbaldehyde, plays an antitumor function through reactivation of the p53 pathway in human melanoma cells. Cell Death Dis., 2021, 12(6), 591.
[http://dx.doi.org/10.1038/s41419-021-03867-6] [PMID: 34103468]
[27]
Xue, Y.J.; Li, M.Y.; Jin, X.J.; Zheng, C.J.; Piao, H.R. Design, synthesis and evaluation of carbazole derivatives as potential antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 296-307.
[http://dx.doi.org/10.1080/14756366.2020.1850713] [PMID: 33404277]
[28]
Cheng, Z.; Li, Z.; Xu, Y.; Liang, J.; Lin, C.; Wei, J.; Wang, Y. Achieving efficient blue delayed electrofluorescence by shielding acceptors with carbazole units. ACS Appl. Mater. Interfaces, 2019, 11(31), 28096-28105.
[http://dx.doi.org/10.1021/acsami.9b07820] [PMID: 31290328]
[29]
Li, N.; Fan, Z.; Fang, Y.; Li, L.; Quan, Y.; Chen, Q.; Ye, S.; Fan, Q.; Huang, W. A macrospirocyclic carbazole–fluorene oligomer as a solution-processable matrix host material for blue phosphorescent organic light-emitting diodes with low turn-on voltage and efficiency roll-off. J. Phys. Chem. C, 2017, 121(16), 8692-8702.
[http://dx.doi.org/10.1021/acs.jpcc.6b11920]
[30]
Choi, S.; Godumala, M.; Lee, J.H.; Kim, G.H.; Moon, J.S.; Kim, J.Y.; Yoon, D.W.; Yang, J.H.; Kim, J.; Cho, M.J.; Kwon, J.H.; Choi, D.H. Optimized structure of silane-core containing host materials for highly efficient blue TADF OLEDs. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(26), 6570-6577.
[http://dx.doi.org/10.1039/C7TC01357D]
[31]
Kim, G.W.; Yang, D.R.; Kim, Y.C.; Yang, H.I.; Fan, J.G.; Lee, C.H.; Chai, K.Y.; Kwon, J.H. Di(biphenyl)silane and carbazole based bipolar host materials for highly efficient blue phosphorescent OLEDs. Dyes Pigments, 2017, 136, 8-16.
[http://dx.doi.org/10.1016/j.dyepig.2016.08.024]
[32]
Huang, Z.; Wang, B.; Zhang, Q.; Xiang, S.; Lv, X.; Ma, L.; Yang, B.; Gao, Y.; Wang, L. Highly twisted bipolar emitter for efficient nondoped deep-blue electroluminescence. Dyes Pigments, 2017, 140, 328-336.
[http://dx.doi.org/10.1016/j.dyepig.2017.01.028]
[33]
Konidena, R.K.; Chung, W.J.; Lee, J.Y. Enabling high efficiency and long lifetime of pure blue phosphorescent organic light emitting diodes by simple cyano modified carbazole-based host. Dyes Pigments, 2021, 187, 109118.
[http://dx.doi.org/10.1016/j.dyepig.2020.109118]
[34]
Zhu, Z.L.; Gnanasekaran, P.; Yan, J.; Zheng, Z.; Lee, C.S.; Chi, Y.; Zhou, X. Efficient blue electrophosphorescence and hyperphosphorescence generated by bis-tridentate iridium(III) complexes. Inorg. Chem., 2022, 61(23), 8898-8908.
[http://dx.doi.org/10.1021/acs.inorgchem.2c01026] [PMID: 35635511]
[35]
Konidena, R.K.; Lee, J.Y. Molecular design tactics for highly efficient thermally activated delayed fluorescence emitters for organic light emitting diodes. Chem. Rec., 2019, 19(8), 1499-1517.
[http://dx.doi.org/10.1002/tcr.201800136] [PMID: 30375173]
[36]
Youn Lee, S.; Yasuda, T.; Nomura, H.; Adachi, C. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules. Appl. Phys. Lett., 2012, 101(9), 093306.
[http://dx.doi.org/10.1063/1.4749285]
[37]
Lee, D.R.; Choi, J.M.; Lee, C.W.; Lee, J.Y. Ideal molecular design of blue thermally activated delayed fluorescent emitter for high efficiency, small singlet–triplet energy splitting, low efficiency roll-off, and long lifetime. ACS Appl. Mater. Interfaces, 2016, 8(35), 23190-23196.
[http://dx.doi.org/10.1021/acsami.6b05877] [PMID: 27529181]
[38]
Woo, S.J.; Kim, Y.; Kim, M.J.; Baek, J.Y.; Kwon, S.K.; Kim, Y.H.; Kim, J.J. Strategies for the molecular design of donor–acceptor-type fluorescent emitters for efficient deep blue organic light emitting diodes. Chem. Mater., 2018, 30(3), 857-863.
[http://dx.doi.org/10.1021/acs.chemmater.7b04437]
[39]
Jang, S.; Lee, K.H.; Hong, S.; Lee, J.Y.; Lee, Y. n-Type host materials based on nitrile and triazine substituted tricyclic aromatic compounds for high-performance blue thermally activated delayed fluorescence devices. Dyes Pigments, 2021, 187, 109091.
[http://dx.doi.org/10.1016/j.dyepig.2020.109091]
[40]
Su, L.; Cao, F.; Cheng, C.; Tsuboi, T.; Zhu, Y.; Deng, C.; Zheng, X.; Wang, D.; Liu, Z.; Zhang, Q. High fluorescence rate of thermally activated delayed fluorescence emitters for efficient and stable blue OLEDs. ACS Appl. Mater. Interfaces, 2020, 12(28), 31706-31715.
[http://dx.doi.org/10.1021/acsami.0c07840] [PMID: 32567302]
[41]
Lv, X.; Huang, R.; Sun, S.; Zhang, Q.; Xiang, S.; Ye, S.; Leng, P.; Dias, F.B.; Wang, L. Blue TADF emitters based on indenocarbazole derivatives with high photoluminescence and electroluminescence efficiencies. ACS Appl. Mater. Interfaces, 2019, 11(11), 10758-10767.
[http://dx.doi.org/10.1021/acsami.8b20699] [PMID: 30793589]
[42]
Matulaitis, T.; Imbrasas, P.; Kukhta, N.A.; Baronas, P.; Bučiu̅nas, T.; Banevičius, D.; Kazlauskas, K.; Gražulevičius, J.V.; Juršėnas, S. Impact of donor substitution pattern on the TADF properties in the carbazolyl-substituted triazine derivatives. J. Phys. Chem. C, 2017, 121(42), 23618-23625.
[http://dx.doi.org/10.1021/acs.jpcc.7b08034]
[43]
Liu, Y.; Liu, H.; Bai, Q.; Du, C.; Shang, A.; Jiang, D.; Tang, X.; Lu, P. Pyrene[4,5- d]imidazole-based derivatives with hybridized local and charge-transfer state for highly efficient blue and white organic light-emitting diodes with low efficiency roll-off. ACS Appl. Mater. Interfaces, 2020, 12(14), 16715-16725.
[http://dx.doi.org/10.1021/acsami.0c01846] [PMID: 32180398]
[44]
Xu, Y.; Liang, X.; Liang, Y.; Guo, X.; Hanif, M.; Zhou, J.; Zhou, X.; Wang, C.; Yao, J.; Zhao, R.; Hu, D.; Qiao, X.; Ma, D.; Ma, Y. Efficient deep-blue fluorescent OLEDs with a high exciton utilization efficiency from a fully twisted phenanthroimidazole–anthracene emitter. ACS Appl. Mater. Interfaces, 2019, 11(34), 31139-31146.
[http://dx.doi.org/10.1021/acsami.9b10823] [PMID: 31368304]
[45]
Wong, M.Y.; Krotkus, S.; Copley, G.; Li, W.; Murawski, C.; Hall, D.; Hedley, G.J.; Jaricot, M.; Cordes, D.B.; Slawin, A.M.Z.; Olivier, Y.; Beljonne, D.; Muccioli, L.; Moral, M.; Sancho-Garcia, J.C.; Gather, M.C.; Samuel, I.D.W.; Zysman-Colman, E. Deep-blue oxadiazole-containing thermally activated delayed fluorescence emitters for organic light-emitting diodes. ACS Appl. Mater. Interfaces, 2018, 10(39), 33360-33372.
[http://dx.doi.org/10.1021/acsami.8b11136] [PMID: 30192504]
[46]
Tagare, J.; Boddula, R.; Sudheendran, S.S.; Dubey, D.K.; Jou, J.H.; Patel, S.; Vaidyanathan, S. Efficient near ultraviolet emissive (CIE y < 0.06) organic light-emitting diodes based on phenanthroimidazole–alkyl spacer–carbazole fluorophores: experimental and theoretical investigation. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(47), 16834-16844.
[http://dx.doi.org/10.1039/D0TC03720F]
[47]
Bullock, J.D.; Xu, Z.; Valandro, S.; Younus, M.; Xue, J.; Schanze, K.S. trans-N -(Heterocyclic Carbene) Platinum(II) acetylide chromophores as phosphors for OLED applications. ACS Appl. Electron. Mater., 2020, 2(4), 1026-1034.
[http://dx.doi.org/10.1021/acsaelm.0c00064]
[48]
Kusakabe, Y.; Wada, Y.; Misono, T.; Suzuki, K.; Shizu, K.; Kaji, H. Imidazole acceptor for both vacuum-processable and solution-processable efficient blue thermally activated delayed fluorescence. ACS Omega, 2022, 7(19), 16740-16745.
[http://dx.doi.org/10.1021/acsomega.2c01308] [PMID: 35601324]
[49]
Ji, L.; Griesbeck, S.; Marder, T.B. Recent developments in and perspectives on three-coordinate boron materials: A bright future. Chem. Sci., 2017, 8(2), 846-863.
[http://dx.doi.org/10.1039/C6SC04245G] [PMID: 28572897]
[50]
Liang, X.; Yan, Z.P.; Han, H.B.; Wu, Z.G.; Zheng, Y.X.; Meng, H.; Zuo, J.L.; Huang, W. Peripheral amplification of multi-resonance induced thermally activated delayed fluorescence for highly efficient OLEDs. Angew. Chem. Int. Ed., 2018, 57(35), 11316-11320.
[http://dx.doi.org/10.1002/anie.201806323] [PMID: 29974588]
[51]
Meng, B.; Ren, Y.; Liu, J.; Jäkle, F.; Wang, L. p–π conjugated polymers based on stable triarylborane with n‐type behavior in optoelectronic devices. Angew. Chem. Int. Ed., 2018, 57(8), 2183-2187.
[http://dx.doi.org/10.1002/anie.201712598] [PMID: 29314598]
[52]
Giustra, Z.X.; Liu, S.Y. The state of the art in azaborine chemistry: New synthetic methods and applications. J. Am. Chem. Soc., 2018, 140(4), 1184-1194.
[http://dx.doi.org/10.1021/jacs.7b09446] [PMID: 29314835]
[53]
Li, G.; Lou, W.; Wang, D.; Deng, C.; Zhang, Q. Difluoroboron-enabled thermally activated delayed fluorescence. ACS Appl. Mater. Interfaces, 2019, 11(35), 32209-32217.
[http://dx.doi.org/10.1021/acsami.9b08107] [PMID: 31387348]
[54]
Lee, Y.H.; Park, S.; Oh, J.; Shin, J.W.; Jung, J.; Yoo, S.; Lee, M.H. Rigidity-induced delayed fluorescence by ortho donor-appended triarylboron compounds: Record-high efficiency in pure blue fluorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces, 2017, 9(28), 24035-24042.
[http://dx.doi.org/10.1021/acsami.7b05615] [PMID: 28653832]
[55]
Ahn, D.H.; Lee, H.; Kim, S.W.; Karthik, D.; Lee, J.; Jeong, H.; Lee, J.Y.; Kwon, J.H. Highly twisted donor–acceptor boron emitter and high triplet host material for highly efficient blue thermally activated delayed fluorescent device. ACS Appl. Mater. Interfaces, 2019, 11(16), 14909-14916.
[http://dx.doi.org/10.1021/acsami.9b00931] [PMID: 30924634]
[56]
Lee, H.; Braveenth, R.; Park, J.D.; Jeon, C.Y.; Lee, H.S.; Kwon, J.H. Manipulating spectral width and emission wavelength towards highly efficient blue asymmetric carbazole fused multi-resonance emitters. ACS Appl. Mater. Interfaces, 2022, 14(32), 36927-36935.
[http://dx.doi.org/10.1021/acsami.2c10127] [PMID: 35920715]
[57]
Yi, C.L.; Ko, C.L.; Yeh, T.C.; Chen, C.Y.; Chen, Y.S.; Chen, D.G.; Chou, P.T.; Hung, W.Y.; Wong, K.T. Harnessing a new co-host system and low concentration of new tadf emitters equipped with trifluoromethyl- and cyano-substituted benzene as core for high-efficiency blue OLEDs. ACS Appl. Mater. Interfaces, 2020, 12(2), 2724-2732.
[http://dx.doi.org/10.1021/acsami.9b18272] [PMID: 31846297]
[58]
Byeon, S.Y.; Kim, J.H.; Lee, J.Y. CN-modified host materials for improved efficiency and lifetime in blue phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces, 2017, 9(15), 13339-13346.
[http://dx.doi.org/10.1021/acsami.6b15502] [PMID: 28362481]
[59]
Kang, S.; Huh, J.S.; Kim, J.J.; Park, J. Highly efficient deep-blue fluorescence OLEDs with excellent charge balance based on phenanthro[9,10- d]oxazole-anthracene derivatives. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(32), 11168-11176.
[http://dx.doi.org/10.1039/D0TC01811B]
[60]
Guo, R.; Liu, W.; Ying, S.; Xu, Y.; Wen, Y.; Wang, Y.; Hu, D.; Qiao, X.; Yang, B.; Ma, D.; Wang, L. Exceptionally efficient deep blue anthracene-based luminogens: Design, synthesis, photophysical, and electroluminescent mechanisms. Sci. Bull., 2021, 66(20), 2090-2098.
[http://dx.doi.org/10.1016/j.scib.2021.06.018] [PMID: 36654267]
[61]
Han, P.; Lin, C.; Ma, D.; Qin, A.; Tang, B.Z. Violet-blue emitters featuring aggregation-enhanced emission characteristics for nondoped OLEDs with CIEy smaller than 0.046. ACS Appl. Mater. Interfaces, 2020, 12(41), 46366-46372.
[http://dx.doi.org/10.1021/acsami.0c12722] [PMID: 32955848]
[62]
Sharma, A.; Balasaravanan, R.; Thomas, K.R.J.; Ram, M.; Dubey, D.K.; Yadav, R.A.K.; Jou, J.H. Tuning photophysical and electroluminescent properties of phenanthroimidazole decorated carbazoles with donor and acceptor units: Beneficial role of cyano substitution. Dyes Pigments, 2021, 184, 108830.
[http://dx.doi.org/10.1016/j.dyepig.2020.108830]
[63]
Chan, C.Y.; Wong, Y.C.; Chan, M.Y.; Cheung, S.H.; So, S.K.; Yam, V.W.W. Bifunctional heterocyclic spiro derivatives for organic optoelectronic devices. ACS Appl. Mater. Interfaces, 2016, 8(37), 24782-24792.
[http://dx.doi.org/10.1021/acsami.6b09211] [PMID: 27598859]
[64]
Usta, H.; Alimli, D.; Ozdemir, R.; Dabak, S.; Zorlu, Y.; Alkan, F.; Tekin, E.; Can, A. Highly efficient deep-blue electroluminescence based on a solution processable A−π–D−π–A Oligo( p -phenyleneethynylene) small molecule. ACS Appl. Mater. Interfaces, 2019, 11(47), 44474-44486.
[http://dx.doi.org/10.1021/acsami.9b12971] [PMID: 31609580]
[65]
Kukhta, N.A.; Matulaitis, T.; Volyniuk, D.; Ivaniuk, K.; Turyk, P.; Stakhira, P.; Grazulevicius, J.V.; Monkman, A.P. Deep-blue high-efficiency TTA OLED using Para - and Meta -conjugated cyanotriphenylbenzene and carbazole derivatives as emitter and host. J. Phys. Chem. Lett., 2017, 8(24), 6199-6205.
[http://dx.doi.org/10.1021/acs.jpclett.7b02867] [PMID: 29227664]
[66]
Zhang, J.; Wei, Q.; Fei, N.; Zhao, M.; Xie, L.; Cao, L.; Zhang, X.; Xie, G.; Wang, T.; Ge, Z. Simple-structured blue thermally activated delayed fluorescence emitter for solution-processed organic light-emitting diodes with external quantum efficiency of over 20%. ACS Appl. Mater. Interfaces, 2021, 13(10), 12305-12312.
[http://dx.doi.org/10.1021/acsami.1c00412] [PMID: 33651943]
[67]
Huh, J.S.; Ha, Y.H.; Kwon, S.K.; Kim, Y.H.; Kim, J.J. Design strategy of anthracene-based fluorophores toward high-efficiency deep blue organic light-emitting diodes utilizing triplet–triplet fusion. ACS Appl. Mater. Interfaces, 2020, 12(13), 15422-15429.
[http://dx.doi.org/10.1021/acsami.9b21143] [PMID: 32115936]
[68]
Malatong, R.; Kaiyasuan, C.; Nalaoh, P.; Jungsuttiwong, S.; Sudyoadsuk, T.; Promarak, V. Rational design of anthracene-based deep-blue emissive materials for highly efficient deep-blue organic light-emitting diodes with CIEy ≤ 0.05. Dyes Pigments, 2021, 184, 108874.
[http://dx.doi.org/10.1016/j.dyepig.2020.108874]
[69]
Hou, M.; Wang, H.; Miao, Y.; Xu, H.; Guo, Z.; Chen, Z.; Liao, X.; Li, L.; Li, J.; Guo, K. Highly efficient deep-blue electroluminescence from a a−π–d−π–a structure based fluoresence material with exciton utilizing efficiency above 25%. ACS Appl. Energy Mater., 2018, 1(7), 3243-3254.
[http://dx.doi.org/10.1021/acsaem.8b00461]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy