Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Systematic Review Article

Machine Learning Applications in the Study of Parkinson’s Disease: A Systematic Review

Author(s): Jordi Martorell-Marugán*, Marco Chierici, Sara Bandres-Ciga, Giuseppe Jurman and Pedro Carmona-Sáez*

Volume 18, Issue 7, 2023

Published on: 30 May, 2023

Page: [576 - 586] Pages: 11

DOI: 10.2174/1574893618666230406085947

open access plus

conference banner
Abstract

Background: Parkinson’s disease is a common neurodegenerative disorder that has been studied from multiple perspectives using several data modalities. Given the size and complexity of these data, machine learning emerged as a useful approach to analyze them for different purposes. These methods have been successfully applied in a broad range of applications, including the diagnosis of Parkinson’s disease or the assessment of its severity. In recent years, the number of published articles that used machine learning methodologies to analyze data derived from Parkinson’s disease patients have grown substantially.

Objective: Our goal was to perform a comprehensive systematic review of the studies that applied machine learning to Parkinson’s disease data.

Methods: We extracted published articles in PubMed, SCOPUS and Web of Science until March 15, 2022. After selection, we included 255 articles in this review.

Results: We classified the articles by data type and we summarized their characteristics, such as outcomes of interest, main algorithms, sample size, sources of data and model performance.

Conclusion: This review summarizes the main advances in the use of Machine Learning methodologies for the study of Parkinson’s disease, as well as the increasing interest of the research community in this area.

Keywords: Parkinson’s disease, machine learning, deep learning, artificial intelligence, systematic review, bioinformatics.

[1]
Twelves D, Perkins KSM, Counsell C. Systematic review of incidence studies of Parkinson’s disease. Mov Disord 2003; 18(1): 19-31.
[http://dx.doi.org/10.1002/mds.10305] [PMID: 12518297]
[2]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3(1): 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[3]
Armstrong MJ, Okun MS. Diagnosis and treatment of parkinson disease. JAMA 2020; 323(6): 548-60.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[4]
Redenšek S, Dolžan V, Kunej T. From genomics to omics landscapes of Parkinson’s Disease: Revealing the molecular mechanisms. OMICS 2018; 22(1): 1-16.
[http://dx.doi.org/10.1089/omi.2017.0181] [PMID: 29356624]
[5]
Marek K, Chowdhury S, Siderowf A, et al. The Parkinson’s progression markers initiative (PPMI)-establishing a PD biomarker cohort. Ann Clin Transl Neurol 2018; 5(12): 1460-77.
[http://dx.doi.org/10.1002/acn3.644] [PMID: 30564614]
[6]
Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol 2022; 23(1): 40-55.
[http://dx.doi.org/10.1038/s41580-021-00407-0] [PMID: 34518686]
[7]
Mei J, Desrosiers C, Frasnelli J. Machine learning for the diagnosis of Parkinson’s Disease: A review of literature. Front Aging Neurosci 2021; 13: 633752.
[http://dx.doi.org/10.3389/fnagi.2021.633752] [PMID: 34025389]
[8]
Pereira CR, Pereira DR, Weber SAT, Hook C, de Albuquerque VHC, Papa JP. A survey on computer-assisted Parkinson’s Disease diagnosis. Artif Intell Med 2019; 95: 48-63.
[http://dx.doi.org/10.1016/j.artmed.2018.08.007] [PMID: 30201325]
[9]
Zhang J. Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson’s disease. NPJ Parkinsons Dis 2022; 8(1): 13.
[http://dx.doi.org/10.1038/s41531-021-00266-8] [PMID: 35064123]
[10]
Chandrabhatla AS, Pomeraniec IJ, Ksendzovsky A. Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson’s disease motor symptoms. NPJ Digit Med 2022; 5(1): 32.
[http://dx.doi.org/10.1038/s41746-022-00568-y] [PMID: 35304579]
[11]
Ramdhani RA, Khojandi A, Shylo O, Kopell BH. Optimizing clinical assessments in Parkinson’s disease through the use of wearable sensors and data driven modeling. Front Comput Neurosci 2018; 12: 72.
[http://dx.doi.org/10.3389/fncom.2018.00072] [PMID: 30254580]
[12]
Giannakopoulou KM, Roussaki I, Demestichas K. Internet of things technologies and machine learning methods for Parkinson’s disease diagnosis, monitoring and management: A systematic review. Sensors 2022; 22(5): 1799.
[http://dx.doi.org/10.3390/s22051799] [PMID: 35270944]
[13]
Belić M, Bobić V, Badža M, Šolaja N, Đurić-Jovičić M, Kostić VS. Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease-a review. Clin Neurol Neurosurg 2019; 184: 105442.
[http://dx.doi.org/10.1016/j.clineuro.2019.105442] [PMID: 31351213]
[14]
Glaab E. Computational systems biology approaches for Parkinson’s disease. Cell Tissue Res 2018; 373(1): 91-109.
[http://dx.doi.org/10.1007/s00441-017-2734-5] [PMID: 29185073]
[15]
Su C, Tong J, Wang F. Mining genetic and transcriptomic data using machine learning approaches in Parkinson’s disease. NPJ Parkinsons Dis 2020; 6(1): 24.
[http://dx.doi.org/10.1038/s41531-020-00127-w] [PMID: 32964109]
[16]
Loh HW, Hong W, Ooi CP, et al. Application of deep learning models for automated identification of Parkinson’s Disease: A review (2011–2021). Sensors 2021; 21(21): 7034.
[http://dx.doi.org/10.3390/s21217034] [PMID: 34770340]
[17]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372(71): n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[18]
Westgate MJ. revtools: An R package to support article screening for evidence synthesis. Res Synth Methods 2019; 10(4): 606-14.
[http://dx.doi.org/10.1002/jrsm.1374] [PMID: 31355546]
[19]
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20(3): 273-97.
[http://dx.doi.org/10.1007/BF00994018]
[20]
Quinlan JR. Learning decision tree classifiers. ACM Comput Surv 1996; 28(1): 71-2.
[http://dx.doi.org/10.1145/234313.234346]
[21]
Breiman L. Random forests. Mach Learn 2001; 45(1): 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[22]
Schapire RE. Explaining AdaBoost.In: Schölkopf B, Luo Z, Vovk V, Eds Empirical inference: Festschrift in honor of vladimir N Vapnik. Berlin, Heidelberg: Springer 2013; pp. 37-52.
[http://dx.doi.org/10.1007/978-3-642-41136-6_5]
[23]
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol 2005; 67(2): 301-20.
[http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x]
[24]
Mucherino A, Papajorgji PJ, Pardalos PM. K-Nearest Neighbor ClassificationData Mining in Agriculture. New York, NY: Springer 2009; pp. 83-106.
[http://dx.doi.org/10.1007/978-0-387-88615-2_4]
[25]
Cox DR. The regression analysis of binary sequences. J R Stat Soc B 1958; 20(2): 215-32.
[http://dx.doi.org/10.1111/j.2517-6161.1958.tb00292.x]
[26]
McCullagh P, Nelder JA. Generalized linear models. (2nd ed.), New York: Routledge 2019.
[http://dx.doi.org/10.1201/9780203753736]
[27]
Yan X, Su XG. Linear Regression Analysis: Theory and Computing. USA: World Scientific Publishing Co., Inc. 2009.
[http://dx.doi.org/10.1142/6986]
[28]
Zhang H. The Optimality of Naive Bayes. Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference. Miami Beach, Florida, USA. 2004; pp. 562-7.
[29]
Platt JC. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.In: Advances in large margin classifiers. Cambridge, USA: MIT Press 1999; pp. 61-74.
[30]
Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Francisco, California, USA 2016. 785-94.
[http://dx.doi.org/10.1145/2939672.2939785]
[31]
Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. 2017; International Conference on Engineering and Technology (ICET) Antalya, Turkey 2017. 2017; pp. pp 1-6.
[http://dx.doi.org/10.1109/ICEngTechnol.2017.8308186]
[32]
Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw 2015; 61: pp 85-117.
[http://dx.doi.org/10.1016/j.neunet.2014.09.003] [PMID: 25462637]
[33]
Huang GB, Zhu QY, Siew CK. Extreme learning machine: Theory and applications. Neurocomputing 2006; 70(1-3): 489-501.
[http://dx.doi.org/10.1016/j.neucom.2005.12.126]
[34]
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997; 9(8): 1735-80.
[http://dx.doi.org/10.1162/neco.1997.9.8.1735] [PMID: 9377276]
[35]
Specht DF. Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification. IEEE Trans Neural Netw 1990; 1(1): 111-21.
[http://dx.doi.org/10.1109/72.80210] [PMID: 18282828]
[36]
Sherstinsky A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D 2020; 404: 132306.
[http://dx.doi.org/10.1016/j.physd.2019.132306]
[37]
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J Mach Learn Res 2010; 11(110): 3371-408.
[38]
Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J Digit Imaging 2013; 26(6): 1045-57.
[http://dx.doi.org/10.1007/s10278-013-9622-7] [PMID: 23884657]
[39]
Pereira CR, Pereira DR, Silva FA, et al. A new computer vision-based approach to aid the diagnosis of Parkinson’s disease. Comput Methods Programs Biomed 2016; 136: 79-88.
[http://dx.doi.org/10.1016/j.cmpb.2016.08.005] [PMID: 27686705]
[40]
Nguyen KP, Raval V, Treacher A, et al. Predicting Parkinson’s disease trajectory using clinical and neuroimaging baseline measures. Parkinson Relat Disorders 2021; 85: 44-51.
[http://dx.doi.org/10.1016/j.parkreldis.2021.02.026]
[41]
Salmanpour MR, Shamsaei M, Hajianfar G, Soltanian-Zadeh H, Rahmim A. Longitudinal clustering analysis and prediction of Parkinson’s disease progression using radiomics and hybrid machine learning. Quant Imaging Med Surg 2022; 12(2): 906-19.
[http://dx.doi.org/10.21037/qims-21-425] [PMID: 35111593]
[42]
Lei B, Zhao Y, Huang Z, et al. Adaptive sparse learning using multi-template for neurodegenerative disease diagnosis. Medical Image Analysis 2020; 61.
[http://dx.doi.org/10.1016/j.media.2019.101632]
[43]
Archer DB, Bricker JT, Chu WT, et al. Development and validation of the automated imaging differentiation in parkinsonism (AID-P): A Multicentre Machine Learning Study. The Lancet Digital Health 2019; 1(5): e222-36.
[http://dx.doi.org/10.1016/S2589-7500(19)30105-0]
[44]
Baggio HC, Abos A, Segura B, et al. Cerebellar resting-state functional connectivity in Parkinson’s disease and multiple system atrophy: Characterization of abnormalities and potential for differential diagnosis at the single-patient level. Neurolmage: Clinical 2019; 22: 101720.
[http://dx.doi.org/10.1016/j.nicl.2019.101720]
[45]
Kiryu S, Yasaka K, Akai H, et al. Deep learning to differentiate parkinsonian disorders separately using single midsagittal MR imaging: A proof of concept study. Eur Radiol 2019; 29: 6891-9.
[http://dx.doi.org/10.1007/s00330-019-06327-0]
[46]
Singh G, Vadera M, Samavedham L, Lim E C-H. Multiclass diagnosis of neurodegenerative diseases: A neuroimaging machine-learning-based approach. Indus Eng Chem Res 2019; 58((26, SI):): 11498-505.
[http://dx.doi.org/10.1021/acs.iecr.8b06064]
[47]
Du G, Lewis MM, Kanekar S, et al. Combined diffusion tensor imaging and apparent transverse relaxation rate differentiate parkinson disease and atypical parkinsonism. AJNR Am J Neuroradiol 2017; 38(5): 966-72.
[http://dx.doi.org/10.3174/ajnr.A5136] [PMID: 28364007]
[48]
Huertas-Fernández I, García-Gómez FJ, García-Solís D, et al. Machine learning models for the differential diagnosis of vascular parkinsonism and Parkinson’s disease using [123I]FP-CIT SPECT. Euro J Nuclear Med Mol Imag 2015; 42: 112-9.
[http://dx.doi.org/10.1007/s00259-014-2882-8]
[49]
Tang J, Yang B, Adams MP, et al. Artificial neural network–based prediction of outcome in Parkinson’s disease patients using DaTscan SPECT imaging features. Mol Imag Biol 2019; 21: 1165-73.
[http://dx.doi.org/10.1007/s11307-019-01334-5]
[50]
Hou Y, Luo C, Yang J, et al. Prediction of individual clinical scores in patients with Parkinson’s disease using resting-state functional magnetic resonance imaging. J Neurol Sci 2016; 366: 27-32.
[http://dx.doi.org/10.1016/j.jns.2016.04.030]
[51]
Trail M, Fox C, Ramig LO, Sapir S, Howard J, Lai EC. Speech treatment for Parkinson’s disease. NeuroRehabilitation 2005; 20(3): 205-21.
[http://dx.doi.org/10.3233/NRE-2005-20307] [PMID: 16340101]
[52]
Robbins JA, Logemann JA, Kirshner HS. Swallowing and speech production in Parkinson’s disease. Ann Neurol 1986; 19(3): 283-7.
[http://dx.doi.org/10.1002/ana.410190310] [PMID: 3963773]
[53]
Nilashi M, Ahmadi H, Sheikhtaheri A, et al. Remote tracking of Parkinson’s disease progression using ensembles of deep belief network and self-organizing map. Expert Syst Appl 2020; 159.
[http://dx.doi.org/10.1016/j.eswa.2020.113562]
[54]
Perez-Toro PA, Vasquez-Correa JC, Bocklet T, Noth E, Orozco-Arroyave JR. User state modeling based on the arousal-valence plane: Applications in customer satisfaction and health-care. IEEE Transactions on Affective Computing 2021; 14(2): 1533-46.
[http://dx.doi.org/10.1109/TAFFC.2021.3112543]
[55]
Hemmerling D, Wojcik-Pedziwiatr M. Prediction and estimation of Parkinson’s disease severity based on voice signal. Journal of Voice 2020; 36(3): 439.e9-439.e20.
[http://dx.doi.org/10.1016/j.jvoice.2020.06.004]
[56]
Nilashi M, Ibrahim O, Samad S, Ahmadi H, Shahmoradi L, Akbari E. An analytical method for measuring the Parkinson’s disease progression: A case on a Parkinson’s telemonitoring dataset. Measurement: J Inter Measur Confeder 2019; 136: 545-57.
[http://dx.doi.org/10.1016/j.measurement.2019.01.014]
[57]
Varghese B K, Geraldine Bessie Amali D, Uma Devi K S. Prediction of Parkinson’s disease using machine learning techniques on speech dataset. Res J Pharm Technol 2019; 12: 1-5.
[http://dx.doi.org/10.5958/0974-360X.2019.00114.8]
[58]
Dua D, Graff C. UCI Machine Learning Repository 2017.
[59]
Bloem BR, Grimbergen YAM, Cramer M, Willemsen M, Zwinderman AH. Prospective assessment of falls in Parkinson’s disease. J Neurol 2001; 248(11): 950-8.
[http://dx.doi.org/10.1007/s004150170047] [PMID: 11757958]
[60]
Goldberger AL, Amaral LAN, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000; 101(23): E215-20.
[http://dx.doi.org/10.1161/01.CIR.101.23.e215] [PMID: 10851218]
[61]
Bot BM, Suver C, Neto EC, et al. The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci Data 2016; 3(1): 160011.
[http://dx.doi.org/10.1038/sdata.2016.11] [PMID: 26938265]
[62]
Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015; 386(9996): 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[63]
Pereira CR, Weber SAT, Hook C, Rosa GH, Papa JP. Deep Learning-Aided Parkinson’s disease diagnosis from handwritten dynamics. 2016; 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) Sao Paulo, Brazil. 2016; pp. 2016; 340-6.
[http://dx.doi.org/10.1109/SIBGRAPI.2016.054]
[64]
Swann NC, de Hemptinne C, Aron AR, Ostrem JL, Knight RT, Starr PA. Elevated synchrony in Parkinson disease detected with electroencephalography. Ann Neurol 2015; 78(5): 742-50.
[http://dx.doi.org/10.1002/ana.24507] [PMID: 26290353]
[65]
Poldrack RA, Gorgolewski K J. OpenfMRI: Open sharing of task FMRI data. Neuroimage 2017; 144((Pt B):): 259-61.
[http://dx.doi.org/10.1016/j.neuroimage.2015.05.073]
[66]
Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(1): a008888-8.
[http://dx.doi.org/10.1101/cshperspect.a008888] [PMID: 22315721]
[67]
Ho D, Schierding W, Farrow SL, Cooper AA, Kempa-Liehr A W, O’Sullivan JM. Machine learning identifies six genetic variants and alterations in the heart atrial appendage as key contributors to PD risk predictivity. Front Genet 2022; 12.
[http://dx.doi.org/10.3389/fgene.2021.785436]
[68]
Paul KC, Horvath S, Del Rosario I, Bronstein JM, Ritz B. DNA methylation biomarker for cumulative lead exposure is associated with Parkinson’s Disease. Clinical Epigenet 2021; 13.
[http://dx.doi.org/10.1186/s13148-021-01051-3]
[69]
Li S, Liu H, Bian S, Sha X, Li Y, Wang Y. The accelerated aging model reveals critical mechanisms of late-onset Parkinson’s disease. BioData Min 2020; 13(1): 4.
[http://dx.doi.org/10.1186/s13040-020-00215-w] [PMID: 32536974]
[70]
Vlassis N, Glaab E. GenePEN: Analysis of network activity alterations in complex diseases via the pairwise elastic net. Statist Appl Genetics Mol Biol 2015; 14: 221-4.
[http://dx.doi.org/10.1515/sagmb-2014-0045]
[71]
Nguyen T-T, Huang JZ, Wu Q, Nguyen TT, Li MJ. Genome-wide association data classification and SNPs selection using two-stage quality-based random forests. BMC Genomics 2015; 16.
[http://dx.doi.org/10.1186/1471-2164-16-S2-S5]
[72]
Emon MA, Heinson A, Wu P, et al. Clustering of Alzheimer’s and Parkinson’s disease based on genetic burden of shared molecular mechanisms. Scientific Reports 2020; 10.
[http://dx.doi.org/10.1038/s41598-020-76200-4]
[73]
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30(1): 207-10.
[http://dx.doi.org/10.1093/nar/30.1.207] [PMID: 11752295]
[74]
Mailman MD, Feolo M, Jin Y, et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 2007; 39(10): 1181-6.
[http://dx.doi.org/10.1038/ng1007-1181] [PMID: 17898773]
[75]
Guayacán LC, Manzanera A, Martínez F. Quantification of parkinsonian kinematic patterns in body-segment regions during locomotion. J Med Biological Eng 2022; 42: 204-15.
[http://dx.doi.org/10.1007/s40846-022-00691-x]
[76]
Sanderson JB, Yu JH, Liu DD, et al. Multi-dimensional, short-timescale quantification of Parkinson’s disease and essential tremor motor dysfunction. Frontier Neurol 2020; 11.
[http://dx.doi.org/10.3389/fneur.2020.00886]
[77]
Aghanavesi S, Nyholm D, Senek M, Bergquist F, Memedi M. A Smartphone-based system to quantify dexterity in Parkinson’s disease patients. Inform Med Unlocked 2017; 9: 11-7.
[http://dx.doi.org/10.1016/j.imu.2017.05.005]
[78]
Vacchi E, Burrello J, Di Silvestre D, et al. Immune profiling of plasma-derived extracellular vesicles identifies parkinson disease. Neurology(R) neuroimmunology & neuroinflammation 2020; 7(6): e866.
[http://dx.doi.org/10.1212/NXI.0000000000000866]
[79]
Maass F, Michalke B, Willkommen D, et al. Elemental fingerprint: Reassessment of a cerebrospinal fluid biomarker for Parkinson’s disease. Neurobiol Dis 2020; 134.
[http://dx.doi.org/10.1016/j.nbd.2019.104677]
[80]
Yuan W, Beaulieu-Jones B, Krolewski R, et al. Accelerating diagnosis of Parkinson’s disease through risk prediction. BMC Neurology 2021; 21: 201.
[http://dx.doi.org/10.1186/s12883-021-02226-4]
[81]
Sokolova M, Japkowicz N, Szpakowicz S. Beyond accuracy, FScore and ROC: A family of discriminant measures for performance evaluation. AI 2006: Advances in Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg 2006; pp. 1015-21.
[http://dx.doi.org/10.1007/11941439_114]
[82]
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 2020; 21(1): 6.
[http://dx.doi.org/10.1186/s12864-019-6413-7] [PMID: 31898477]
[83]
Menger V, Scheepers F, Spruit M. Comparing deep learning and classical machine learning approaches for predicting inpatient violence incidents from clinical text. Appl Sci 2018; 8(6): 981.
[http://dx.doi.org/10.3390/app8060981]
[84]
González-Díaz H, Vilar S, Santana L, Uriarte E. Medicinal chemistry and bioinformatics-current trends in drugs discovery with networks topological indices. Curr Top Med Chem 2007; 7(10): 1015-29.
[http://dx.doi.org/10.2174/156802607780906771] [PMID: 17508935]
[85]
Diéguez-Santana K, Puris A, Rivera-Borroto OM, Casanola-Martin GM, Rasulev B, González-Díaz H. A fuzzy system classification approach for QSAR modeling of α- amylase and α-Glucosidase Inhibitors. Curr Comput Aided Drug Des 2022; 18(7): 469-79.
[http://dx.doi.org/10.2174/1573409918666220929124820] [PMID: 36177632]
[86]
Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MNDS. Rational drug design for anti-cancer chemotherapy: Multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents. Bioorg Med Chem 2012; 20(15): 4848-55.
[http://dx.doi.org/10.1016/j.bmc.2012.05.071] [PMID: 22750007]
[87]
Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MNDS. Chemoinformatics in anti-cancer chemotherapy: Multi-target QSAR model for the in silico discovery of anti-breast cancer agents. Eur J Pharm Sci 2012; 47(1): 273-9.
[http://dx.doi.org/10.1016/j.ejps.2012.04.012] [PMID: 22538055]
[88]
Kahn I, Lomaka A, Karelson M. Topological fingerprints as an aid in finding structural patterns for LRRK2 inhibition. Mol Inform 2014; 33(4): 269-75.
[http://dx.doi.org/10.1002/minf.201300057] [PMID: 27485773]
[89]
Pourbasheer E, Aalizadeh R. 3D-QSAR and molecular docking study of LRRK2 kinase inhibitors by CoMFA and CoMSIA methods. SAR QSAR Environ Res 2016; 27(5): 385-407.
[http://dx.doi.org/10.1080/1062936X.2016.1184713] [PMID: 27228480]
[90]
Sebastián-Pérez V, Martínez MJ, Gil C, Campillo NE, Martínez A, Ponzoni I. QSAR modelling to identify LRRK2 inhibitors for Parkinson’s Disease. J Integrative Bioinform 2019; 16(1): 20180063.
[http://dx.doi.org/10.1515/jib-2018-0063]
[91]
Nalls MA, Pankratz N, Lill CM, et al. Parkinson’s Study Group (PSG) Parkinson’s Research: The Organized GENetics Initiative (PROGENI); 23andMe; GenePD; NeuroGenetics Research Consortium (NGRC); Hussman Institute of Human Genomics (HIHG); The Ashkenazi Jewish Dataset Investigator; Cohorts for Health and Aging Research in Genetic Epidemiology (CHARGE); North American Brain Expression Consortium (NABEC); United Kingdom Brain Expression Consortium (UKBEC); Greek Parkinson’s Disease Consortium; Alzheimer Genetic Analysis Group. Large-Scale Meta-Analysis of Genome-Wide Association Data Identifies Six New Risk Loci for Parkinson’s Disease. Nat Genet 2014; 46(9): 989-93.
[http://dx.doi.org/10.1038/ng.3043] [PMID: 25064009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy