Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Draft Genome Sequence of Enterobacter cloacae S23 a Plant Growthpromoting Passenger Endophytic Bacterium Isolated from Groundnut Nodule Possesses Stress Tolerance Traits

Author(s): Pavithra Ramakrishnan, Manikandan Ariyan, Anandham Rangasamy*, Raghu Rajasekaran, Krishnamoorthy Ramasamy, SenthilKumar Murugaiyan and Veeranan Janahiraman

Volume 24, Issue 1, 2023

Published on: 19 April, 2023

Page: [36 - 47] Pages: 12

DOI: 10.2174/1389202924666230403123208

Price: $65

Abstract

Aim: This study aims to reveal the passenger endophytic bacterium Enterobacter cloacae S23 isolated from groundnut nodules and to underpin the molecular mechanism and genes responsible for abiotic stress tolerance.

Background: A variety of microorganisms that contribute to nodulation and encourage plant development activity in addition to the nodulating Rhizobium. Passenger endophytes (PE) are endophytes that accidentally penetrate the plant without any selective pressure keeping them in the interior tissue of the plant. PE possesses characteristics that encourage plant development and boost output while reducing pathogen infection and improving biotic and abiotic stress tolerance. However, there is a lack of molecular evidence on the passenger endophyte-mediated alleviation of abiotic stresses.

Objective: This study was formulated to reveal the draft genome sequence of Enterobacter cloacae S23, as well as genes and characteristics involved in plant growth promotion and stress tolerance.

Method: The data were submitted to PATRIC and the TORMES-1.0 Unicyclker tools were used to conduct a complete genome study of Enterobacter cloacae S23. The TORMES-1.0 platform was used to process the reads. RAST tool kit (RASTtk) was used to annotate the S23 sequence. The plant growth-promoting traits such as indole acetic acid production, siderophore secretion, production of extracellular polysaccharides, biofilm formation, phosphate solubilization, and accumulation of osmolytes were examined under normal, 7% NaCl and 30% polyethylene glycol amended conditions to determine their ability to withstand salt and moisture stressed conditions, respectively.

Result: We report the size of Enterobacter cloacae S23 is 4.82Mb which contains 4511 proteincoding sequences, 71 transfer RNA genes, and 3 ribosomal RNA with a G+C content of DNA is 55.10%. Functional analysis revealed that most of the genes are involved in the metabolism of amino acids, cofactors, vitamins, stress response, nutrient solubilization (kdp, pho, pst), biofilm formation (pga) IAA production (trp), siderophore production (luc, fhu, fep, ent, ybd), defense, and virulence. The result revealed that E. cloacae S23 exhibited multiple plant growth-promoting traits under abiotic stress conditions.

Conclusion: Our research suggested that the discovery of anticipated genes and metabolic pathways might characterise this bacterium as an environmentally friendly bioresource to support groundnut growth through several mechanisms of action under multi-stresses.

Keywords: Endophytic bacteria, whole-genome, PGPR, drought, salt stress, Enterobacter cloacae.

Graphical Abstract
[1]
Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 2012, 1-15.
[http://dx.doi.org/10.6064/2012/963401] [PMID: 24278762]
[2]
Azua-Bustos, A.; González-Silva, C. Biotechnological applications derived from microorganisms of the Atacama Desert. BioMed Res. Int., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/909312] [PMID: 25147824]
[3]
Benslama, O.; Boulahrouf, A. Impact of glyphosate application on the microbial activity of two Algerian soils. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2, 628-635.
[4]
Delgado, M.; Mendez, J.; Rodríguez-Herrera, R.; Aguilar, C.N.; Cruz-Hernández, M.; Balagurusamy, N. Characterization of phosphate-solubilizing bacteria isolated from the arid soils of a semi-desert region of north-east Mexico. Biol. Agric. Hortic., 2014, 30(3), 211-217.
[http://dx.doi.org/10.1080/01448765.2014.909742]
[5]
Askalany, M.M.; Diab, M.; Abdalla, F.A.; Hassan, A.M. Studies on the effect of natural treatment on sewage water, El-Salhiya-Qena City, Egypt. Int. J., 2017, 6(1), 500-515.
[6]
Oulebsir-Mohandkaci, H.; Khemili-Talbi, S.; Benzina, F.; Halouane, F. Isolation and identification of entomopathogenic bacteria from Algerian desert soil and their effects against the migratory locust, Locusta migratoria (Linnaeus, 1758) (Orthoptera: Acrididae). Egypt. J. Biol. Pest Control, 2015, 25(3), 739.
[7]
Preyanga, R.; Anandham, R.; Krishnamoorthy, R.; Senthilkumar, M.; Gopal, N.O.; Vellaikumar, A.; Meena, S. Groundnut (Arachis hypogaea) nodule Rhizobium and passenger endophytic bacterial cultivable diversity and their impact on plant growth promotion. Rhizosphere, 2021, 17, 100309.
[http://dx.doi.org/10.1016/j.rhisph.2021.100309]
[8]
Vimal, S.R.; Singh, J.S.; Arora, N.K.; Singh, S. Soil-plant-microbe interactions in stressed agriculture management: A review. Pedosphere, 2017, 27(2), 177-192.
[http://dx.doi.org/10.1016/S1002-0160(17)60309-6]
[9]
Coulson, T.J.D.; Patten, C.L. Complete genome sequence of Enterobacter cloacae UW5, a rhizobacterium capable of high levels of indole-3-acetic acid production. Genome Announc., 2015, 3(4), e00843-e15.
[http://dx.doi.org/10.1128/genomeA.00843-15] [PMID: 26251488]
[10]
Peng, G.; Zhang, W.; Luo, H.; Xie, H.; Lai, W.; Tan, Z. Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. Int. J. Syst. Evol. Microbiol., 2009, 59(7), 1650-1655.
[http://dx.doi.org/10.1099/ijs.0.005967-0] [PMID: 19578150]
[11]
Soares, G.G.; Costa, J.F.; Melo, F.B.S.; Mola, R.; Balbino, T.C.L. Biofilm production and resistance profile of Enterobacter sp. strains isolated from pressure ulcers in Petrolina, Pernambuco, Brazil. J. Bras. Patol. Med. Lab., 2016, 52, 293-298.
[http://dx.doi.org/10.5935/1676-2444.20160045]
[12]
Palaniappan, P.; Chauhan, P.S.; Saravanan, V.S.; Anandham, R.; Sa, T. Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol. Fertil. Soils, 2010, 46(8), 807-816.
[http://dx.doi.org/10.1007/s00374-010-0485-5]
[13]
Sturz, A.V.; Christie, B.R.; Matheson, B.G.; Nowak, J. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol. Fertil. Soils, 1997, 25(1), 13-19.
[http://dx.doi.org/10.1007/s003740050273]
[14]
Saharan, B.S.; Nehra, V. Plant growth promoting rhizobacteria: A critical review. Life Sci Med Res, 2011, 21(1), 30.
[15]
Schomburg, I.; Chang, A.; Ebeling, C.; Gremse, M.; Heldt, C.; Huhn, G.; Schomburg, D. BRENDA, the enzyme database: Updates and major new developments. Nucleic Acids Res., 2004, 32(90001), 431D-433.
[http://dx.doi.org/10.1093/nar/gkh081] [PMID: 14681450]
[16]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene Ontology: Tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[17]
Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 2016, 44(D1), D457-D462.
[http://dx.doi.org/10.1093/nar/gkv1070] [PMID: 26476454]
[18]
Davis, J.J.; Gerdes, S.; Olsen, G.J.; Olson, R.; Pusch, G.D.; Shukla, M.; Vonstein, V.; Wattam, A.R.; Yoo, H. PATtyFams: Protein families for the microbial genomes in the PATRIC database. Front. Microbiol., 2016, 7, 118.
[http://dx.doi.org/10.3389/fmicb.2016.00118] [PMID: 26903996]
[19]
Patten, C.L.; Glick, B.R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol., 2002, 68(8), 3795-3801.
[http://dx.doi.org/10.1128/AEM.68.8.3795-3801.2002] [PMID: 12147474]
[20]
Penrose, D.M.; Glick, B.R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant., 2003, 118(1), 10-15.
[http://dx.doi.org/10.1034/j.1399-3054.2003.00086.x] [PMID: 12702008]
[21]
Djordjevic, D.; Wiedmann, M.; McLandsborough, L.A. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol., 2002, 68(6), 2950-2958.
[http://dx.doi.org/10.1128/AEM.68.6.2950-2958.2002] [PMID: 12039754]
[22]
DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28(3), 350-356.
[http://dx.doi.org/10.1021/ac60111a017]
[23]
Arora, N. K.; Verma, M. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 BiotechM, 2017, 7(6), 1-9.
[http://dx.doi.org/10.1007/s13205-017-1008-y] [PMID: 29109926]
[24]
Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J., 1965, 29(6), 677-678.
[http://dx.doi.org/10.2136/sssaj1965.03615995002900060025x]
[25]
Ceylan, S.; Yilan, G.; Akbulut, B.S.; Poli, A.; Kazan, D. Interplay of adaptive capabilities of Halomonas sp. AAD12 under salt stress. J. Biosci. Bioeng., 2012, 114(1), 45-52.
[http://dx.doi.org/10.1016/j.jbiosc.2012.02.030] [PMID: 22575437]
[26]
Qurashi, A.W.; Sabri, A.N. Osmolyte accumulation in moderately halophilic bacteria improves salt tolerance of chickpea. Pak. J. Bot., 2013, 45(3), 1011-1016.
[27]
Han, N.; Qiang, Y.; Zhang, W. ANItools web: A web tool for fast genome comparison within multiple bacterial strains. Database, 2016, 2016, baw084.
[http://dx.doi.org/10.1093/database/baw084] [PMID: 27270714]
[28]
Theo, H.M.S. The importance of genome sequence quality to microbial comparative genomics. BMC Genomics, 2019, 20(1), 662.
[http://dx.doi.org/10.1186/s12864-019-6014-5] [PMID: 31429698]
[29]
Brooke, J.S.; Valvano, M.A. Biosynthesis of inner core lipopolysaccharide in enteric bacteria identification and characterization of a conserved phosphoheptose isomerase. J. Biol. Chem., 1996, 271(7), 3608-3614.
[http://dx.doi.org/10.1074/jbc.271.7.3608] [PMID: 8631969]
[30]
Cardoza, E.; Singh, H. C group-mediated antibiotic stress mimics the cold shock response. Curr. Microbiol., 2021, 78(9), 3372-3380.
[http://dx.doi.org/10.1007/s00284-021-02613-7] [PMID: 34283283]
[31]
Kirthika, P.; Senevirathne, A.; Jawalagatti, V.; Park, S.; Lee, J.H. Deletion of the lon gene augments expression of Salmonella Pathogenicity Island (SPI)-1 and metal ion uptake genes leading to the accumulation of bactericidal hydroxyl radicals and host pro-inflammatory cytokine-mediated rapid intracellular clearance. Gut Microbes, 2020, 11(6), 1695-1712.
[http://dx.doi.org/10.1080/19490976.2020.1777923] [PMID: 32567462]
[32]
Gao, H.; Zhang, Y.; Han, Y.; Yang, L.; Liu, X.; Guo, Z.; Tan, Y.; Huang, X.; Zhou, D.; Yang, R. Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis. BMC Microbiol., 2011, 11(1), 39.
[http://dx.doi.org/10.1186/1471-2180-11-39] [PMID: 21345178]
[33]
Collet, J.F.; D’Souza, J.C.; Jakob, U.; Bardwell, J.C.A. Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J. Biol. Chem., 2003, 278(46), 45325-45332.
[http://dx.doi.org/10.1074/jbc.M307818200] [PMID: 12952960]
[34]
Tetsuka, N.; Hirabayashi, A.; Matsumoto, A.; Oka, K.; Hara, Y.; Morioka, H.; Iguchi, M. Molecular epidemiological analysis and risk factors for acquisition of carbapenemase-producing Enterobacter cloacae complex in a Japanese university hospital. Antimicrob. Resist. Infect. Control, 2019, 8, 126.
[http://dx.doi.org/10.1186/s13756-019-0578-3]
[35]
Radhapriya, P.; Ramachandran, A.; Anandham, R.; Mahalingam, S. Pseudomonas aeruginosa RRALC3 enhances the biomass, nutrient and carbon contents of Pongamia pinnata seedlings in degraded forest soil. PLoS One, 2015, 10(10), e0139881.
[http://dx.doi.org/10.1371/journal.pone.0139881] [PMID: 26460867]
[36]
Singh, M.; Kumar, A.; Singh, R.; Pandey, K. D. Endophytic bacteria: A new source of bioactive compounds. 3 Biotech, 2017, 7(5), 1-14.
[http://dx.doi.org/10.1007/s13205-017-0942-z] [PMID: 28955612]
[37]
Mao, Y.; Doyle, M.P.; Chen, J. Role of colanic acid exopolysaccharide in the survival of enterohaemorrhagic Escherichia coli O157:H7 in simulated gastrointestinal fluids. Lett. Appl. Microbiol., 2006, 0(0)
[http://dx.doi.org/10.1111/j.1472-765X.2006.01875.x] [PMID: 16706906]
[38]
Hardoim, P.R.; van Overbeek, L.S.; Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol., 2008, 16(10), 463-471.
[http://dx.doi.org/10.1016/j.tim.2008.07.008] [PMID: 18789693]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy