Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Integration of Proteomic Data Obtained from the Saliva of Children with Caries through Bioinformatic Analysis

Author(s): Juan Manuel Guzman-Flores*, Fernando Martínez-Esquivias, Julieta Sarai Becerra-Ruiz and Sandra Berenice Vázquez-Rodríguez

Volume 20, Issue 1, 2023

Published on: 28 April, 2023

Page: [51 - 61] Pages: 11

DOI: 10.2174/1570164620666230331102317

Price: $65

Abstract

Background: Dental caries can affect the expression of salivary proteins. Proteomics allows us to analyze and identify many proteins in a single sample and experiment; bioinformatics is essential to analyze proteomic data.

Objective: This research aims to identify and integrate the main differentially expressed proteins in the saliva of children with caries, infer their Gene Ontology and interactions, and identify regulatory factors.

Materials and Methods: We extracted proteins from a bibliographic search in the Scopus and PubMed databases. We analyzed these proteins with the web application ShinyGO v0.76, ToppGene and NetworkAnalyst 3.0, and the Cytoscape platform.

Results: In the literature search, we extracted 26 differentially expressed proteins. These proteins show enrichment in antioxidant activity, antimicrobial response, immune response, and vitamin and mineral metabolism. We found three transcription factors that regulate most of the genes of these proteins: TFDP1, SOX13, and BCL6. We also identified three microRNAs that highly restrict the expression of these proteins: hsa-mir-124-3p, hsa-mir-27a-3p, and hsa-mir-26b-5p. On the other hand, the main drugs associated with these proteins are potassium persulfate, aluminum, and cadmium.

Conclusion: The differentially expressed proteins in the saliva of children with dental caries are involved in metabolic pathways related to folate, selenium, and vitamin B12 metabolism. In addition, some transcription factors (TFDP1, SOX13, and BCL6) miRNAs (hsa-mir-124-3p, hsa-mir-27a-3p, and hsa-mir-26b-5p) and chemical compounds (potassium persulfate, aluminum, and cadmium) can regulate the genes, mRNAs or proteins studied.

Keywords: Bioinformatics, caries, children, proteomics, saliva, miRNAs, transcription factors.

Graphical Abstract
[1]
Machiulskiene, V.; Campus, G.; Carvalho, J.C.; Dige, I.; Ekstrand, K.R.; Jablonski-Momeni, A.; Maltz, M.; Manton, D.J.; Martignon, S.; Martinez-Mier, E.A.; Pitts, N.B.; Schulte, A.G.; Splieth, C.H.; Tenuta, L.M.A.; Ferreira Zandona, A.; Nyvad, B. Terminology of dental caries and dental caries management: Consensus report of a workshop organized by ORCA and cariology research group of IADR. Caries Res., 2020, 54(1), 7-14.
[http://dx.doi.org/10.1159/000503309] [PMID: 31590168]
[2]
Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Primers, 2017, 3(1), 17030.
[http://dx.doi.org/10.1038/nrdp.2017.30] [PMID: 28540937]
[3]
Uribe, S.E.; Innes, N.; Maldupa, I. The global prevalence of early childhood caries: A systematic review with meta-analysis using the WHO diagnostic criteria. Int. J. Paediatr. Dent., 2021, 31(6), 817-830.
[http://dx.doi.org/10.1111/ipd.12783] [PMID: 33735529]
[4]
Ramírez-De los Santos, S.; López-Pulido, E.I.; Medrano-González, I.C.; Becerra-Ruiz, J.S.; Alonso-Sanchez, C.C.; Vázquez-Jiménez, S.I.; Guerrero-Velázquez, C.; Guzmán-Flores, J.M. Alteration of cytokines in saliva of children with caries and obesity. Odontology, 2021, 109(1), 11-17.
[http://dx.doi.org/10.1007/s10266-020-00515-x] [PMID: 32285227]
[5]
Hemadi, A.S.; Huang, R.; Zhou, Y.; Zou, J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int. J. Oral Sci., 2017, 9(11), e1.
[http://dx.doi.org/10.1038/ijos.2017.35] [PMID: 29125139]
[6]
Wang, K.; Zhou, X.; Li, W.; Zhang, L. Human salivary proteins and their peptidomimetics: Values of function, early diagnosis, and therapeutic potential in combating dental caries. Arch. Oral Biol., 2019, 99, 31-42.
[http://dx.doi.org/10.1016/j.archoralbio.2018.12.009] [PMID: 30599395]
[7]
Dupree, E.J.; Jayathirtha, M.; Yorkey, H.; Mihasan, M.; Petre, B.A.; Darie, C.C. A critical review of bottom-up proteomics: The good, the bad, and the future of this field. Proteomes, 2020, 8(3), 14.
[http://dx.doi.org/10.3390/proteomes8030014] [PMID: 32640657]
[8]
Chen, C.; Hou, J.; Tanner, J.J.; Cheng, J. Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int. J. Mol. Sci., 2020, 21(8), 2873.
[http://dx.doi.org/10.3390/ijms21082873] [PMID: 32326049]
[9]
Zupanic, A.; Bernstein, H.C.; Heiland, I. Systems biology: Current status and challenges. Cell. Mol. Life Sci., 2020, 77(3), 379-380.
[http://dx.doi.org/10.1007/s00018-019-03410-z] [PMID: 31932855]
[10]
Moussa, D.G.; Ahmad, P.; Mansour, T.A.; Siqueira, W.L. Current state and challenges of the global outcomes of dental caries research in the meta-omics era. Front. Cell. Infect. Microbiol., 2022, 12, 887907.
[http://dx.doi.org/10.3389/fcimb.2022.887907] [PMID: 35782115]
[11]
Chen, W.; He, Z.; Ran, S.; Liang, J.; Jiang, W. Proteomic study of plaque fluid in high caries and caries free children. Technol. Health Care, 2022, 30(S1), 337-361.
[http://dx.doi.org/10.3233/THC-THC228032] [PMID: 35124610]
[12]
Zhou, X.; Li, H.; Zhu, C.; Yuan, C.; Meng, C.; Feng, S.; Sun, X.; Zheng, S. Analysis of salivary proteomic biomarkers for the surveillance of changes in high-risk status of early childhood caries. BMC Oral Health, 2021, 21(1), 572.
[http://dx.doi.org/10.1186/s12903-021-01930-4] [PMID: 34749719]
[13]
Ge, S.X.; Jung, D.; Yao, R.; Shiny, G.O.; Shiny, GO. A graphical gene-set enrichment tool for animals and plants. Bioinformatics, 2020, 36(8), 2628-2629.
[http://dx.doi.org/10.1093/bioinformatics/btz931] [PMID: 31882993]
[14]
Chen, J.; Bardes, E. E.; Aronow, B. J.; Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res., 2009, 37(Web Server issue), W305-11.
[http://dx.doi.org/10.1093/nar/gkp427]
[15]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[16]
Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res., 2019, 18(2), 623-632.
[http://dx.doi.org/10.1021/acs.jproteome.8b00702] [PMID: 30450911]
[17]
Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[18]
Zhou, G.; Soufan, O.; Ewald, J.; Hancock, R.E.W.; Basu, N.; Xia, J. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res., 2019, 47(W1), W234-W241.
[http://dx.doi.org/10.1093/nar/gkz240] [PMID: 30931480]
[19]
Guedes, S.F.F.; Neves, B.G.; Bezerra, D.S.; Souza, G.H.M.F.; Lima-Neto, A.B.M.; Guedes, M.I.F.; Duarte, S.; Rodrigues, L.K.A. Saliva proteomics from children with caries at different severity stages. Oral Dis., 2020, 26(6), 1219-1229.
[http://dx.doi.org/10.1111/odi.13352] [PMID: 32285988]
[20]
Alexandre Rezende Vieira, N.M.V.; Limesand, K.; Modesto, A. Differences in proteomic profiles between caries free and caries affected children. Pesqui. Bras. Odontopediatria Clin. Integr., 2020, 20, 1-5.
[21]
Wang, K.; Wang, Y.; Wang, X.; Ren, Q.; Han, S.; Ding, L.; Li, Z.; Zhou, X.; Li, W.; Zhang, L. Comparative salivary proteomics analysis of children with and without dental caries using the iTRAQ/MRM approach. J. Transl. Med., 2018, 16(1), 11.
[http://dx.doi.org/10.1186/s12967-018-1388-8] [PMID: 29351798]
[22]
Sun, X.; Huang, X.; Tan, X.; Si, Y.; Wang, X.; Chen, F.; Zheng, S. Salivary peptidome profiling for diagnosis of severe early childhood caries. J. Transl. Med., 2016, 14(1), 240.
[http://dx.doi.org/10.1186/s12967-016-0996-4] [PMID: 27527350]
[23]
Santín, G.R.G.; Salgado, A.V.; Bastida, N.M.M.; Gómez, I.R.; Benítez, J.G.S.; Zerón, H.M. Salivary immunoglobulin gene expression in patients with caries. Open Access Maced. J. Med. Sci., 2017, 5(2), 236-243.
[http://dx.doi.org/10.3889/oamjms.2017.028] [PMID: 28507635]
[24]
Proctor, G.B. The physiology of salivary secretion. Periodontol. 2000, 2016, 70(1), 11-25.
[http://dx.doi.org/10.1111/prd.12116] [PMID: 26662479]
[25]
Pedersen, A.M.L.; Sørensen, C.E.; Proctor, G.B.; Carpenter, G.H.; Ekström, J. Salivary secretion in health and disease. J. Oral Rehabil., 2018, 45(9), 730-746.
[http://dx.doi.org/10.1111/joor.12664] [PMID: 29878444]
[26]
Larmas, M.; Sándor, G.K.B. Enzymes, dentinogenesis and dental caries: A literature review. J. Oral Maxillofac. Res., 2014, 5(4), e3.
[http://dx.doi.org/10.5037/jomr.2014.5403] [PMID: 25635210]
[27]
Takahashi, N.; Nyvad, B. Ecological hypothesis of dentin and root caries. Caries Res., 2016, 50(4), 422-431.
[http://dx.doi.org/10.1159/000447309] [PMID: 27458979]
[28]
Hendi, S.S.; Goodarzi, M.T.; Moghimbeigi, A.; Ahmadi-Motamayel, F. Evaluation of the status of salivary antioxidants in dental caries. Infect. Disord. Drug Targets, 2021, 20(6), 816-821.
[http://dx.doi.org/10.2174/1871526519666191031100432] [PMID: 31670625]
[29]
Pflipsen, M.; Zenchenko, Y. Nutrition for oral health and oral manifestations of poor nutrition and unhealthy habits. Gen. Dent., 2017, 65(6), 36-43.
[PMID: 29099364]
[30]
Sekhri, P.; Sandhu, M.; Sachdev, V.; Chopra, R. Estimation of trace elements in mixed saliva of caries free and caries active children. J. Clin. Pediatr. Dent., 2018, 42(2), 135-139.
[http://dx.doi.org/10.17796/1053-4628-42.2.9] [PMID: 29087791]
[31]
Mistry, L.; Dhariwal, N.S.; Majeed, A.; Badakar, C.; Gokhale, N.; Mistry, L. Assessment of vitamin B12 and its correlation with dental caries and gingival diseases in 10- to 14-year-old children: A cross-sectional study. Int. J. Clin. Pediatr. Dent., 2017, 10(2), 142-146.
[http://dx.doi.org/10.5005/jp-journals-10005-1424] [PMID: 28890613]
[32]
Jha, A.; Jha, S.; Shree, R.; Menka, K.; Shrikaar, M.; Shrikaar, M. Association between serum ferritin, hemoglobin, Vitamin D3, serum albumin, calcium, thyrotropin-releasing hormone with early childhood caries: A case–control study. Int. J. Clin. Pediatr. Dent., 2021, 14(5), 648-651.
[http://dx.doi.org/10.5005/jp-journals-10005-2028] [PMID: 34934277]
[33]
Subramaniam, P.; Sharma, A.; Moiden, S. Analysis of salivary IgA, amylase, lactoferrin, and lysozyme before and after comprehensive dental treatment in children: A prospective study. Contemp. Clin. Dent., 2017, 8(4), 526-530.
[http://dx.doi.org/10.4103/ccd.ccd_103_17] [PMID: 29326501]
[34]
Morzel, M.; Chabanet, C.; Schwartz, C.; Lucchi, G.; Ducoroy, P.; Nicklaus, S. Salivary protein profiles are linked to bitter taste acceptance in infants. Eur. J. Pediatr., 2014, 173(5), 575-582.
[http://dx.doi.org/10.1007/s00431-013-2216-z] [PMID: 24248522]
[35]
Lamy, E.; Simões, C.; Rodrigues, L.; Costa, A.R.; Vitorino, R.; Amado, F.; Antunes, C.; do Carmo, I. Changes in the salivary protein profile of morbidly obese women either previously subjected to bariatric surgery or not. J. Physiol. Biochem., 2015, 71(4), 691-702.
[http://dx.doi.org/10.1007/s13105-015-0434-8] [PMID: 26399515]
[36]
Moi, G.P.; Cury, J.A.; Dombroski, T.C.D.; Pauletti, B.A.; Paes Leme, A.F. Proteomic analysis of matrix of dental biofilm formed under dietary carbohydrate exposure. Caries Res., 2012, 46(4), 339-345.
[http://dx.doi.org/10.1159/000338246] [PMID: 22614073]
[37]
Matsumoto, N.; Salam, M.A.; Watanabe, H.; Amagasa, T.; Senpuku, H. Role of gene E2f1 in susceptibility to bacterial adherence of oral streptococci to tooth surfaces in mice. Oral Microbiol. Immunol., 2004, 19(4), 270-276.
[http://dx.doi.org/10.1111/j.1399-302X.2004.00151.x] [PMID: 15209999]
[38]
Satoh, K.; Narita, T.; Matsui-Inohara, H.; Ito, T.; Senpuku, H.; Sugiya, H. E2F1-deficient NOD/SCID mice are an experimental model for dry mouth. J. Med. Invest., 2009, 56(Suppl.), 260-261.
[http://dx.doi.org/10.2152/jmi.56.260] [PMID: 20224195]
[39]
Kawasaki, K.; Kawasaki, M.; Watanabe, M.; Idrus, E.; Nagai, T.; Oommen, S.; Maeda, T.; Hagiwara, N.; Que, J.; Sharpe, P.T.; Ohazama, A. Expression of Sox genes in tooth development. Int. J. Dev. Biol., 2015, 59(10-11-12), 471-478.
[http://dx.doi.org/10.1387/ijdb.150192ao] [PMID: 26864488]
[40]
Taso, E.; Stefanovic, V.; Gaudin, A.; Grujic, J.; Maldonado, E.; Petkovic-Curcin, A.; Vojvodic, D.; Sculean, A.; Rakic, M. Effect of dental caries on periodontal inflammatory status: A split-mouth study. Arch. Oral Biol., 2020, 110, 104620.
[http://dx.doi.org/10.1016/j.archoralbio.2019.104620] [PMID: 31791000]
[41]
Paqué, P.N.; Herz, C.; Wiedemeier, D.B.; Mitsakakis, K.; Attin, T.; Bao, K.; Belibasakis, G.N.; Hays, J.P.; Jenzer, J.S.; Kaman, W.E.; Karpíšek, M.; Körner, P.; Peham, J.R.; Schmidlin, P.R.; Thurnheer, T.; Wegehaupt, F.J.; Bostanci, N. Salivary biomarkers for dental caries detection and personalized monitoring. J. Pers. Med., 2021, 11(3), 235.
[http://dx.doi.org/10.3390/jpm11030235] [PMID: 33806927]
[42]
Wang, Y.; Tatakis, D.N. Integrative mRNA/miRNA expression analysis in healing human gingiva. J. Periodontol., 2021, 92(6), 863-874.
[http://dx.doi.org/10.1002/JPER.20-0397] [PMID: 32857863]
[43]
Li, J.; Guo, Y.; Chen, Y.Y.; Liu, Q.; Chen, Y.; Tan, L.; Zhang, S.H.; Gao, Z.R.; Zhou, Y.H.; Zhang, G.Y.; Feng, Y.Z. miR-124-3p increases in high glucose induced osteocyte-derived exosomes and regulates galectin-3 expression: A possible mechanism in bone remodeling alteration in diabetic periodontitis. FASEB J., 2020, 34(11), 14234-14249.
[http://dx.doi.org/10.1096/fj.202000970RR] [PMID: 32833280]
[44]
Zhou, M.; Li, C. Clinical value and potential target of miR-27a-3p in pulpitis. Neuroimmunomodulation, 2021, 28(3), 158-165.
[http://dx.doi.org/10.1159/000516136] [PMID: 34237753]
[45]
Sartori, E.; Magro-Filho, O.; Mendonça, D.; Li, X.; Fu, J.; Mendonça, G. Modulation of micro RNA expression and osteoblast differentiation by nanotopography. Int. J. Oral Maxillofac. Implants, 2018, 33(2), 269-280.
[http://dx.doi.org/10.11607/jomi.5372] [PMID: 29534118]
[46]
McCabe, J.F.; Murray, I.D.; Kelly, P.J. The efficacy of denture cleansers. Eur. J. Prosthodont. Restor. Dent., 1995, 3(5), 203-207.
[PMID: 8603160]
[47]
Tanaka, T.; Maki, K.; Hayashida, Y.; Kimura, M. Aluminum concentrations in human deciduous enamel and dentin related to dental caries. J. Trace Elem. Med. Biol., 2004, 18(2), 149-154.
[http://dx.doi.org/10.1016/j.jtemb.2004.07.002] [PMID: 15646261]
[48]
Kleber, C.J.; Putt, M.S. Investigation of the effects of aluminum mouthrinses on rat dental caries and plaque. Caries Res., 1995, 29(3), 237-242.
[http://dx.doi.org/10.1159/000262075] [PMID: 7621501]
[49]
Arora, M.; Weuve, J.; Schwartz, J.; Wright, R.O. Association of environmental cadmium exposure with pediatric dental caries. Environ. Health Perspect., 2008, 116(6), 821-825.
[http://dx.doi.org/10.1289/ehp.10947] [PMID: 18560540]
[50]
Gierat-Kucharzewska, B.; Karasiñski, A. Influence of chosen elements on the dynamics of the cariogenic process. Biol. Trace Elem. Res., 2006, 111(1-3), 53-62.
[http://dx.doi.org/10.1385/BTER:111:1:53] [PMID: 16943597]
[51]
Malara, P.; Kwapulinski, J.; Malara, B. Do the levels of selected metals differ significantly between the roots of carious and non-carious teeth? Sci. Total Environ., 2006, 369(1-3), 59-68.
[http://dx.doi.org/10.1016/j.scitotenv.2006.04.016] [PMID: 16750558]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy