Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Molecular Docking, Multicomponent One-pot Synthesis of Pyrimidine Derivatives as Anti-mycobacterial Agents

Author(s): Krishna Chandra Panda*, B.V.V. Ravi Kumar, Biswa Mohan Sahoo, Balakumar Chandrasekaran and Parijat Swain

Volume 21, Issue 4, 2023

Published on: 05 June, 2023

Article ID: e300323215184 Pages: 7

DOI: 10.2174/2211352521666230330094431

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Molecular docking study is used significantly in the drug discovery process for predicting the interaction between drug and receptor. This technique has been used commonly to identify the binding affinity and orientation of drug molecules at the binding site of the target. The main objectives of docking studies include accurate modeling of molecular structure and precise prediction of the biological activity of the drug molecules.

Methods: Based on this concept, a series of 2-amino-6-(substituted phenyl)-4-oxo-4,5- dihydropyrimidine-5-carbonitrile derivatives have been designed and synthesized via multicomponent reaction. The synthetic protocol involves the one-pot, three-component reaction between equimolar quantities of substituted benzaldehydes, ethyl cyanoacetate, and guanidine in an ethanolic sodium hydroxide solution.

Results: The characterization of the titled compounds was carried out by assessing infrared spectroscopy (IR), proton nuclear magnetic resonance (1H-NMR), and mass spectrometry (MS) data. The synthesized compounds were screened for their in vitro anti-mycobacterial activity by using the luciferase reporter phage (LRP) assay method.

Conclusion: The determination of anti-mycobacterial activity was carried out in terms of the percent reduction in the relative light unit (RLU). The test compounds displayed significant activity against Mycobacterium strain H37Rv in comparison to isoniazid as a standard drug.

Keywords: Molecular docking, synthesis, pyrimidine, anti-mycobacterial, luciferase, isoniazid.

Graphical Abstract
[1]
Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.
[http://dx.doi.org/10.1007/978-1-59745-177-2_19] [PMID: 18446297]
[2]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[3]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[4]
Brooijmans, N.; Kuntz, I.D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., 2003, 32(1), 335-373.
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.142532] [PMID: 12574069]
[5]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[6]
Haji, M. Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates. Beilstein J. Org. Chem., 2016, 12, 1269-1301.
[http://dx.doi.org/10.3762/bjoc.12.121] [PMID: 27559377]
[7]
Dansena, H.; Dhongade, H.J.; Chandrakar, K. Pharmacological potentials of pyrimidine derivative: A review. Asian J. Pharm. Clin. Res., 2015, 8(4), 171-177.
[8]
Jainey, P.J.; Bhat, K.I. Synthesis of thiophen-2-yl pyrimidines as an antitumor, analgesic, and anti-inflammatory agent. Ind. J. Het. Chem, 2011, 20, 309-312.
[9]
Gupta, J.K.; Chaudhary, A.; Dudhe, R.; Varuna, K.A. Review on the synthesis and therapeutic potential of Pyrimidine derivatives. Int. J. Pharm. Sci. Res., 2010, 1(5), 34-49.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.1(5).34-49]
[10]
Morgan, J.; Haritakul, R.; Keller, P.A. Anilinopyrimidines as novel antituberculosis agents. Bioorg. Med. Chem. Lett., 2003, 13(10), 1755-1757.
[http://dx.doi.org/10.1016/S0960-894X(03)00241-5] [PMID: 12729658]
[11]
Queval, C.J.; Brosch, R.; Simeone, R. Mycobacterium tuberculosis. Front. Microbiol., 2017, 8, 2284.
[http://dx.doi.org/10.3389/fmicb.2017.02284] [PMID: 29218036]
[12]
Faldu, V.J.; Gothalia, V.K.; Shah, V.H. Characterization and antitubercular activity of synthesized pyrimidine derivatives via chalcones. Indian J. Chem., 2015, 54B(03), 391-398.
[13]
Mahfoudh, M.; Abderrahim, R.; Leclerc, E.; Campagne, J.M. Recent approaches to the synthesis of pyrimidine derivatives. Eur. J. Org. Chem., 2017, 2017(20), 2856-2865.
[http://dx.doi.org/10.1002/ejoc.201700008]
[14]
Anbarasu, S.; Revathy, K.; Radhakrishnan, M.; Krupakar, P.; Joseph, J.; Kumar, V. Luciferase reporter phage (LRP) assay for anti-tuberculosis screening: Current status and challenges. Biosc. Biosci. Biotechnol. Res. Commun., 2020, 13(3), 1236-1244.
[http://dx.doi.org/10.21786/bbrc/13.3/39]
[15]
Sándor, M.; Kiss, R.; Keserű, G.M. Virtual fragment docking by Glide: A validation study on 190 protein-fragment complexes. J. Chem. Inf. Model., 2010, 50(6), 1165-1172.
[http://dx.doi.org/10.1021/ci1000407] [PMID: 20459088]
[16]
Banaiee, N.; Bobadilla-del-Valle, M.; Bardarov, S., Jr; Riska, P.F.; Small, P.M.; Ponce-de-Leon, A.; Jacobs, W.R., Jr; Hatfull, G.F.; Sifuentes-Osornio, J. Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J. Clin. Microbiol., 2001, 39(11), 3883-3888.
[http://dx.doi.org/10.1128/JCM.39.11.3883-3888.2001] [PMID: 11682502]
[17]
Hazbón, M.H.; Guarín, N.; Ferro, B.E.; Rodríguez, A.L.; Labrada, L.A.; Tovar, R.; Riska, P.F.; Jacobs, W.R., Jr Photographic and luminometric detection of luciferase reporter phages for drug susceptibility testing of clinical Mycobacterium tuberculosis isolates. J. Clin. Microbiol., 2003, 41(10), 4865-4869.
[http://dx.doi.org/10.1128/JCM.41.10.4865-4869.2003] [PMID: 14532245]
[18]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur. J. Med. Chem., 2010, 45(11), 5056-5063.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.014] [PMID: 20805011]
[19]
Sahu, M.; Siddiqui, N. A Review on biological importance of pyrimidines in the new era. Int. J. Pharma Sci., 2016, 8(5), 8-21.
[20]
Xu, L.; Zhang, Y.; Dai, W.; Wang, Y.; Jiang, D.; Wang, L.; Xiao, J.; Yang, X.; Li, S. Design, synthesis and SAR study of novel trisubstituted pyrimidine amide derivatives as CCR4 antagonists. Molecules, 2014, 19(3), 3539-3551.
[http://dx.doi.org/10.3390/molecules19033539] [PMID: 24662072]
[21]
Panda, K.C.; Ravi Kumar, B.V.V.; Sahoo, B.M.; Banik, B.K.; Tiwari, A. Microwave irradiated eco-friendly synthesis of pyrimidine derivatives as potential anti-tubercular agents. Asian J. Chem., 2022, 34(4), 907-911.
[http://dx.doi.org/10.14233/ajchem.2022.23644]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy