Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

LINC00839, LINC01671, AC093673 and AC008760 are Associated with the Prognosis and Immune Infiltration of Clear-cell Renal Cell Carcinoma

Author(s): Xun-Da Ye, Zhang-Xiong Huang, Yu-Wei Song, San-Huang Xu, Bao-Chang Su* and Sheng-Fu Yang*

Volume 20, Issue 1, 2023

Published on: 11 April, 2023

Page: [39 - 50] Pages: 12

DOI: 10.2174/1570164620666230328120621

Price: $65

Abstract

Background: Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer, and it is a significant global health problem causing significant morbidity and mortality. Long noncoding RNAs (lncRNAs) have been identified as a class of gene expression regulators that play a critical role in the immune system. However, the function of lncRNAs in the immune microenvironment of ccRCC remains unclear.

Methods: The least absolute shrinkage and selection operator regression techniques, robust likelihoodbased survival modeling, and Cox regression analysis were used to identify potential prognostic lncRNAs. The relationship between the signature and the tumor's immune infiltration was analyzed using gene set enrichment analysis and the subset analysis of immune cells.

Results: LINC00839, LINC01671, AC093673, and AC008760 were selected to create a risk signature. For 3-, 5-, and 8-year overall survival rates, the areas under the receiver operating characteristic curves of the risk signature set were 0.689, 0.721, and 0.719 in the training set and 0.683, 0.686, and 0.665 in the validation set, respectively. A model and nomogram were constructed using the risk signature and clinical characteristics. The C-index of the model was 0.78 in the training set and 0.773 in the validation set.

Conclusion: The risk signature reflects the tumor's current immune infiltration and is associated with regulatory T cell differentiation, interleukin 17 production regulation, negative regulation of inflammatory response to an antigenic stimulus, and the IL6-JAK-STAT3 signaling pathway. This study provides prognostic information for ccRCC patients and may also serve as a useful clue for future immunotherapies.

Keywords: LncRNA, ccRCC, immune infiltration, prognostic model, kidney, cancer, antigenic stimulus.

Graphical Abstract
[1]
Zhao, Y.; Chen, H.; Xie, Y.; Zhang, C.; Hou, Y.; Jin, M. Clinicopathologic features and prognostic factors in patients with renal cell carcinoma with sarcomatoid differentiation. Acta Pathol. Microbiol. Scand. Suppl., 2020, 128(5), 378-386.
[http://dx.doi.org/10.1111/apm.13035] [PMID: 32048364]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal cell carcinoma. Nat. Rev. Dis. Primers, 2017, 3(1), 17009.
[http://dx.doi.org/10.1038/nrdp.2017.9] [PMID: 28276433]
[4]
Gupta, K.; Miller, J.D.; Li, J.Z.; Russell, M.W.; Charbonneau, C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): A literature review. Cancer Treat. Rev., 2008, 34(3), 193-205.
[http://dx.doi.org/10.1016/j.ctrv.2007.12.001] [PMID: 18313224]
[5]
Seethapathy, H.; Zhao, S.; Chute, D.F.; Zubiri, L.; Oppong, Y.; Strohbehn, I.; Cortazar, F.B.; Leaf, D.E.; Mooradian, M.J.; Villani, A.C.; Sullivan, R.J.; Reynolds, K.; Sise, M.E. The incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors. Clin. J. Am. Soc. Nephrol., 2019, 14(12), 1692-1700.
[http://dx.doi.org/10.2215/CJN.00990119] [PMID: 31672794]
[6]
Thin, K.Z.; Liu, X.; Feng, X.; Raveendran, S.; Tu, J.C. LncRNA-DANCR: A valuable cancer related long non-coding RNA for human cancers. Pathol. Res. Pract., 2018, 214(6), 801-805.
[http://dx.doi.org/10.1016/j.prp.2018.04.003] [PMID: 29728310]
[7]
Guttman, M.; Rinn, J.L. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482(7385), 339-346.
[http://dx.doi.org/10.1038/nature10887] [PMID: 22337053]
[8]
Gutschner, T.; Diederichs, S. The hallmarks of cancer. RNA Biol., 2012, 9(6), 703-719.
[http://dx.doi.org/10.4161/rna.20481] [PMID: 22664915]
[9]
Atianand, M.K.; Fitzgerald, K.A. Long non-coding RNAs and control of gene expression in the immune system. Trends Mol. Med., 2014, 20(11), 623-631.
[http://dx.doi.org/10.1016/j.molmed.2014.09.002] [PMID: 25262537]
[10]
Chen, Y.G.; Satpathy, A.T.; Chang, H.Y. Gene regulation in the immune system by long noncoding RNAs. Nat. Immunol., 2017, 18(9), 962-972.
[http://dx.doi.org/10.1038/ni.3771] [PMID: 28829444]
[11]
Pei, X.; Wang, X.; Li, H. LncRNA SNHG1 regulates the differentiation of Treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO. Int. J. Biol. Macromol., 2018, 118(Pt A), 24-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.033] [PMID: 29886172]
[12]
Huang, D.; Chen, J.; Yang, L.; Ouyang, Q.; Li, J.; Lao, L.; Zhao, J.; Liu, J.; Lu, Y.; Xing, Y.; Chen, F.; Su, F.; Yao, H.; Liu, Q.; Su, S.; Song, E. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat. Immunol., 2018, 19(10), 1112-1125.
[http://dx.doi.org/10.1038/s41590-018-0207-y] [PMID: 30224822]
[13]
Yang, J.; Li, Y.; Liu, Q.; Li, L.; Feng, A.; Wang, T.; Zheng, S.; Xu, A.; Lyu, J. Brief introduction of medical database and data mining technology in big data era. J. Evid. Based Med., 2020, 13(1), 57-69.
[http://dx.doi.org/10.1111/jebm.12373] [PMID: 32086994]
[14]
Şenbabaoğlu, Y.; Gejman, R.S.; Winer, A.G.; Liu, M.; Van Allen, E.M.; de Velasco, G.; Miao, D.; Ostrovnaya, I.; Drill, E.; Luna, A.; Weinhold, N.; Lee, W.; Manley, B.J.; Khalil, D.N.; Kaffenberger, S.D.; Chen, Y.; Danilova, L.; Voss, M.H.; Coleman, J.A.; Russo, P.; Reuter, V.E.; Chan, T.A.; Cheng, E.H.; Scheinberg, D.A.; Li, M.O.; Choueiri, T.K.; Hsieh, J.J.; Sander, C.; Hakimi, A.A. Tumor immune microenvironment characterization in clear cell renal cellcarcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol., 2016, 17(1), 231.
[http://dx.doi.org/10.1186/s13059-016-1092-z] [PMID: 27855702]
[15]
Ellinger, J.; Alam, J.; Rothenburg, J.; Deng, M.; Schmidt, D.; Syring, I.; Miersch, H.; Perner, S.; Müller, S.C. The long non-coding RNA lnc-ZNF180-2 is a prognostic biomarker in patients with clear cell renal cell carcinoma. Am. J. Cancer Res., 2015, 5(9), 2799-2807.
[PMID: 26609485]
[16]
Li, Y.; Jiang, T.; Zhou, W.; Li, J.; Li, X.; Wang, Q.; Jin, X.; Yin, J.; Chen, L.; Zhang, Y.; Xu, J.; Li, X. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat. Commun., 2020, 11(1), 1000.
[http://dx.doi.org/10.1038/s41467-020-14802-2] [PMID: 32081859]
[17]
Renaud, G.; Stenzel, U.; Maricic, T.; Wiebe, V.; Kelso, J. deML: robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics, 2015, 31(5), 770-772.
[http://dx.doi.org/10.1093/bioinformatics/btu719] [PMID: 25359895]
[18]
Cho, H.; Kim, S.; Eo, S-H.; Kang, J. How to use the rbsurv Package. R-Forge. 2010. Available from: http://www R-project.org
[19]
Xie, J.; Liu, C. Adjusted Kaplan–Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Stat. Med., 2005, 24(20), 3089-3110.
[http://dx.doi.org/10.1002/sim.2174] [PMID: 16189810]
[20]
Kishore, J.; Goel, M.K.; Khanna, P. Understanding survival analysis: Kaplan-Meier estimate. Int. J. Ayurveda Res., 2010, 1(4), 274-278.
[http://dx.doi.org/10.4103/0974-7788.76794] [PMID: 21455458]
[21]
Kamarudin, A.N.; Cox, T.; Kolamunnage-Dona, R. Time-dependent ROC curve analysis in medical research: Current methods and applications. BMC Med. Res. Methodol., 2017, 17(1), 53.
[http://dx.doi.org/10.1186/s12874-017-0332-6] [PMID: 28388943]
[22]
Wang, Y.; Li, J.; Xia, Y.; Gong, R.; Wang, K.; Yan, Z.; Wan, X.; Liu, G.; Wu, D.; Shi, L.; Lau, W.; Wu, M.; Shen, F. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J. Clin. Oncol., 2013, 31(9), 1188-1195.
[http://dx.doi.org/10.1200/JCO.2012.41.5984] [PMID: 23358969]
[23]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[24]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[25]
Pan, Q.; Wang, L.; Chai, S.; Zhang, H.; Li, B. The immune infiltration in clear cell Renal Cell Carcinoma and their clinical implications: A study based on TCGA and GEO databases. J. Cancer, 2020, 11(11), 3207-3215.
[http://dx.doi.org/10.7150/jca.37285] [PMID: 32231726]
[26]
MacLennan, S.; Imamura, M.; Lapitan, M.C.; Omar, M.I.; Lam, T.B.L.; Hilvano-Cabungcal, A.M.; Royle, P.; Stewart, F.; MacLennan, G.; MacLennan, S.J.; Dahm, P.; Canfield, S.E.; McClinton, S.; Griffiths, T.R.L.; Ljungberg, B.; N’Dow, J. Systematic review of perioperative and quality-of-life outcomes following surgical management of localised renal cancer. Eur. Urol., 2012, 62(6), 1097-1117.
[http://dx.doi.org/10.1016/j.eururo.2012.07.028] [PMID: 22841673]
[27]
Clark, D.J.; Dhanasekaran, S.M.; Petralia, F.; Pan, J.; Song, X.; Hu, Y.; da Veiga Leprevost, F.; Reva, B.; Lih, T.S.M.; Chang, H.Y.; Ma, W.; Huang, C.; Ricketts, C.J.; Chen, L.; Krek, A.; Li, Y.; Rykunov, D.; Li, Q.K.; Chen, L.S.; Ozbek, U.; Vasaikar, S.; Wu, Y.; Yoo, S.; Chowdhury, S.; Wyczalkowski, M.A.; Ji, J.; Schnaubelt, M.; Kong, A.; Sethuraman, S.; Avtonomov, D.M.; Ao, M.; Colaprico, A.; Cao, S.; Cho, K.C.; Kalayci, S.; Ma, S.; Liu, W.; Ruggles, K.; Calinawan, A. Gümüş Z.H.; Geiszler, D.; Kawaler, E.; Teo, G.C.; Wen, B.; Zhang, Y.; Keegan, S.; Li, K.; Chen, F.; Edwards, N.; Pierorazio, P.M.; Chen, X.S.; Pavlovich, C.P.; Hakimi, A.A.; Brominski, G.; Hsieh, J.J.; Antczak, A.; Omelchenko, T.; Lubinski, J.; Wiznerowicz, M.; Linehan, W.M.; Kinsinger, C.R.; Thiagarajan, M.; Boja, E.S.; Mesri, M.; Hiltke, T.; Robles, A.I.; Rodriguez, H.; Qian, J.; Fenyö, D.; Zhang, B.; Ding, L.; Schadt, E.; Chinnaiyan, A.M.; Zhang, Z.; Omenn, G.S.; Cieslik, M.; Chan, D.W.; Nesvizhskii, A.I.; Wang, P.; Zhang, H.; Hashimi, A.S.; Pico, A.R.; Karpova, A.; Charamut, A.; Paulovich, A.G.; Perou, A.M.; Malovannaya, A.; Marrero-Oliveras, A.; Agarwal, A.; Hindenach, B.; Pruetz, B.; Kim, B-J.; Druker, B.J.; Newton, C.J.; Birger, C.; Jones, C.D.; Tognon, C.; Mani, D.R.; Valley, D.R.; Rohrer, D.C.; Zhou, D.C.; Tansil, D.; Chesla, D.; Heiman, D.; Wheeler, D.; Tan, D.; Chan, D.; Demir, E.; Malc, E.; Modugno, F.; Getz, G.; Hostetter, G.; Wilson, G.D.; Hart, G.W.; Zhu, H.; Liu, H.; Culpepper, H.; Sun, H.; Zhou, H.; Day, J.; Suh, J.; Huang, J.; McDermott, J.; Whiteaker, J.R.; Tyner, J.W.; Eschbacher, J.; Chen, J.; McGee, J.; Zhu, J.; Ketchum, K.A.; Rodland, K.D.; Clauser, K.; Robinson, K.; Krug, K.; Hoadley, K.A.; Um, K.S.; Elburn, K.; Holloway, K.; Wang, L-B.; Blumenberg, L.; Hannick, L.; Qi, L.; Sokoll, L.J.; Cornwell, M.I.; Loriaux, M.; Domagalski, M.J.; Gritsenko, M.A.; Anderson, M.; Monroe, M.E.; Ellis, M.J.; Dyer, M.; Anurag, M.; Burke, M.C.; Borucki, M.; Gillette, M.A.; Birrer, M.J.; Lewis, M.; Ittmann, M.M.; Smith, M.; Vernon, M.; Chaikin, M.; Chheda, M.G.; Khan, M.; Roche, N.; Edwards, N.J.; Vatanian, N.; Tignor, N.; Beckmann, N.; Grady, P.; Castro, P.; Piehowski, P.; McGarvey, P.B.; Mieczkowski, P.; Hariharan, P.; Gao, Q.; Dhir, R.; Kothadia, R.B.; Thangudu, R.R.; Montgomery, R.; Jayasinghe, R.G.; Smith, R.D.; Edwards, R.; Zelt, R.; Bremner, R.; Liu, R.; Hong, R.; Mareedu, S.; Payne, S.H.; Cottingham, S.; Markey, S.P.; Jewell, S.D.; Patel, S.; Satpathy, S.; Richey, S.; Davies, S.R.; Cai, S.; Boca, S.M.; Patil, S.; Sengupta, S.; Carter, S.; Gabriel, S.; Thomas, S.N.; De Young, S.; Stein, S.E.; Carr, S.A.; Foltz, S.M.; Hilsenbeck, S.; Krubit, T.; Liu, T.; Skelly, T.; Westbrook, T.; Borate, U.; Velvulou, U.; Petyuk, V.A.; Bocik, W.E.; Chen, X.; Shi, Y.; Geffen, Y.; Lu, Y.; Wang, Y.; Maruvka, Y.; Li, Z.; Shi, Z.; Tu, Z. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell, 2019, 179(4), 964-983.e31.
[http://dx.doi.org/10.1016/j.cell.2019.10.007] [PMID: 31675502]
[28]
Palomero, L.; Bodnar, L.; Mateo, F.; Herranz-Ors, C.; Espín, R.; García-Varelo, M.; Jesiotr, M.; Ruiz de Garibay, G.; Casanovas, O.; López, J.I.; Pujana, M.A. EVI1 as a prognostic and predictive biomarker of clear cell renal cell carcinoma. Cancers, 2020, 12(2), 300.
[http://dx.doi.org/10.3390/cancers12020300] [PMID: 32012804]
[29]
Takagi, T.; Yoshida, K.; Wada, A.; Kondo, T.; Fukuda, H.; Ishihara, H.; Kobayashi, H.; Iizuka, J.; Okumi, M.; Ishida, H.; Nagashima, Y.; Tanabe, K. Predictive factors for recurrence after partial nephrectomy for clinical T1 renal cell carcinoma: A retrospective study of 1227 cases from a single institution. Int. J. Clin. Oncol., 2020, 25(5), 892-898.
[http://dx.doi.org/10.1007/s10147-020-01632-x] [PMID: 32048086]
[30]
Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers, 2014, 6(3), 1670-1690.
[http://dx.doi.org/10.3390/cancers6031670] [PMID: 25125485]
[31]
Laviron, M.; Boissonnas, A. Ontogeny of tumor-associated macrophages. Front. Immunol., 2019, 10, 1799.
[http://dx.doi.org/10.3389/fimmu.2019.01799] [PMID: 31417566]
[32]
Cózar, B.; Greppi, M.; Carpentier, S.; Narni-Mancinelli, E.; Chiossone, L.; Vivier, E. Tumor-infiltrating natural killer cells. Cancer Discov., 2021, 11(1), 34-44.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0655] [PMID: 33277307]
[33]
Rey-Giraud, F.; Hafner, M.; Ries, C.H. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One, 2012, 7(8)e42656
[http://dx.doi.org/10.1371/journal.pone.0042656] [PMID: 22880072]
[34]
Zhang, Y.; Guo, H.; Ma, L.; Chen, X.; Chen, G. Long noncoding RNA LINC00839 promotes the malignant progression of osteosarcoma by competitively binding to MicroRNA-454-3p and consequently increasing c-Met expression. Cancer Manag. Res., 2020, 12, 8975-8987.
[http://dx.doi.org/10.2147/CMAR.S269774] [PMID: 33061593]
[35]
Geng, W.; Lv, Z.; Fan, J.; Xu, J.; Mao, K.; Yin, Z.; Qing, W.; Jin, Y. Identification of the prognostic significance of somatic mutation-derived lncrna signatures of genomic instability in lung adenocarcinoma. Front. Cell Dev. Biol., 2021, 9657667
[http://dx.doi.org/10.3389/fcell.2021.657667] [PMID: 33855028]
[36]
Xu, J.; Hu, J.; Xu, H.; Zhou, H.; Liu, Z.; Zhou, Y.; Liu, R.; Zhang, W. Long non-coding RNA expression profiling in biopsy to identify renal allograft at risk of chronic damage and future graft loss. Appl. Biochem. Biotechnol., 2020, 190(2), 660-673.
[http://dx.doi.org/10.1007/s12010-019-03082-2] [PMID: 31422559]
[37]
Li, C.; Jiang, P.; Wei, S.; Xu, X.; Wang, J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer, 2020, 19(1), 1-23.
[http://dx.doi.org/10.1186/s12943-019-1085-0] [PMID: 31901224]
[38]
Maj, T.; Wang, W.; Crespo, J.; Zhang, H.; Wang, W.; Wei, S.; Zhao, L.; Vatan, L.; Shao, I.; Szeliga, W.; Lyssiotis, C.; Liu, J.R.; Kryczek, I.; Zou, W. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol., 2017, 18(12), 1332-1341.
[http://dx.doi.org/10.1038/ni.3868] [PMID: 29083399]
[39]
Zhang, X.; Weng, W.; Xu, W.; Wang, Y.; Yu, W.; Tang, X.; Ma, L.; Pan, Q.; Wang, J.; Sun, F. Prognostic significance of interleukin 17 in cancer: A meta-analysis. Int. J. Clin. Exp. Med., 2014, 7(10), 3258-3269.
[PMID: 25419357]
[40]
Vitiello, G.A.; Miller, G. Targeting the interleukin-17 immune axis for cancer immunotherapy. J. Exp. Med., 2020, 217(1)e20190456
[http://dx.doi.org/10.1084/jem.20190456] [PMID: 31727783]
[41]
Zhao, J.; Chen, X.; Herjan, T.; Li, X. The role of interleukin-17 in tumor development and progression. J. Exp. Med., 2020, 217(1)e20190297
[http://dx.doi.org/10.1084/jem.20190297] [PMID: 31727782]
[42]
Yao, Y.; Ye, H.; Qi, Z.; Mo, L.; Yue, Q.; Baral, A.; Hoon, D.S.B.; Vera, J.C.; Heiss, J.D.; Chen, C.C.; Hua, W.; Zhang, J.; Jin, K.; Wang, Y.; Zang, X.; Mao, Y.; Zhou, L. B7-H4 (B7x)–Mediated Cross-talk between glioma-initiating cells and macrophages via the IL6/JAK/STAT3 pathway lead to poor prognosis in glioma patients. Clin. Cancer Res., 2016, 22(11), 2778-2790.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0858] [PMID: 27001312]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy