Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Emerging Promise of Therapeutic Approaches Targeting Mitochondria in Neurodegenerative Disorders

Author(s): Md. Mominur Rahman, Mst. Afroza Alam Tumpa, Md. Saidur Rahaman, Fahadul Islam, Popy Rani Sutradhar, Muniruddin Ahmed, Badrah S. Alghamdi, Abdul Hafeez, Athanasios Alexiou*, Asma Perveen and Ghulam Md. Ashraf*

Volume 21, Issue 5, 2023

Published on: 16 March, 2023

Page: [1081 - 1099] Pages: 19

DOI: 10.2174/1570159X21666230316150559

Price: $65

Abstract

Mitochondria are critical for homeostasis and metabolism in all cellular eukaryotes. Brain mitochondria are the primary source of fuel that supports many brain functions, including intracellular energy supply, cellular calcium regulation, regulation of limited cellular oxidative capacity, and control of cell death. Much evidence suggests that mitochondria play a central role in neurodegenerative disorders (NDDs) such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Ongoing studies of NDDs have revealed that mitochondrial pathology is mainly found in inherited or irregular NDDs and is thought to be associated with the pathophysiological cycle of these disorders. Typical mitochondrial disturbances in NDDs include increased free radical production, decreased ATP synthesis, alterations in mitochondrial permeability, and mitochondrial DNA damage. The main objective of this review is to highlight the basic mitochondrial problems that occur in NDDs and discuss the use mitochondrial drugs, especially mitochondrial antioxidants, mitochondrial permeability transition blockade, and mitochondrial gene therapy, for the treatment and control of NDDs.

Keywords: Mitochondria, neurodegenerative disorders, Parkinson’s disease, Alzheimer’s disease, antioxidants, gene therapy.

Graphical Abstract
[1]
Daniels, T.E.; Olsen, E.M.; Tyrka, A.R. Stress and psychiatric disorders: The role of mitochondria. Annu. Rev. Clin. Psychol., 2020, 16(1), 165-186.
[http://dx.doi.org/10.1146/annurev-clinpsy-082719-104030] [PMID: 32092280]
[2]
Milane, L.; Trivedi, M.; Singh, A.; Talekar, M.; Amiji, M. Mitochondrial biology, targets, and drug delivery. J. Control. Release, 2015, 207, 40-58.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.036] [PMID: 25841699]
[3]
Siekevitz, P. Powerhouse of the cell. Sci. Am., 1957, 197(1), 131-144.
[4]
Johns, D.R. Seminars in medicine of the Beth Israel Hospital, Boston. Mitochondrial DNA and disease. N. Engl. J. Med., 1995, 333(10), 638-644.
[http://dx.doi.org/10.1056/NEJM199509073331007] [PMID: 7637726]
[5]
Picard, M.; McEwen, B.S. Psychological stress and mitochondria: a systematic review. Psychosom. Med., 2018, 80(2), 141-153.
[http://dx.doi.org/10.1097/PSY.0000000000000545] [PMID: 29389736]
[6]
Thompson, K.; Collier, J.J.; Glasgow, R.I.C.; Robertson, F.M.; Pyle, A.; Blakely, E.L.; Alston, C.L.; Oláhová, M.; McFarland, R.; Taylor, R.W. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J. Inherit. Metab. Dis., 2020, 43(1), 36-50.
[http://dx.doi.org/10.1002/jimd.12104] [PMID: 31021000]
[7]
Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers, 2016, 2(1), 16080.
[http://dx.doi.org/10.1038/nrdp.2016.80] [PMID: 27775730]
[8]
Swerdlow, R. Mitochondrial medicine and the neurodegenerative mitochondriopathies. Pharmaceuticals (Basel), 2009, 2(3), 150-167.
[http://dx.doi.org/10.3390/ph2030150] [PMID: 21814473]
[9]
Swerdlow, R.H. Treating neurodegeneration by modifying mitochondria: potential solutions to a “complex” problem. Antioxid. Redox Signal., 2007, 9(10), 1591-1604.
[http://dx.doi.org/10.1089/ars.2007.1676] [PMID: 17663643]
[10]
Swerdlow, R.H. The neurodegenerative mitochondriopathies. J. Alzheimers Dis., 2009, 17(4), 737-751.
[http://dx.doi.org/10.3233/JAD-2009-1095] [PMID: 19542616]
[11]
Rahman, M.M.; Ferdous, K.S.; Ahmed, M.; Islam, M.T.; Khan, M. Perveen, A Hutchinson-Gilford progeria syndrome: an overview of the molecular mechanism, pathophysiology and therapeutic approach. Curr. Gene Ther., 2021, 21(3), 216-229.
[12]
Du, H.; Yan, S.S. Mitochondrial medicine for neurodegenerative diseases. Int. J. Biochem. Cell Biol., 2010, 42(5), 560-572.
[http://dx.doi.org/10.1016/j.biocel.2010.01.004] [PMID: 20067840]
[13]
Banerjee, R.; Starkov, A.A.; Beal, M.F.; Thomas, B. Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim. Biophys. Acta Mol. Basis Dis., 2009, 1792(7), 651-663.
[http://dx.doi.org/10.1016/j.bbadis.2008.11.007] [PMID: 19059336]
[14]
Rahman, M.; Islam, F.; Afsana Mim, S.; Khan, M.; Islam, M.; Haque, M. Multifunctional therapeutic approach of nanomedicines against inflammation in cancer and aging. J. Nanomater., 2022, 2022(4217529), 1-19.
[http://dx.doi.org/10.1155/2022/4217529]
[15]
Shults, C.W.; Oakes, D.; Kieburtz, K.; Beal, M.F.; Haas, R.; Plumb, S.; Juncos, J.L.; Nutt, J.; Shoulson, I.; Carter, J.; Kompoliti, K.; Perlmutter, J.S.; Reich, S.; Stern, M.; Watts, R.L.; Kurlan, R.; Molho, E.; Harrison, M.; Lew, M. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch. Neurol., 2002, 59(10), 1541-1550.
[http://dx.doi.org/10.1001/archneur.59.10.1541] [PMID: 12374491]
[16]
Rahman, M.M.; Islam, M.R.; Akash, S.; Harun-Or-Rashid, M.; Ray, T.K.; Rahaman, M.S. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: at a glance. 2022, 153, 113305.
[17]
Rahman, M.; Behl, T.; Islam, M.; Alam, M.; Albarrati, A.; Albratty, M. Emerging Management Approach for the Adverse Events of Immunotherapy of Cancer. Moleculars, 2022, 27(12), 3798.
[18]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[19]
Glancy, B.; Kim, Y.; Katti, P.; Willingham, T.B. The functional impact of mitochondrial structure across subcellular scales. Front. Physiol., 2020, 11, 541040.
[http://dx.doi.org/10.3389/fphys.2020.541040] [PMID: 33262702]
[20]
Cavalier-Smith, T. Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc. Biol. Sci., 2006, 273(1596), 1943-1952.
[http://dx.doi.org/10.1098/rspb.2006.3531] [PMID: 16822756]
[21]
Gustafsson, C.M.; Falkenberg, M.; Larsson, N.G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem., 2016, 85(1), 133-160.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014402] [PMID: 27023847]
[22]
Reddy, P.H. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromol. Med., 2008, 10(4), 291-315.
[http://dx.doi.org/10.1007/s12017-008-8044-z] [PMID: 18566920]
[23]
Kühlbrandt, W. Structure and function of mitochondrial membrane protein complexes. BMC Biol., 2015, 13(1), 89.
[http://dx.doi.org/10.1186/s12915-015-0201-x] [PMID: 26515107]
[24]
Protasoni, M.; Zeviani, M. Mitochondrial structure and bioenergetics in normal and disease conditions. Int. J. Mol. Sci., 2021, 22(2), 586.
[http://dx.doi.org/10.3390/ijms22020586] [PMID: 33435522]
[25]
De Stefani, D.; Raffaello, A.; Teardo, E.; Szabò, I.; Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature, 2011, 476(7360), 336-340.
[http://dx.doi.org/10.1038/nature10230] [PMID: 21685888]
[26]
Cogliati, S.; Calvo, E.; Loureiro, M.; Guaras, A.M.; Nieto-Arellano, R.; Garcia-Poyatos, C.; Ezkurdia, I.; Mercader, N.; Vázquez, J.; Enriquez, J.A. Mechanism of super-assembly of respiratory complexes III and IV. Nature, 2016, 539(7630), 579-582.
[http://dx.doi.org/10.1038/nature20157] [PMID: 27775717]
[27]
Eckert, A.; Schulz, K.L.; Rhein, V.; Götz, J. Convergence of amyloid-β and tau pathologies on mitochondria in vivo. Mol. Neurobiol., 2010, 41(2-3), 107-114.
[http://dx.doi.org/10.1007/s12035-010-8109-5] [PMID: 20217279]
[28]
Martijn, J.; Vosseberg, J.; Guy, L.; Offre, P.; Ettema, T.J.G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature, 2018, 557(7703), 101-105.
[http://dx.doi.org/10.1038/s41586-018-0059-5] [PMID: 29695865]
[29]
Reddy, P.H. Mitochondrial dysfunction in aging and Alzheimer’s disease: strategies to protect neurons. Antioxid. Redox Signal., 2007, 9(10), 1647-1658.
[http://dx.doi.org/10.1089/ars.2007.1754] [PMID: 17696767]
[30]
Chang, D.T.W.; Reynolds, I.J. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog. Neurobiol., 2006, 80(5), 241-268.
[http://dx.doi.org/10.1016/j.pneurobio.2006.09.003] [PMID: 17188795]
[31]
Christian, B.E.; Spremulli, L.L. Mechanism of protein biosynthesis in mammalian mitochondria. Biochimica et Biophysica Acta (BBA)-. Gene Regulatory Mechanisms., 2012, 1819(9-10), 1035-1054.
[32]
Wright, A.F.; Jacobson, S.G.; Cideciyan, A.V.; Roman, A.J.; Shu, X.; Vlachantoni, D.; McInnes, R.R.; Riemersma, R.A. Lifespan and mitochondrial control of neurodegeneration. Nat. Genet., 2004, 36(11), 1153-1158.
[http://dx.doi.org/10.1038/ng1448] [PMID: 15514669]
[33]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[34]
Wang, Y.; Xu, E.; Musich, P.R.; Lin, F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther., 2019, 25(7), 816-824.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[35]
Itoh, K.; Nakamura, K.; Iijima, M.; Sesaki, H. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol., 2013, 23(2), 64-71.
[http://dx.doi.org/10.1016/j.tcb.2012.10.006] [PMID: 23159640]
[36]
Youle, R.J.; van der Bliek, A.M. Mitochondrial fission, fusion, and stress. Science, 2012, 337(6098), 1062-1065.
[http://dx.doi.org/10.1126/science.1219855] [PMID: 22936770]
[37]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[38]
Joshi, A.U.; Mochly-Rosen, D. Mortal engines: Mitochondrial bioenergetics and dysfunction in neurodegenerative diseases. Pharmacol. Res., 2018, 138, 2-15.
[http://dx.doi.org/10.1016/j.phrs.2018.08.010] [PMID: 30144530]
[39]
Tilokani, L.; Nagashima, S.; Paupe, V.; Prudent, J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem., 2018, 62(3), 341-360.
[http://dx.doi.org/10.1042/EBC20170104] [PMID: 30030364]
[40]
Eisner, V.; Picard, M.; Hajnóczky, G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol., 2018, 20(7), 755-765.
[http://dx.doi.org/10.1038/s41556-018-0133-0] [PMID: 29950571]
[41]
Yan, X.; Wang, B.; Hu, Y.; Wang, S.; Zhang, X. Abnormal mitochondrial quality control in neurodegenerative diseases. Front. Cell. Neurosci., 2020, 14, 138.
[http://dx.doi.org/10.3389/fncel.2020.00138] [PMID: 32655368]
[42]
Onyango, I.; Bennett, J.; Stokin, G. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen. Res., 2021, 16(8), 1467-1482.
[http://dx.doi.org/10.4103/1673-5374.303007] [PMID: 33433460]
[43]
Madeira, V.M.C. Overview of mitochondrial bioenergetics. Methods Mol. Biol., 2018, 1782, 1-6.
[http://dx.doi.org/10.1007/978-1-4939-7831-1_1] [PMID: 29850991]
[44]
Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med., 2019, 44(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[45]
Midzak, A.S.; Chen, H.; Aon, M.A.; Papadopoulos, V.; Zirkin, B.R. ATP synthesis, mitochondrial function, and steroid biosynthesis in rodent primary and tumor Leydig cells. Biol. Reprod., 2011, 84(5), 976-985.
[http://dx.doi.org/10.1095/biolreprod.110.087460] [PMID: 21228212]
[46]
Zhu, T.; Chen, J.L.; Wang, Q.; Shao, W.; Qi, B. Modulation of mitochondrial dynamics in neurodegenerative diseases: an insight into prion diseases. Front. Aging Neurosci., 2018, 10, 336.
[http://dx.doi.org/10.3389/fnagi.2018.00336] [PMID: 30455640]
[47]
Zhao, H.; Li, R.; Wang, Q.; Yan, Q.; Deng, J.H.; Han, D.; Bai, Y.; Young, W.Y.; Guan, M.X. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am. J. Hum. Genet., 2004, 74(1), 139-152.
[http://dx.doi.org/10.1086/381133] [PMID: 14681830]
[48]
Reddy, P.H.; Beal, M.F. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med., 2008, 14(2), 45-53.
[http://dx.doi.org/10.1016/j.molmed.2007.12.002] [PMID: 18218341]
[49]
Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T. Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules, 2021, 27(1), 233.
[http://dx.doi.org/10.3390/molecules27010233]
[50]
Becker, H.S. How to find out how to do qualitative research. Int. J. Commun., 2009, 3, 9.
[51]
Liu, Y.; Schiff, M.; Dinesh-Kumar, S.P. Virus-induced gene silencing in tomato. Plant J., 2002, 31(6), 777-786.
[http://dx.doi.org/10.1046/j.1365-313X.2002.01394.x] [PMID: 12220268]
[52]
Chan, S.M.; Gu, P.L.; Chu, K.H.; Tobe, S.S. Crustacean neuropeptide genes of the CHH/MIH/GIH family: implications from molecular studies. Gen. Comp. Endocrinol., 2003, 134(3), 214-219.
[http://dx.doi.org/10.1016/S0016-6480(03)00263-6] [PMID: 14636627]
[53]
van Soolingen, D.; Qian, L.; de Haas, P.E.; Douglas, J.T.; Traore, H.; Portaels, F.; Qing, H.Z.; Enkhsaikan, D.; Nymadawa, P.; van Embden, J.D. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J. Clin. Microbiol., 1995, 33(12), 3234-3238.
[http://dx.doi.org/10.1128/jcm.33.12.3234-3238.1995] [PMID: 8586708]
[54]
Varghese, O.K.; Paulose, M.; LaTempa, T.J.; Grimes, C.A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett., 2009, 9(2), 731-737.
[http://dx.doi.org/10.1021/nl803258p] [PMID: 19173633]
[55]
Lorenzl, S.; Albers, D.S.; Narr, S.; Chirichigno, J.; Beal, M.F. Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp. Neurol., 2002, 178(1), 13-20.
[http://dx.doi.org/10.1006/exnr.2002.8019] [PMID: 12460604]
[56]
Pearlman, M.R.; Haas, Z.J.; Sholander, P.; Tabrizi, S.S. On the impact of alternate path routing for load balancing in mobile ad hoc networks. 2000 First Annual Workshop on Mobile and Ad Hoc Networking and Computing MobiHOC (Cat No 00EX444), 2000, p. IEEE.
[57]
Wiedmann, T. A review of recent multi-region input-output models used for consumption-based emission and resource accounting. Ecol. Econ., 2009, 69(2), 211-222.
[http://dx.doi.org/10.1016/j.ecolecon.2009.08.026]
[58]
Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M.; Thompson, R.C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). Environ. Sci. Technol., 2008, 42(13), 5026-5031.
[http://dx.doi.org/10.1021/es800249a] [PMID: 18678044]
[59]
Lowell, S.; Benchoua, A.; Heavey, B.; Smith, A.G. Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol., 2006, 4(5), e121.
[http://dx.doi.org/10.1371/journal.pbio.0040121] [PMID: 16594731]
[60]
Rahman, MM; Islam, MR; Islam, MT; Harun-Or-Rashid, M; Islam, M; Abdullah, S Stem cell transplantation therapy and neurological disorders: current status and future perspectives. 2022, 111, 147.
[http://dx.doi.org/10.3390/biology11010147]
[61]
Kim, C.; Hung, Y.C.; Brackett, R.E. Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int. J. Food Microbiol., 2000, 61(2-3), 199-207.
[http://dx.doi.org/10.1016/S0168-1605(00)00405-0] [PMID: 11078171]
[62]
Valla, J.; Schneider, L.; Niedzielko, T.; Coon, K.D.; Caselli, R.; Sabbagh, M.N.; Ahern, G.L.; Baxter, L.; Alexander, G.; Walker, D.G.; Reiman, E.M. Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion, 2006, 6(6), 323-330.
[http://dx.doi.org/10.1016/j.mito.2006.10.004] [PMID: 17123871]
[63]
Mutisya, E.M.; Bowling, A.C.; Beal, M.F. Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J. Neurochem., 1994, 63(6), 2179-2184.
[http://dx.doi.org/10.1046/j.1471-4159.1994.63062179.x] [PMID: 7964738]
[64]
Forastiere, A.A.; Metch, B.; Schuller, D.E.; Ensley, J.F.; Hutchins, L.F.; Triozzi, P.; Kish, J.A.; McClure, S.; VonFeldt, E.; Williamson, S.K. Randomized comparison of cisplatin plus fluorouracil and carboplatin plus fluorouracil versus methotrexate in advanced squamous-cell carcinoma of the head and neck: a Southwest Oncology Group study. J. Clin. Oncol., 1992, 10(8), 1245-1251.
[http://dx.doi.org/10.1200/JCO.1992.10.8.1245] [PMID: 1634913]
[65]
Trimmer, J.S.; Rhodes, K.J. Localization of voltage-gated ion channels in mammalian brain. Annu. Rev. Physiol., 2004, 66(1), 477-519.
[http://dx.doi.org/10.1146/annurev.physiol.66.032102.113328] [PMID: 14977411]
[66]
Cardoso, P.; Silva, I.; de Oliveira, N.G.; Serrano, A.R.M. Indicator taxa of spider (Araneae) diversity and their efficiency in conservation. Biol. Conserv., 2004, 120(4), 517-524.
[http://dx.doi.org/10.1016/j.biocon.2004.03.024]
[67]
Kroiss, S.J.; Hilleris, L.J. Recruitment limitation of long-lived conifers: implications for climate change responses. Ecology, 2015, 96(5), 1286-1297.
[http://dx.doi.org/10.1890/14-0595.1] [PMID: 26236842]
[68]
Lustbader, J.W.; Cirilli, M.; Lin, C.; Xu, H.W.; Takuma, K.; Wang, N.; Caspersen, C.; Chen, X.; Pollak, S.; Chaney, M.; Trinchese, F.; Liu, S.; Gunn-Moore, F.; Lue, L.F.; Walker, D.G.; Kuppusamy, P.; Zewier, Z.L.; Arancio, O.; Stern, D.; Yan, S.S.; Wu, H. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science, 2004, 304(5669), 448-452.
[http://dx.doi.org/10.1126/science.1091230] [PMID: 15087549]
[69]
Newton-Cheh, C.; Johnson, T.; Gateva, V.; Tobin, M.D.; Bochud, M.; Coin, L.; Najjar, S.S.; Zhao, J.H.; Heath, S.C.; Eyheramendy, S.; Papadakis, K.; Voight, B.F.; Scott, L.J.; Zhang, F.; Farrall, M.; Tanaka, T.; Wallace, C.; Chambers, J.C.; Khaw, K.T.; Nilsson, P.; van der Harst, P.; Polidoro, S.; Grobbee, D.E.; Onland-Moret, N.C.; Bots, M.L.; Wain, L.V.; Elliott, K.S.; Teumer, A.; Luan, J.; Lucas, G.; Kuusisto, J.; Burton, P.R.; Hadley, D.; McArdle, W.L.; Brown, M.; Dominiczak, A.; Newhouse, S.J.; Samani, N.J.; Webster, J.; Zeggini, E.; Beckmann, J.S.; Bergmann, S.; Lim, N.; Song, K.; Vollenweider, P.; Waeber, G.; Waterworth, D.M.; Yuan, X.; Groop, L.; Orho-Melander, M.; Allione, A.; Di Gregorio, A.; Guarrera, S.; Panico, S.; Ricceri, F.; Romanazzi, V.; Sacerdote, C.; Vineis, P.; Barroso, I.; Sandhu, M.S.; Luben, R.N.; Crawford, G.J.; Jousilahti, P.; Perola, M.; Boehnke, M.; Bonnycastle, L.L.; Collins, F.S.; Jackson, A.U.; Mohlke, K.L.; Stringham, H.M.; Valle, T.T.; Willer, C.J.; Bergman, R.N.; Morken, M.A.; Döring, A.; Gieger, C.; Illig, T.; Meitinger, T.; Org, E.; Pfeufer, A.; Wichmann, H.E.; Kathiresan, S.; Marrugat, J.; O’Donnell, C.J.; Schwartz, S.M.; Siscovick, D.S.; Subirana, I.; Freimer, N.B.; Hartikainen, A.L.; McCarthy, M.I.; O’Reilly, P.F.; Peltonen, L.; Pouta, A.; de Jong, P.E.; Snieder, H.; van Gilst, W.H.; Clarke, R.; Goel, A.; Hamsten, A.; Peden, J.F.; Seedorf, U.; Syvänen, A.C.; Tognoni, G.; Lakatta, E.G.; Sanna, S.; Scheet, P.; Schlessinger, D.; Scuteri, A.; Dörr, M.; Ernst, F.; Felix, S.B.; Homuth, G.; Lorbeer, R.; Reffelmann, T.; Rettig, R.; Völker, U.; Galan, P.; Gut, I.G.; Hercberg, S.; Lathrop, G.M.; Zelenika, D.; Deloukas, P.; Soranzo, N.; Williams, F.M.; Zhai, G.; Salomaa, V.; Laakso, M.; Elosua, R.; Forouhi, N.G.; Völzke, H.; Uiterwaal, C.S.; van der Schouw, Y.T.; Numans, M.E.; Matullo, G.; Navis, G.; Berglund, G.; Bingham, S.A.; Kooner, J.S.; Connell, J.M.; Bandinelli, S.; Ferrucci, L.; Watkins, H.; Spector, T.D.; Tuomilehto, J.; Altshuler, D.; Strachan, D.P.; Laan, M.; Meneton, P.; Wareham, N.J.; Uda, M.; Jarvelin, M.R.; Mooser, V.; Melander, O.; Loos, R.J.F.; Elliott, P.; Abecasis, G.R.; Caulfield, M.; Munroe, P.B. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet., 2009, 41(6), 666-676.
[http://dx.doi.org/10.1038/ng.361] [PMID: 19430483]
[70]
Jones, R.B.; Ndhlovu, L.C.; Barbour, J.D.; Sheth, P.M.; Jha, A.R.; Long, B.R.; Wong, J.C.; Satkunarajah, M.; Schweneker, M.; Chapman, J.M.; Gyenes, G.; Vali, B.; Hyrcza, M.D.; Yue, F.Y.; Kovacs, C.; Sassi, A.; Loutfy, M.; Halpenny, R.; Persad, D.; Spotts, G.; Hecht, F.M.; Chun, T.W.; McCune, J.M.; Kaul, R.; Rini, J.M.; Nixon, D.F.; Ostrowski, M.A. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J. Exp. Med., 2008, 205(12), 2763-2779.
[http://dx.doi.org/10.1084/jem.20081398] [PMID: 19001139]
[71]
Rahman, M.; Islam, F.; Saidur, R.M; Sultana, N.A.; Fahim, N.F. Studies on the prevalence of HIV/AIDS in Bangladesh including other developing countries. 2021, 1-12.
[72]
Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ, 2003, 327(7414), 557-560.
[http://dx.doi.org/10.1136/bmj.327.7414.557] [PMID: 12958120]
[73]
Dal Canto, M.C.; Gurney, M.E. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu, Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res., 1995, 676(1), 25-40.
[http://dx.doi.org/10.1016/0006-8993(95)00063-V] [PMID: 7796176]
[74]
Mattiazzi, M.; D’Aurelio, M.; Gajewski, C.D.; Martushova, K.; Kiaei, M.; Beal, M.F.; Manfredi, G. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem., 2002, 277(33), 29626-29633.
[http://dx.doi.org/10.1074/jbc.M203065200] [PMID: 12050154]
[75]
Guo, W.Q.; Ren, N.Q.; Wang, X.J.; Xiang, W.S.; Ding, J.; You, Y.; Liu, B.F. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresour. Technol., 2009, 100(3), 1192-1196.
[http://dx.doi.org/10.1016/j.biortech.2008.07.070] [PMID: 18793840]
[76]
Laurence, A.; Tato, C.M.; Davidson, T.S.; Kanno, Y.; Chen, Z.; Yao, Z.; Blank, R.B.; Meylan, F.; Siegel, R.; Hennighausen, L.; Shevach, E.M.; O’Shea, J.J. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity, 2007, 26(3), 371-381.
[http://dx.doi.org/10.1016/j.immuni.2007.02.009] [PMID: 17363300]
[77]
Takuma, K.; Yao, J.; Huang, J.; Xu, H.; Chen, X.; Luddy, J.; Trillat, A.C.; Stern, D.M.; Arancio, O.; Yan, S.S. ABAD enhances Aβ‐induced cell stress via mitochondrial dysfunction. FASEB J., 2005, 19(6), 1-25.
[http://dx.doi.org/10.1096/fj.04-2582fje] [PMID: 15665036]
[78]
Shoffner, J.M.; Lott, M.T.; Lezza, A.M.S.; Seibel, P.; Ballinger, S.W.; Wallace, D.C. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell, 1990, 61(6), 931-937.
[http://dx.doi.org/10.1016/0092-8674(90)90059-N] [PMID: 2112427]
[79]
Beal, D.J.; Weiss, H.M.; Barros, E.; MacDermid, S.M. An episodic process model of affective influences on performance. J. Appl. Psychol., 2005, 90(6), 1054-1068.
[http://dx.doi.org/10.1037/0021-9010.90.6.1054] [PMID: 16316265]
[80]
Kim, S-r.; Yang, S-h.; Kim, B-J.; Czang-Ho, L.; Choi, J-h.; Oh, H-Y. Thin film transitor substrate and method of manufacturing the same; Google Patents, 2008.
[81]
Jernigan, D.B.; Raghunathan, P.L.; Bell, B.P.; Brechner, R.; Bresnitz, E.A.; Butler, J.C.; Cetron, M.; Cohen, M.; Doyle, T.; Fischer, M.; Greene, C.; Griffith, K.S.; Guarner, J.; Hadler, J.L.; Hayslett, J.A.; Meyer, R.; Petersen, L.R.; Phillips, M.; Pinner, R.; Popovic, T.; Quinn, C.P.; Reefhuis, J.; Reissman, D.; Rosenstein, N.; Schuchat, A.; Shieh, W.J.; Siegal, L.; Swerdlow, D.L.; Tenover, F.C.; Traeger, M.; Ward, J.W.; Weisfuse, I.; Wiersma, S.; Yeskey, K.; Zaki, S.; Ashford, D.A.; Perkins, B.A.; Ostroff, S.; Hughes, J.; Fleming, D.; Koplan, J.P.; Gerberding, J.L. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerg. Infect. Dis., 2002, 8(10), 1019-1028.
[http://dx.doi.org/10.3201/eid0810.020353] [PMID: 12396909]
[82]
Rensing, S.A.; Lang, D.; Zimmer, A.D.; Terry, A.; Salamov, A.; Shapiro, H.; Nishiyama, T.; Perroud, P.F.; Lindquist, E.A.; Kamisugi, Y.; Tanahashi, T.; Sakakibara, K.; Fujita, T.; Oishi, K.; Shin-I, T.; Kuroki, Y.; Toyoda, A.; Suzuki, Y.; Hashimoto, S.; Yamaguchi, K.; Sugano, S.; Kohara, Y.; Fujiyama, A.; Anterola, A.; Aoki, S.; Ashton, N.; Barbazuk, W.B.; Barker, E.; Bennetzen, J.L.; Blankenship, R.; Cho, S.H.; Dutcher, S.K.; Estelle, M.; Fawcett, J.A.; Gundlach, H.; Hanada, K.; Heyl, A.; Hicks, K.A.; Hughes, J.; Lohr, M.; Mayer, K.; Melkozernov, A.; Murata, T.; Nelson, D.R.; Pils, B.; Prigge, M.; Reiss, B.; Renner, T.; Rombauts, S.; Rushton, P.J.; Sanderfoot, A.; Schween, G.; Shiu, S.H.; Stueber, K.; Theodoulou, F.L.; Tu, H.; Van de Peer, Y.; Verrier, P.J.; Waters, E.; Wood, A.; Yang, L.; Cove, D.; Cuming, A.C.; Hasebe, M.; Lucas, S.; Mishler, B.D.; Reski, R.; Grigoriev, I.V.; Quatrano, R.S.; Boore, J.L. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 2008, 319(5859), 64-69.
[http://dx.doi.org/10.1126/science.1150646] [PMID: 18079367]
[83]
Gu, Z.; Cui, J.; Brown, S.; Fridman, R.; Mobashery, S.; Strongin, A.Y.; Lipton, S.A. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J. Neurosci., 2005, 25(27), 6401-6408.
[http://dx.doi.org/10.1523/JNEUROSCI.1563-05.2005] [PMID: 16000631]
[84]
Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and trends of amphibian declines and extinctions worldwide. Science, 2004, 306(5702), 1783-1786.
[http://dx.doi.org/10.1126/science.1103538] [PMID: 15486254]
[85]
Opresko, P.L.; von Kobbe, C.; Laine, J.P.; Harrigan, J.; Hickson, I.D.; Bohr, V.A. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J. Biol. Chem., 2002, 277(43), 41110-41119.
[http://dx.doi.org/10.1074/jbc.M205396200] [PMID: 12181313]
[86]
Chatzizisis, Y.S.; Coskun, A.U.; Jonas, M.; Edelman, E.R.; Feldman, C.L.; Stone, P.H. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol., 2007, 49(25), 2379-2393.
[http://dx.doi.org/10.1016/j.jacc.2007.02.059] [PMID: 17599600]
[87]
Warner, D.K.; Richter, J.N. Temporal updates of relevancy rating of retrieved information in an information search system; Google Patents, 2002.
[88]
Esteves, A.R.F.; Domingues, A.F.; Ferreira, I.L.; Januário, C.; Swerdlow, R.H.; Oliveira, C.R.; Cardoso, S.M. Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion, 2008, 8(3), 219-228.
[http://dx.doi.org/10.1016/j.mito.2008.03.004] [PMID: 18495557]
[89]
Howell, A.; Cuzick, J.; Baum, M.; Buzdar, A.; Dowsett, M.; Forbes, J.F.; Hoctin-Boes, G.; Houghton, J.; Locker, G.Y.; Tobias, J.S. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet, 2005, 365(9453), 60-62.
[http://dx.doi.org/10.1016/S0140-6736(04)17666-6] [PMID: 15639680]
[90]
Gu, M.; Cooper, J.M.; Taanman, J.W.; Schapira, A.H.V. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann. Neurol., 1998, 44(2), 177-186.
[http://dx.doi.org/10.1002/ana.410440207] [PMID: 9708539]
[91]
Gordeeva, A.V.; Zvyagilskaya, R.A.; Labas, Y.A. Cross-talk between reactive oxygen species and calcium in living cells. Biochemistry (Mosc.), 2003, 68(10), 1077-1080.
[http://dx.doi.org/10.1023/A:1026398310003] [PMID: 14616077]
[92]
Brookes, P.S.; Yoon, Y.; Robotham, J.L.; Anders, M.W.; Sheu, S.S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol., 2004, 287(4), C817-C833.
[http://dx.doi.org/10.1152/ajpcell.00139.2004] [PMID: 15355853]
[93]
Sheehan, J.P.; Swerdlow, R.H.; Miller, S.W.; Davis, R.E.; Parks, J.K.; Parker, W.D.; Tuttle, J.B. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J. Neurosci., 1997, 17(12), 4612-4622.
[http://dx.doi.org/10.1523/JNEUROSCI.17-12-04612.1997] [PMID: 9169522]
[94]
Majeti, R.; Chao, M.P.; Alizadeh, A.A.; Pang, W.W.; Jaiswal, S.; Gibbs, K.D., Jr; van Rooijen, N.; Weissman, I.L. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell, 2009, 138(2), 286-299.
[http://dx.doi.org/10.1016/j.cell.2009.05.045] [PMID: 19632179]
[95]
Chang, P.R.; Jian, R.; Yu, J.; Ma, X. Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr. Polym., 2010, 80(2), 420-425.
[http://dx.doi.org/10.1016/j.carbpol.2009.11.041]
[96]
Keller, J.N.; Kindy, M.S.; Holtsberg, F.W.; St Clair, D.K.; Yen, H-C.; Germeyer, A.; Steiner, S.M.; Bruce-Keller, A.J.; Hutchins, J.B.; Mattson, M.P. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci., 1998, 18(2), 687-697.
[http://dx.doi.org/10.1523/JNEUROSCI.18-02-00687.1998] [PMID: 9425011]
[97]
Ullah, M.S.; Davies, A.J.; Halestrap, A.P. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J. Biol. Chem., 2006, 281(14), 9030-9037.
[http://dx.doi.org/10.1074/jbc.M511397200] [PMID: 16452478]
[98]
Leung, A.W.C.; Halestrap, A.P. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim. Biophys. Acta Bioenerg., 2008, 1777(7-8), 946-952.
[http://dx.doi.org/10.1016/j.bbabio.2008.03.009] [PMID: 18407825]
[99]
de Bruin, D.; Kantrow, S.M.; Liberatore, R.A.; Zakian, V.A. Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol. Cell. Biol., 2000, 20(21), 7991-8000.
[http://dx.doi.org/10.1128/MCB.20.21.7991-8000.2000] [PMID: 11027269]
[100]
Collaboration, T.; Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A. Expected Performance of the ATLAS Experiment - Detector; Trigger and Physics, 2008.
[101]
Du, X.; Fletcher, R P. Fowler P. A New Pseudo-acoustic Wave Equation for VTI Media 2008.
[102]
Du, Y; Zhang, Q; Ying, Y; Yang, Y Characteristics of low-level jets in Shanghai during the 2008-2009 warm seasons as inferred from wind profiler radar data. J. Meteorol. Volume 2, 2012, 90(6), 891-903.
[103]
Martin, A.D.; Stirling, W.J.; Thorne, R.S.; Watt, G. Parton distributions for the LHC. Eur. Phys. J. C, 2009, 63(2), 189-285.
[http://dx.doi.org/10.1140/epjc/s10052-009-1072-5]
[104]
Brustovetsky, N.; Brustovetsky, T.; Purl, K.J.; Capano, M.; Crompton, M.; Dubinsky, J.M. Increased susceptibility of striatal mitochondria to calcium-induced permeability transition. J. Neurosci., 2003, 23(12), 4858-4867.
[http://dx.doi.org/10.1523/JNEUROSCI.23-12-04858.2003] [PMID: 12832508]
[105]
Kuznetsov, A.V.; Veksler, V.; Gellerich, F.N.; Saks, V.; Margreiter, R.; Kunz, W.S. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat. Protoc., 2008, 3(6), 965-976.
[http://dx.doi.org/10.1038/nprot.2008.61] [PMID: 18536644]
[106]
Quinlan, C.L.; Perevoshchikova, I.V.; Hey-Mogensen, M.; Orr, A.L.; Brand, M.D. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol., 2013, 1(1), 304-312.
[http://dx.doi.org/10.1016/j.redox.2013.04.005] [PMID: 24024165]
[107]
Jhan, J.H.; Yang, Y.H.; Chang, Y.H.; Guu, S.J.; Tsai, C.C. Hormone therapy for prostate cancer increases the risk of Alzheimer’s disease: a nationwide 4-year longitudinal cohort study. Aging Male, 2017, 20(1), 33-38.
[http://dx.doi.org/10.1080/13685538.2016.1271782] [PMID: 28067607]
[108]
Castellani, R.J.; Rolston, R.K.; Smith, M.A. Alzheimer Disease. Dis. Mon., 2010, 56(9), 484-546.
[http://dx.doi.org/10.1016/j.disamonth.2010.06.001] [PMID: 20831921]
[109]
Rahman, MM; Islam, MR; Shohag, S; Ahasan, MT; Sarkar, N; Khan, H Microbiome in cancer: Role in carcinogenesis and impact in therapeutic strategies. 2022, 149, 112898.
[110]
Du, Z.; Hu, Y.; Yang, Y.; Sun, Y.; Zhang, S.; Zhou, T.; Zeng, L.; Zhang, W.; Huang, X.; Kong, W.; Zhang, H. NADPH oxidase-dependent oxidative stress and mitochondrial damage in hippocampus of D-galactose-induced aging rats. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2012, 32(4), 466-472.
[http://dx.doi.org/10.1007/s11596-012-0081-z] [PMID: 22886955]
[111]
Yin, F.; Boveris, A.; Cadenas, E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid. Redox Signal., 2014, 20(2), 353-371.
[http://dx.doi.org/10.1089/ars.2012.4774] [PMID: 22793257]
[112]
Mandal, P.K.; Tripathi, M.; Sugunan, S. Brain oxidative stress: Detection and mapping of anti-oxidant marker ‘Glutathione’ in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun., 2012, 417(1), 43-48.
[http://dx.doi.org/10.1016/j.bbrc.2011.11.047] [PMID: 22120629]
[113]
Rekkas, P.V.; Wilson, A.A.; Lee, V.W.H.; Yogalingam, P.; Sacher, J.; Rusjan, P.; Houle, S.; Stewart, D.E.; Kolla, N.J.; Kish, S.; Chiuccariello, L.; Meyer, J.H. Greater monoamine oxidase a binding in perimenopausal age as measured with carbon 11-labeled harmine positron emission tomography. JAMA Psychiatry, 2014, 71(8), 873-879.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.250] [PMID: 24898155]
[114]
Bellanti, F.; Matteo, M.; Rollo, T.; De Rosario, F.; Greco, P.; Vendemiale, G.; Serviddio, G. Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy. Redox Biol., 2013, 1(1), 340-346.
[http://dx.doi.org/10.1016/j.redox.2013.05.003] [PMID: 24024169]
[115]
Vermulst, M.; Bielas, J.H.; Kujoth, G.C.; Ladiges, W.C.; Rabinovitch, P.S.; Prolla, T.A.; Loeb, L.A. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet., 2007, 39(4), 540-543.
[http://dx.doi.org/10.1038/ng1988] [PMID: 17334366]
[116]
Corpéchot, C.; Robel, P.; Axelson, M.; Sjövall, J.; Baulieu, E.E. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc. Natl. Acad. Sci. USA, 1981, 78(8), 4704-4707.
[http://dx.doi.org/10.1073/pnas.78.8.4704] [PMID: 6458035]
[117]
Velarde, M.C. Mitochondrial and sex steroid hormone crosstalk during aging. Longev. Healthspan, 2014, 3(1), 2.
[http://dx.doi.org/10.1186/2046-2395-3-2] [PMID: 24495597]
[118]
Papadopoulos, V.; Miller, W.L. Role of mitochondria in steroidogenesis. Best Pract. Res. Clin. Endocrinol. Metab., 2012, 26(6), 771-790.
[http://dx.doi.org/10.1016/j.beem.2012.05.002] [PMID: 23168279]
[119]
Miller, W.L. Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol., 2013, 379(1-2), 62-73.
[http://dx.doi.org/10.1016/j.mce.2013.04.014] [PMID: 23628605]
[120]
Hines, M. Prenatal endocrine influences on sexual orientation and on sexually differentiated childhood behavior. Front. Neuroendocrinol., 2011, 32(2), 170-182.
[http://dx.doi.org/10.1016/j.yfrne.2011.02.006] [PMID: 21333673]
[121]
Cooke, B.; Hegstrom, C.D.; Villeneuve, L.S.; Breedlove, S.M. Sexual differentiation of the vertebrate brain: principles and mechanisms. Front. Neuroendocrinol., 1998, 19(4), 323-362.
[http://dx.doi.org/10.1006/frne.1998.0171] [PMID: 9799588]
[122]
Organization WH. Global action plan on the public health response to dementia 2017-2025. 2017.
[123]
Gauthier, S.; Albert, M.; Fox, N.; Goedert, M.; Kivipelto, M.; Mestre-Ferrandiz, J.; Middleton, L.T. Why has therapy development for dementia failed in the last two decades? Alzheimers Dement., 2016, 12(1), 60-64.
[http://dx.doi.org/10.1016/j.jalz.2015.12.003] [PMID: 26710325]
[124]
Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[125]
Calabrese, V.; Guagliano, E.; Sapienza, M.; Panebianco, M.; Calafato, S.; Puleo, E.; Pennisi, G.; Mancuso, C.; Allan, B.D.; Stella, A.G. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem. Res., 2007, 32(4-5), 757-773.
[http://dx.doi.org/10.1007/s11064-006-9203-y] [PMID: 17191135]
[126]
Islam, F; Mitra, S; Nafady, MH; Rahman, MT; Tirth, V Akter, A Neuropharmacological and antidiabetic potential of lannea coromandelica (houtt.) merr. Leaves extract: an experimental analysis. 2022, 2022
[127]
Liang, Z.; Currais, A.; Soriano-Castell, D.; Schubert, D.; Maher, P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol. Ther., 2021, 221, 107749.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107749] [PMID: 33227325]
[128]
Chan, D.C. Mitochondria: dynamic organelles in disease, aging, and development. Cell, 2006, 125(7), 1241-1252.
[http://dx.doi.org/10.1016/j.cell.2006.06.010] [PMID: 16814712]
[129]
Nunnari, J.; Suomalainen, A. Mitochondria: in sickness and in health. Cell, 2012, 148(6), 1145-1159.
[http://dx.doi.org/10.1016/j.cell.2012.02.035] [PMID: 22424226]
[130]
Murphy, M.P.; Hartley, R.C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov., 2018, 17(12), 865-886.
[http://dx.doi.org/10.1038/nrd.2018.174] [PMID: 30393373]
[131]
Rahman, M.M.; Islam, F.; Parvez, A.; Azad, M.A.; Ashraf, G.M. Ullah, MF Citrus limon L.(lemon) seed extract shows neuro-modulatory activity in an in vivo thiopental-sodium sleep model by reducing the sleep onset and enhancing the sleep duration. J. Integr. Neurosci., 2022, 21(1), 42.
[132]
Reddy, P.H.; McWeeney, S. Mapping cellular transcriptosomes in autopsied Alzheimer’s disease subjects and relevant animal models. Neurobiol. Aging, 2006, 27(8), 1060-1077.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.04.014] [PMID: 16157420]
[133]
Selkoe, D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[134]
Selkoe, D.J.; Podlisny, M.B. Deciphering the genetic basis of Alzheimer’s disease. Annu. Rev. Genomics Hum. Genet., 2002, 3(1), 67-99.
[http://dx.doi.org/10.1146/annurev.genom.3.022502.103022] [PMID: 12142353]
[135]
Reddy, P.H.; McWeeney, S.; Park, B.S.; Manczak, M.; Gutala, R.V.; Partovi, D.; Jung, Y.; Yau, V.; Searles, R.; Mori, M.; Quinn, J. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum. Mol. Genet., 2004, 13(12), 1225-1240.
[http://dx.doi.org/10.1093/hmg/ddh140] [PMID: 15115763]
[136]
Manczak, M.; Park, B.S.; Jung, Y.; Reddy, P.H. Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromol. Med., 2004, 5(2), 147-162.
[http://dx.doi.org/10.1385/NMM:5:2:147] [PMID: 15075441]
[137]
Nunomura, A.; Castellani, R.J.; Zhu, X.; Moreira, P.I.; Perry, G.; Smith, M.A. Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2006, 65(7), 631-641.
[http://dx.doi.org/10.1097/01.jnen.0000228136.58062.bf] [PMID: 16825950]
[138]
Bamshad, C.; Najafi-Ghalehlou, N.; Pourmohammadi-Bejarpasi, Z.; Tomita, K.; Kuwahara, Y.; Sato, T.; Feizkhah, A.; Roushnadeh, A.M.; Roudkenar, M.H. Mitochondria: How eminent in ageing and neurodegenerative disorders? Hum. Cell, 2023, 36, 41-61.
[http://dx.doi.org/10.1007/s13577-022-00833-y]
[139]
Parker, W.D., Jr; Filley, C.M.; Parks, J.K. Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology, 1990, 40(8), 1302-1303.
[http://dx.doi.org/10.1212/WNL.40.8.1302] [PMID: 2166249]
[140]
Gibson, G.E.; Sheu, K.F.R.; Blass, J.P. Abnormalities of mitochondrial enzymes in Alzheimer disease. J. Neural Transm. (Vienna), 1998, 105(8-9), 855-870.
[http://dx.doi.org/10.1007/s007020050099] [PMID: 9869323]
[141]
Akter, A.; Islam, F.; Bepary, S.; Al-Amin, M.; Begh, M.; Alam, Z. CNS depressant activities of Averrhoa carambola leaves extract in thiopental-sodium model of Swiss albino mice: implication for neuro-modulatory properties. Biologia, 2022, 77(5), 1337-1346.
[http://dx.doi.org/10.1007/s11756-022-01057-z]
[142]
Pal, R.; Tiwari, P.C.; Nath, R.; Pant, K.K. Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurol. Res., 2016, 38(12), 1111-1122.
[http://dx.doi.org/10.1080/01616412.2016.1249997] [PMID: 27808010]
[143]
Beal, M.F. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann. N. Y. Acad. Sci., 2003, 991(1), 120-131.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07470.x] [PMID: 12846981]
[144]
Schapira, A.H.V. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol., 2008, 7(1), 97-109.
[http://dx.doi.org/10.1016/S1474-4422(07)70327-7] [PMID: 18093566]
[145]
Jin, H.; Kanthasamy, A.; Ghosh, A.; Anantharam, V.; Kalyanaraman, B.; Kanthasamy, A.G. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: Preclinical and clinical outcomes. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1282-1294.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.007] [PMID: 24060637]
[146]
Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science, 1997, 276(5321), 2045-2047.
[147]
Guo, H.; Shi, F.; Li, M.; Liu, Q.; Yu, B.; Hu, L. Neuroprotective effects of Eucommia ulmoides Oliv. and its bioactive constituent work via ameliorating the ubiquitin-proteasome system. BMC Complement. Altern. Med., 2015, 15(1), 151.
[http://dx.doi.org/10.1186/s12906-015-0675-7] [PMID: 25994206]
[148]
Andersen, J.K. Iron dysregulation and Parkinson’s disease. J. Alzheimers Dis., 2004, 6(6)(Suppl.), S47-S52.
[PMID: 15665414]
[149]
Sian, J.; Dexter, D.T.; Lees, A.J.; Daniel, S.; Agid, Y.; Javoy-Agid, F.; Jenner, P.; Marsden, C.D. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol., 1994, 36(3), 348-355.
[http://dx.doi.org/10.1002/ana.410360305] [PMID: 8080242]
[150]
Intihar, T.A.; Martinez, E.A.; Gomez-Pastor, R. Mitochondrial dysfunction in Huntington’s disease; interplay between HSF1, p53 and PGC-1α transcription factors. Front. Cell. Neurosci., 2019, 13, 103.
[http://dx.doi.org/10.3389/fncel.2019.00103] [PMID: 30941017]
[151]
Costa, V.; Scorrano, L. Shaping the role of mitochondria in the pathogenesis of Huntington’s disease. EMBO J., 2012, 31(8), 1853-1864.
[http://dx.doi.org/10.1038/emboj.2012.65] [PMID: 22446390]
[152]
Cui, L.; Jeong, H.; Borovecki, F.; Parkhurst, C.N.; Tanese, N.; Krainc, D. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 2006, 127(1), 59-69.
[http://dx.doi.org/10.1016/j.cell.2006.09.015] [PMID: 17018277]
[153]
Fu, J.; Jin, J.; Cichewicz, R.H.; Hageman, S.A.; Ellis, T.K.; Xiang, L.; Peng, Q.; Jiang, M.; Arbez, N.; Hotaling, K.; Ross, C.A.; Duan, W. trans-(-)-ε-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J. Biol. Chem., 2012, 287(29), 24460-24472.
[http://dx.doi.org/10.1074/jbc.M112.382226] [PMID: 22648412]
[154]
Reddy, P.H.; Tagle, D.A. The Biology of Trinucleotide Repeat Disorders. Advances in Cell Aging and Gerontology. 3; Elsevier, 1999, p. 33-79.
[155]
Panchal, K.; Tiwari, A.K. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion, 2019, 47, 151-173.
[http://dx.doi.org/10.1016/j.mito.2018.11.002] [PMID: 30408594]
[156]
Borlongan, C.V.; Koutouzis, T.K.; Randall, T.S.; Freeman, T.B.; Cahill, D.W.; Sanberg, P.R. Systemic 3-nitropropionic acid: Behavioral deficits and striatal damage in adult rats. Brain Res. Bull., 1995, 36(6), 549-556.
[http://dx.doi.org/10.1016/0361-9230(94)00242-S] [PMID: 7538873]
[157]
Brouillet, E.; Jacquard, C.; Bizat, N.; Blum, D. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J. Neurochem., 2005, 95(6), 1521-1540.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03515.x] [PMID: 16300642]
[158]
Hariharan, A.; Shetty, S.; Shirole, T.; Jagtap, A.G. Potential of protease inhibitor in 3-nitropropionic acid induced Huntington’s disease like symptoms: Mitochondrial dysfunction and neurodegeneration. Neurotoxicology, 2014, 45, 139-148.
[http://dx.doi.org/10.1016/j.neuro.2014.10.004] [PMID: 25445565]
[159]
Polyzos, A.A.; Lee, D.Y.; Datta, R.; Hauser, M.; Budworth, H. Holt, A Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in Huntington mice. Cell Metab., 2019, 29(6), 1258-1273.
[http://dx.doi.org/10.1016/j.cmet.2019.03.004]
[160]
Pereira, O.R., Jr; Ramos, V.M.; Cabral-Costa, J.V.; Kowaltowski, A.J. Changes in mitochondrial morphology modulate LPS-induced loss of calcium homeostasis in BV-2 microglial cells. J. Bioenerg. Biomembr., 2021, 53(2), 109-118.
[http://dx.doi.org/10.1007/s10863-021-09878-4] [PMID: 33585958]
[161]
Martin, S.P. Trends in marital dissolution by women’s education in the United States. Demogr. Res., 2006, 15, 537-560.
[http://dx.doi.org/10.4054/DemRes.2006.15.20]
[162]
Hervias, I.; Beal, M.F.; Manfredi, G. Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve, 2006, 33(5), 598-608.
[http://dx.doi.org/10.1002/mus.20489] [PMID: 16372325]
[163]
Boillée, S.; Yamanaka, K.; Lobsiger, C.S.; Copeland, N.G.; Jenkins, N.A.; Kassiotis, G.; Kollias, G.; Cleveland, D.W. Onset and progression in inherited ALS determined by motor neurons and microglia. Science, 2006, 312(5778), 1389-1392.
[http://dx.doi.org/10.1126/science.1123511] [PMID: 16741123]
[164]
Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; McCluskey, L.F.; Miller, B.L.; Masliah, E.; Mackenzie, I.R.; Feldman, H.; Feiden, W.; Kretzschmar, H.A.; Trojanowski, J.Q.; Lee, V.M.Y. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006, 314(5796), 130-133.
[http://dx.doi.org/10.1126/science.1134108] [PMID: 17023659]
[165]
Deng, H.; Gong, X.; Wang, L. Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart Mater. Struct., 2006, 15(5), N111-N116.
[http://dx.doi.org/10.1088/0964-1726/15/5/N02]
[166]
Furukawa, T.A.; Barbui, C.; Cipriani, A.; Brambilla, P.; Watanabe, N. Imputing missing standard deviations in meta-analyses can provide accurate results. J. Clin. Epidemiol., 2006, 59(1), 7-10.
[http://dx.doi.org/10.1016/j.jclinepi.2005.06.006] [PMID: 16360555]
[167]
Afifi, A.A.; Elashoff, R.M. Missing observations in multivariate statistics I. Review of the literature. J. Am. Stat. Assoc., 1966, 61(315), 595-604.
[168]
Hirano, A.; Donnenfeld, H.; Sasaki, S.; Nakano, I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 1984, 43(5), 461-470.
[http://dx.doi.org/10.1097/00005072-198409000-00001] [PMID: 6540799]
[169]
Chung, S.J.; Kim, J.S.; Kim, J.C.; Lee, S.K.; Kwon, S.U.; Lee, M.C.; Suh, D.C. Intracranial dural arteriovenous fistulas: analysis of 60 patients. Cerebrovasc. Dis., 2002, 13(2), 79-88.
[http://dx.doi.org/10.1159/000047755] [PMID: 11867880]
[170]
Dupuis, S.; Jouanguy, E.; Al-Hajjar, S.; Fieschi, C.; Al-Mohsen, I.Z.; Al-Jumaah, S.; Yang, K.; Chapgier, A.; Eidenschenk, C.; Eid, P.; Ghonaium, A.A.; Tufenkeji, H.; Frayha, H.; Al-Gazlan, S.; Al-Rayes, H.; Schreiber, R.D.; Gresser, I.; Casanova, J.L. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet., 2003, 33(3), 388-391.
[http://dx.doi.org/10.1038/ng1097] [PMID: 12590259]
[171]
Wong, C.H. Enzymatic and chemo-enzymatic synthesis of carbohydrates. Pure Appl. Chem., 1995, 67(10), 1609-1616.
[http://dx.doi.org/10.1351/pac199567101609]
[172]
Bergemalm, D.; Jonsson, P.A.; Graffmo, K.S.; Andersen, P.M.; Brännström, T.; Rehnmark, A.; Marklund, S.L. Overloading of stable and exclusion of unstable human superoxide dismutase-1 variants in mitochondria of murine amyotrophic lateral sclerosis models. J. Neurosci., 2006, 26(16), 4147-4154.
[http://dx.doi.org/10.1523/JNEUROSCI.5461-05.2006] [PMID: 16624935]
[173]
Liu, X.; Wei, J.; Tan, F.; Zhou, S.; Würthwein, G.; Rohdewald, P. Antidiabetic effect of Pycnogenol® French maritime pine bark extract in patients with diabetes type II. Life Sci., 2004, 75(21), 2505-2513.
[http://dx.doi.org/10.1016/j.lfs.2003.10.043] [PMID: 15363656]
[174]
Vijayvergiya, C.; Beal, M.F.; Buck, J.; Manfredi, G. Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J. Neurosci., 2005, 25(10), 2463-2470.
[http://dx.doi.org/10.1523/JNEUROSCI.4385-04.2005] [PMID: 15758154]
[175]
Chang, C.Y.; Liang, M.Z.; Chen, L. Current progress of mitochondrial transplantation that promotes neuronal regeneration. Transl. Neurodegener., 2019, 8(1), 17.
[http://dx.doi.org/10.1186/s40035-019-0158-8] [PMID: 31210929]
[176]
Liu, F.; Lu, J.; Manaenko, A.; Tang, J.; Hu, Q. Mitochondria in ischemic stroke: new insight and implications. Aging Dis., 2018, 9(5), 924-937.
[http://dx.doi.org/10.14336/AD.2017.1126] [PMID: 30271667]
[177]
Murphy, E.; Ardehali, H.; Balaban, R.S.; DiLisa, F.; Dorn, G.W., II; Kitsis, R.N.; Otsu, K.; Ping, P.; Rizzuto, R.; Sack, M.N.; Wallace, D.; Youle, R.J. Mitochondrial function, biology, and role in disease. Circ. Res., 2016, 118(12), 1960-1991.
[http://dx.doi.org/10.1161/RES.0000000000000104] [PMID: 27126807]
[178]
Mitchell, P.; Moyle, J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature, 1967, 213(5072), 137-139.
[http://dx.doi.org/10.1038/213137a0] [PMID: 4291593]
[179]
Armstrong, J.S. Mitochondrial Medicine: Pharmacological targeting of mitochondria in disease. Br. J. Pharmacol., 2007, 151(8), 1154-1165.
[http://dx.doi.org/10.1038/sj.bjp.0707288] [PMID: 17519949]
[180]
Cleren, C.; Yang, L.; Lorenzo, B.; Calingasan, N.Y.; Schomer, A.; Sireci, A.; Wille, E.J.; Beal, M.F. Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J. Neurochem., 2008, 104(6), 1613-1621.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05097.x] [PMID: 17973981]
[181]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(1), 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006] [PMID: 19853658]
[182]
Reddy, P.H. Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectr., 2009, 14(Suppl. 7), 8-13.
[http://dx.doi.org/10.1017/S1092852900024901] [PMID: 19890241]
[183]
Apostolova, N.; Victor, V.M. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid. Redox Signal., 2015, 22(8), 686-729.
[http://dx.doi.org/10.1089/ars.2014.5952] [PMID: 25546574]
[184]
Crompton, M.; Ellinger, H.; Costi, A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem. J., 1988, 255(1), 357-360.
[PMID: 3196322]
[185]
Halestrap, A.; Connern, C.; Griffiths, E.; Kerr, P. Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury; Mol. Cel Biochem, 1997, pp. 167-172.
[186]
Šileikytė, J.; Forte, M. The mitochondrial permeability transition in mitochondrial disorders. Oxid. Med. Cell. Longev., 2019, 3403075.
[187]
Naryzhnaya, N.V.; Maslov, L.N.; Oeltgen, P.R. Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev. Res., 2019, 80(8), 1013-1030.
[http://dx.doi.org/10.1002/ddr.21593] [PMID: 31823411]
[188]
Uchino, H.; Hatakeyama, K.; Morota, S.; Tanoue, T.; Nishiyama, T.; Usui, D.; Taguchi, C.; Suzuki, M.; Hansson, M.J.; Elmér, E. Cyclophilin-D inhibition in neuroprotection: dawn of a new era of mitochondrial medicine. Acta Neurochir. Suppl. (Wien), 2013, 118, 311-315.
[http://dx.doi.org/10.1007/978-3-7091-1434-6_61] [PMID: 23564156]
[189]
Deheshi, S. Mitochondrial form and function: an investigation of the mechanism and significance of mitochondrial remodelling in rat cortical astrocytes. Science, 2015.
[190]
Roussel, J.; Thireau, J.; Brenner, C.; Saint, N.; Scheuermann, V.; Lacampagne, A.; Le Guennec, J.Y.; Fauconnier, J. Palmitoyl-carnitine increases RyR2 oxidation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes: Role of adenine nucleotide translocase. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(5), 749-758.
[http://dx.doi.org/10.1016/j.bbadis.2015.01.011] [PMID: 25619687]
[191]
César Rosa, J.; de Cerqueira César, M. Role of hexokinase and VDAC in neurological disorders. Curr. Mol. Pharmacol., 2016, 9(4), 320-331.
[http://dx.doi.org/10.2174/1874467209666160112123036] [PMID: 26758954]
[192]
Shoshan-Barmatz, V.; Gincel, D. The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem. Biophys., 2003, 39(3), 279-292.
[http://dx.doi.org/10.1385/CBB:39:3:279] [PMID: 14716081]
[193]
Norenberg, M.; Rao, K. The mitochondrial permeability transition in neurologic disease. Neurochem. Int., 2007, 50(7-8), 983-997.
[http://dx.doi.org/10.1016/j.neuint.2007.02.008] [PMID: 17397969]
[194]
Cwerman-Thibault, H.; Sahel, J.A.; Corral-Debrinski, M. Mitochondrial medicine: to a new era of gene therapy for mitochondrial DNA mutations. J. Inherit. Metab. Dis., 2011, 34(2), 327-344.
[http://dx.doi.org/10.1007/s10545-010-9131-5] [PMID: 20571866]
[195]
Slone, J.; Huang, T. The special considerations of gene therapy for mitochondrial diseases. NPJ Genom. Med., 2020, 5(1), 7.
[http://dx.doi.org/10.1038/s41525-020-0116-5] [PMID: 32140258]
[196]
Bayona-Bafaluy, M.P.; Blits, B.; Battersby, B.J.; Shoubridge, E.A.; Moraes, C.T. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc. Natl. Acad. Sci. USA, 2005, 102(40), 14392-14397.
[http://dx.doi.org/10.1073/pnas.0502896102] [PMID: 16179392]
[197]
Marella, M.; Seo, B.B.; Nakamaru-Ogiso, E.; Greenamyre, J.T.; Matsuno-Yagi, A.; Yagi, T. Protection by the NDI1 gene against neurodegeneration in a rotenone rat model of Parkinson’s disease. PLoS One, 2008, 3(1), e1433.
[http://dx.doi.org/10.1371/journal.pone.0001433] [PMID: 18197244]
[198]
Zhang, L.; Zhang, Z.; Khan, A.; Zheng, H.; Yuan, C.; Jiang, H. Advances in drug therapy for mitochondrial diseases. Ann. Transl. Med., 2020, 8(1), 17.
[http://dx.doi.org/10.21037/atm.2019.10.113] [PMID: 32055608]
[199]
Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol., 2015, 71, 40-56.
[http://dx.doi.org/10.1016/j.vph.2015.03.005] [PMID: 25869516]
[200]
Skowrońska, M.; Albrecht, J. Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem. Int., 2013, 62(5), 731-737.
[http://dx.doi.org/10.1016/j.neuint.2012.10.013] [PMID: 23142151]
[201]
Chan, P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab., 2001, 21(1), 2-14.
[http://dx.doi.org/10.1097/00004647-200101000-00002] [PMID: 11149664]
[202]
Cross, C.; Halliwell, B.; Borish, E.T.; Pryor, W.A.; Ames, B.N.; Saul, R.L.; McCord, J.M.; Harman, D. Oxygen radicals and human disease. Ann. Intern. Med., 1987, 107(4), 526-545.
[http://dx.doi.org/10.7326/0003-4819-107-4-526] [PMID: 3307585]
[203]
Diebold, L.; Chandel, N.S. Mitochondrial ROS regulation of proliferating cells. Free Radic. Biol. Med., 2016, 100, 86-93.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.198] [PMID: 27154978]
[204]
Fang, C.; Gu, L.; Smerin, D.; Mao, S.; Xiong, X. The interrelation between reactive oxygen species and autophagy in neurological disorders. Oxid. Med. Cell. Longev., 2017, 2017.
[http://dx.doi.org/10.1155/2017/8495160]
[205]
Zorov, D.B.; Filburn, C.R.; Klotz, L.O.; Zweier, J.L.; Sollott, S.J. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med., 2000, 192(7), 1001-1014.
[http://dx.doi.org/10.1084/jem.192.7.1001] [PMID: 11015441]
[206]
Kwak, H.J.; Liu, P.; Bajrami, B.; Xu, Y.; Park, S.Y.; Nombela-Arrieta, C.; Mondal, S.; Sun, Y.; Zhu, H.; Chai, L.; Silberstein, L.E.; Cheng, T.; Luo, H.R. Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis. Immunity, 2015, 42(1), 159-171.
[http://dx.doi.org/10.1016/j.immuni.2014.12.017] [PMID: 25579427]
[207]
Sabens, L.E.A.; Gao, X.H.; Mieyal, J.J. Mechanisms of altered redox regulation in neurodegenerative diseases-focus on S-glutathionylation. Antioxid. Redox Signal., 2012, 16(6), 543-566.
[http://dx.doi.org/10.1089/ars.2011.4119] [PMID: 22066468]
[208]
Shah, Z.A.; Li, R.C.; Thimmulappa, R.K.; Kensler, T.W.; Yamamoto, M.; Biswal, S.; Doré, S. Role of reactive oxygen species in modulation of Nrf2 following ischemic reperfusion injury. Neuroscience, 2007, 147(1), 53-59.
[http://dx.doi.org/10.1016/j.neuroscience.2007.02.066] [PMID: 17507167]
[209]
Smith, M.A.; Nunomura, A.; Lee, H.; Zhu, X.; Moreira, P.I.; Avila, J.; Perry, G. Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol. Aging, 2005, 26(5), 579-580.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.09.021] [PMID: 15708430]
[210]
Wang, J.Y.; Li, J.Q.; Xiao, Y.M.; Fu, B.; Qin, Z.H. Triphenylphosphonium (TPP)‐Based Antioxidants: A New Perspective on Antioxidant Design. ChemMedChem, 2020, 15(5), 404-410.
[http://dx.doi.org/10.1002/cmdc.201900695] [PMID: 32020724]
[211]
Murphy, M.P.; Smith, R.A.J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 629-656.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105110] [PMID: 17014364]
[212]
Reddy, P.H. Amyloid precursor protein-mediated free radicals and oxidative damage: Implications for the development and progression of Alzheimer’s disease. J. Neurochem., 2006, 96(1), 1-13.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03530.x] [PMID: 16305625]
[213]
Jauslin, M.L.; Meier, T.; Smith, R.A.J.; Murphy, P.M. Mitochondria‐targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J., 2003, 17(13), 1-10.
[http://dx.doi.org/10.1096/fj.03-0240fje] [PMID: 12923074]
[214]
Siler-Marsiglio, K.I.; Pan, Q.; Paiva, M.; Madorsky, I.; Khurana, N.C.; Heaton, M.B. Mitochondrially targeted vitamin E and vitamin E mitigate ethanol-mediated effects on cerebellar granule cell antioxidant defense systems. Brain Res., 2005, 1052(2), 202-211.
[http://dx.doi.org/10.1016/j.brainres.2005.06.030] [PMID: 16024002]
[215]
Kim, H.J.; Shin, S.W.; Oh, C.J.; Lee, M.H.; Yang, C.H.; Park, J.W. N-t -Butyl hydroxylamine regulates heat shock-induced apoptosis in U937 cells. Redox Rep., 2005, 10(6), 287-293.
[http://dx.doi.org/10.1179/135100005X83662] [PMID: 16438800]
[216]
Murphy, M.P.; Echtay, K.S.; Blaikie, F.H.; Asin-Cayuela, J.; Cochemé, H.M.; Green, K.; Buckingham, J.A.; Taylor, E.R.; Hurrell, F.; Hughes, G.; Miwa, S.; Cooper, C.E.; Svistunenko, D.A.; Smith, R.A.J.; Brand, M.D. Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from α-phenyl-N-tert-butylnitrone. J. Biol. Chem., 2003, 278(49), 48534-48545.
[http://dx.doi.org/10.1074/jbc.M308529200] [PMID: 12972420]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy