Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anlotinib Inhibits Proliferation and Induces Apoptosis in B-cell Acute Lymphoblastic Leukemia by Targeting the BTK and AKT/mTOR Pathway

Author(s): Xiaowei Shi, Shuangyue Li, Shanhao Tang and Ying Lu*

Volume 23, Issue 12, 2023

Published on: 07 April, 2023

Page: [1397 - 1405] Pages: 9

DOI: 10.2174/1871520623666230301125311

Price: $65

Abstract

Background: Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults, whose known drug treatments are limited and expensive.

Objective: This investigation aimed to investigate the therapeutic potential of anlotinib in B-cell acute lymphoblastic leukemia (B-ALL).

Methods: The B-ALL cell lines Nalm-6 and BALL-1 were used to verify the therapeutic potential of anlotinib in BALL. The cell activity was measured by Cell Counting Kit-8. Apoptosis was detected by Annexin V-FITC/PI double staining combined with flow cytometry. Afterward, the binding capacity of anlotinib to the critical protein was predicted by molecular docking, and the protein changes in the related pathways downstream of the target proteins were verified by western blot. Finally, the effect of anlotinib on the survival rate was verified in B-ALL nude mice.

Results: Anlotinib inhibited the proliferation of the B-ALL cell lines, Nalm-6, and BALL-1, and promoted apoptosis. Molecular docking results showed that it had the potential binding ability to BTK. Western blot revealed that anlotinib was able to inhibit the phosphorylation of BTK, AKT, and mTOR, thereby inhibiting the proliferation of B-ALL cells. In addition, anlotinib suppressed weight loss and prolonged the survival time of mice.

Conclusion: To summarize, anlotinib can inhibit the proliferation of B-ALL and promotes apoptosis by inhibiting the phosphorylation of BTK and AKT, and mTOR.

Keywords: Anlotinib, acute lymphoblastic leukemia, BTK, AKT, lymphoblastic leukemia, western blot.

Graphical Abstract
[1]
Imai, K. Acute lymphoblastic leukemia: Pathophysiology and current therapy. Rinsho Ketsueki, 2017, 58(5), 460-470.
[PMID: 28592761]
[2]
Kantarjian, H.M.; Thomas, D.; Ravandi, F.; Faderl, S.; Jabbour, E.; Garcia-Manero, G.; Pierce, S.; Shan, J.; Cortes, J.; O’Brien, S. Defining the course and prognosis of adults with acute lymphocytic leukemia in first salvage after induction failure or short first remission duration. Cancer, 2010, 116(24), 5568-5574.
[http://dx.doi.org/10.1002/cncr.25354] [PMID: 20737576]
[3]
Gutierrez-Camino, Á.; Umerez, M.; Martin-Guerrero, I.; García de Andoin, N.; Santos, B.; Sastre, A.; Echebarria-Barona, A.; Astigarraga, I.; Navajas, A.; Garcia-Orad, A. Mir-pharmacogenetics of Vincristine and peripheral neurotoxicity in childhood B-cell acute lymphoblastic leukemia. Pharmacogenomics J., 2018, 18(6), 704-712.
[http://dx.doi.org/10.1038/s41397-017-0003-3] [PMID: 29282364]
[4]
Goodman, P.A.; Wood, C.M.; Vassilev, A.O.; Mao, C.; Uckun, F.M. Defective expression of Bruton’s tyrosine kinase in acute lymphoblastic leukemia. Leuk. Lymphoma, 2003, 44(6), 1011-1018.
[http://dx.doi.org/10.1080/1042819031000067576] [PMID: 12854903]
[5]
Katz, F.E.; Lovering, R.C.; Bradley, L.A.; Rigley, K.P.; Brown, D.; Cotter, F.; Chessells, J.M.; Levinsky, R.J.; Kinnon, C. Expression of the X-linked agammaglobulinemia gene, btk in B-cell acute lymphoblastic leukemia. Leukemia, 1994, 8(4), 574-577.
[PMID: 8152253]
[6]
Butler, M.; van Ingen Schenau, D.S.; Yu, J.; Jenni, S.; Dobay, M.P.; Hagelaar, R.; Vervoort, B.M.T.; Tee, T.M.; Hoff, F.W.; Meijerink, J.P.; Kornblau, S.M.; Bornhauser, B.; Bourquin, J.P.; Kuiper, R.P.; van der Meer, L.T.; van Leeuwen, F.N. BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway. Blood, 2021, 138(23), 2383-2395.
[http://dx.doi.org/10.1182/blood.2021011787] [PMID: 34280258]
[7]
Müller, V.; Clemens, M.; Jassem, J.; Al-Sakaff, N.; Auclair, P.; Nüesch, E.; Holloway, D.; Shing, M.; Bang, Y.J. Long-term trastuzumab (Herceptin®) treatment in a continuation study of patients with HER2-positive breast cancer or HER2-positive gastric cancer. BMC Cancer, 2018, 18(1), 295.
[http://dx.doi.org/10.1186/s12885-018-4183-2] [PMID: 29544445]
[8]
Zhu, Z.; Ling, L.; Qi, L.; Chong, Y.; Xue, L. Bruton’s Tyrosine Kinase (BTK) Inhibitor (Ibrutinib)-suppressed migration and invasion of prostate cancer. Onco. Targets Ther., 2020, 13, 4113-4122.
[http://dx.doi.org/10.2147/OTT.S245848] [PMID: 32494164]
[9]
Overman, M.; Javle, M.; Davis, R.E.; Vats, P.; Kumar-Sinha, C.; Xiao, L.; Mettu, N.B.; Parra, E.R.; Benson, A.B.; Lopez, C.D.; Munugalavadla, V.; Patel, P.; Tao, L.; Neelapu, S.; Maitra, A. Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer. J. Immunother. Cancer, 2020, 8(1), e000587.
[http://dx.doi.org/10.1136/jitc-2020-000587] [PMID: 32114502]
[10]
Lin, B.; Song, X.; Yang, D.; Bai, D.; Yao, Y.; Lu, N. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRβ and FGFR1. Gene, 2018, 654, 77-86.
[http://dx.doi.org/10.1016/j.gene.2018.02.026] [PMID: 29454091]
[11]
Lu, J.; Zhong, H.; Wu, J.; Chu, T.; Zhang, L.; Li, H.; Wang, Q.; Li, R.; Zhao, Y.; Gu, A.; Wang, H.; Shi, C.; Xiong, L.; Zhang, X.; Zhang, W.; Lou, Y.; Yan, B.; Dong, Y.; Zhang, Y.; Li, B.; Zhang, L.; Zhao, X.; Li, K.; Han, B. Circulating DNA‐based sequencing guided anlotinib therapy in non‐small cell lung cancer. Adv. Sci., 2019, 6(19), 1900721.
[http://dx.doi.org/10.1002/advs.201900721] [PMID: 31592412]
[12]
Tang, Y.; Ou, Z.; Yao, Z.; Qiao, G. A case report of immune checkpoint inhibitor nivolumab combined with anti-angiogenesis agent anlotinib for advanced esophageal squamous cell carcinoma. Medicine, 2019, 98(40), e17164.
[http://dx.doi.org/10.1097/MD.0000000000017164] [PMID: 31577707]
[13]
Gao, Q.; Tang, S.; Chen, H.; Chen, H.; Li, X.; Jiang, Y.; Fu, S.; Lin, S. Intratumoral injection of anlotinib hydrogel enhances antitumor effects and reduces toxicity in mouse model of lung cancer. Drug Deliv., 2020, 27(1), 1524-1534.
[http://dx.doi.org/10.1080/10717544.2020.1837292] [PMID: 33118422]
[14]
Yang, Q.; Ni, L.; Imani, S.; Xiang, Z.; Hai, R.; Ding, R.; Fu, S.; Wu, J.; Wen, Q. Anlotinib suppresses colorectal cancer proliferation and angiogenesis via inhibition of AKT/ERK signaling cascade. Cancer Manag. Res., 2020, 12, 4937-4948.
[http://dx.doi.org/10.2147/CMAR.S252181] [PMID: 32606981]
[15]
Syed, Y.Y. Anlotinib: First global approval. Drugs, 2018, 78(10), 1057-1062.
[http://dx.doi.org/10.1007/s40265-018-0939-x] [PMID: 29943374]
[16]
Rushworth, S.A.; Bowles, K.M.; Barrera, L.N.; Murray, M.Y.; Zaitseva, L.; MacEwan, D.J. BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-κ. B. Cell. Signal., 2013, 25(1), 106-112.
[http://dx.doi.org/10.1016/j.cellsig.2012.09.008] [PMID: 22975686]
[17]
Woyach, J.A.; Bojnik, E.; Ruppert, A.S.; Stefanovski, M.R.; Goettl, V.M.; Smucker, K.A.; Smith, L.L.; Dubovsky, J.A.; Towns, W.H.; MacMurray, J.; Harrington, B.K.; Davis, M.E.; Gobessi, S.; Laurenti, L.; Chang, B.Y.; Buggy, J.J.; Efremov, D.G.; Byrd, J.C.; Johnson, A.J. Bruton’s tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL). Blood, 2014, 123(8), 1207-1213.
[http://dx.doi.org/10.1182/blood-2013-07-515361] [PMID: 24311722]
[18]
Zaitseva, L.; Murray, M.Y.; Shafat, M.S.; Lawes, M.J.; MacEwan, D.J.; Bowles, K.M.; Rushworth, S.A. Ibrutinib inhibits SDF1/CXCR4 mediated migration in AML. Oncotarget, 2014, 5(20), 9930-9938.
[http://dx.doi.org/10.18632/oncotarget.2479] [PMID: 25294819]
[19]
Kim, E.; Hurtz, C.; Koehrer, S.; Wang, Z.; Balasubramanian, S.; Chang, B.Y.; Müschen, M.; Davis, R.E.; Burger, J.A. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood, 2017, 129(9), 1155-1165.
[http://dx.doi.org/10.1182/blood-2016-06-722900] [PMID: 28031181]
[20]
Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J., 2017, 7(6), e577.
[http://dx.doi.org/10.1038/bcj.2017.53] [PMID: 28665419]
[21]
Xie, C.; Wan, X.; Quan, H.; Zheng, M.; Fu, L.; Li, Y.; Lou, L. Preclinical characterization of anlotinib, a highly potent and selective vascular endothelial growth factor receptor‐2 inhibitor. Cancer Sci., 2018, 109(4), 1207-1219.
[http://dx.doi.org/10.1111/cas.13536] [PMID: 29446853]
[22]
Neri, L.M.; Cani, A.; Martelli, A.M.; Simioni, C.; Junghanss, C.; Tabellini, G.; Ricci, F.; Tazzari, P.L.; Pagliaro, P.; McCubrey, J.A.; Capitani, S. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia, 2014, 28(4), 739-748.
[http://dx.doi.org/10.1038/leu.2013.226] [PMID: 23892718]
[23]
Evangelisti, C.; Chiarini, F.; Cappellini, A.; Paganelli, F.; Fini, M.; Santi, S.; Martelli, A.M.; Neri, L.M.; Evangelisti, C. Targeting Wnt/β‐catenin and PI3K/Akt/mTOR pathways in T‐cell acute lymphoblastic leukemia. J. Cell. Physiol., 2020, 235(6), 5413-5428.
[http://dx.doi.org/10.1002/jcp.29429] [PMID: 31904116]
[24]
Naderali, E.; Valipour, B.; Khaki, A.A.; Soleymani Rad, J.; Alihemmati, A.; Rahmati, M.; Nozad Charoudeh, H. Positive effects of PI3K/Akt signaling inhibition on PTEN and P53 in prevention of acute lymphoblastic leukemia tumor cells. Adv. Pharm. Bull., 2019, 9(3), 470-480.
[http://dx.doi.org/10.15171/apb.2019.056] [PMID: 31592121]
[25]
Han, J.; Lin, M.; Zhou, D.; Zhang, Z.; Jin, R.; Zhou, F. Huang Qi Huai granules induce apoptosis in acute lymphoblastic leukemia cells through the Akt/FoxO1 pathway. Cell. Physiol. Biochem., 2016, 38(5), 1803-1814.
[http://dx.doi.org/10.1159/000443119] [PMID: 27160160]
[26]
Altman, J.K.; Sassano, A.; Platanias, L.C. Targeting mTOR for the treatment of AML. New agents and new directions. Oncotarget, 2011, 2(6), 510-517.
[http://dx.doi.org/10.18632/oncotarget.290] [PMID: 21680954]
[27]
Sokolosky, M.L.; Stadelman, K.M.; Chappell, W.H.; Abrams, S.L.; Martelli, A.M.; Stivala, F.; Libra, M.; Nicoletti, F.; Drobot, L.B.; Franklin, R.A.; Steelman, L.S.; McCubrey, J.A. Involvement of Akt-1 and mTOR in sensitivity of breast cancer to targeted therapy. Oncotarget, 2011, 2(7), 538-550.
[http://dx.doi.org/10.18632/oncotarget.302] [PMID: 21730367]
[28]
Chen, J.; Feng, J.; Fang, Z.; Ye, J.; Chen, Q.; Chen, Q.; Chen, K.; Xiong, X.; Li, G.; Song, H.; Xu, B. Anlotinib suppresses MLL-rearranged acute myeloid leukemia cell growth by inhibiting SETD1A/AKT-mediated DNA damage response. Am. J. Transl. Res., 2021, 13(3), 1494-1504.
[PMID: 33841673]
[29]
Inaba, H.; Pui, C.H. Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev., 2019, 38(4), 595-610.
[http://dx.doi.org/10.1007/s10555-019-09834-0] [PMID: 31811553]
[30]
Siegler, E.L.; Kenderian, S.S. Neurotoxicity and cytokine release syndrome after chimeric antigen receptor T cell therapy: Insights into mechanisms and novel therapies. Front. Immunol., 2020, 11, 1973.
[http://dx.doi.org/10.3389/fimmu.2020.01973] [PMID: 32983132]
[31]
Zeng, W.; Zhang, P. Resistance and recurrence of malignancies after CAR-T cell therapy. Exp. Cell Res., 2022, 410(2), 112971.
[http://dx.doi.org/10.1016/j.yexcr.2021.112971] [PMID: 34906583]
[32]
Su, Y.; Luo, B.; Lu, Y.; Wang, D.; Yan, J.; Zheng, J.; Xiao, J.; Wang, Y.; Xue, Z.; Yin, J.; Chen, P.; Li, L.; Zhao, Q. Anlotinib induces a T cell–inflamed tumor microenvironment by facilitating vessel normalization and enhances the efficacy of PD-1 checkpoint blockade in neuroblastoma. Clin. Cancer Res., 2022, 28(4), 793-809.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2241] [PMID: 34844980]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy