Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Fructo-oligosaccharides Ameliorate Intestinal Mechanical Barrier Injury in Piglets Induced by Soybean Antigen in vitro and in vivo

Author(s): Mengmeng Mi, Meinan Chang, Yihong Huang, Jinpeng Zhao, Li Pan, Nan Bao, Guixin Qin and Yuan Zhao*

Volume 24, Issue 3, 2023

Published on: 08 March, 2023

Page: [267 - 276] Pages: 10

DOI: 10.2174/1389203724666230224090312

Price: $65

Abstract

Background: Fructose oligosaccharides (FOS) have been shown to reduce soybean antigeninduced hypersensitivity in piglets, but their effects on intestinal epithelial barrier function have not been characterized. Therefore, this study aimed to determine the effects of FOS on intestinal barrier injury induced by soybean antigen in piglets in vitro and in vivo.

Methods: We studied the protective effects of FOS against mechanical barrier dysfunction induced using β-conglycinin or glycinin in porcine intestinal epithelial cells (IPEC-J2), and measured the serum concentrations of diamine oxidase (DAO), D-lactic acid, and endotoxin, and the expression of tight junction (TJ) proteins, in piglets.

Results: We found that FOS concentration dependently increases cell activity, trans-epithelial electrical resistance, and TJ protein expression (P < 0.05) and reduces alkaline phosphatase (AP) activity (P < 0.05) in vitro. In addition, the serum DAO, D-lactic acid, and endotoxin concentrations were reduced by FOS administration in piglets (P < 0.05). Both in vitro and in vivo, the expression levels of TJ proteins (zona occludens 1 and occludin) were increased significantly by FOS (P < 0.05).

Conclusion: Therefore, FOS protect against intestinal injury induced by soybean antigen in piglets, which may provide a basis for the prevention of allergy.

Keywords: Fructo-oligosaccharide, β-conglycinin, glycinin, intestinal barrier function, weaned piglet, D-lactic acid, alkaline phosphatase (AP).

Graphical Abstract
[1]
Baker, K.M.; Utterback, P.L.; Parsons, C.M.; Stein, H.H. Nutritional value of soybean meal produced from conventional, high-protein, or low-oligosaccharide varieties of soybeans and fed to broiler chicks. Poult. Sci., 2011, 90(2), 390-395.
[http://dx.doi.org/10.3382/ps.2010-00978] [PMID: 21248336]
[2]
Friedman, M.; Brandon, D.L. Nutritional and health benefits of soy proteins. J. Agric. Food Chem., 2001, 49(3), 1069-1086.
[http://dx.doi.org/10.1021/jf0009246] [PMID: 11312815]
[3]
Wang, Y.; Liu, X.T.; Wang, H.L.; Li, D.F.; Piao, X.S.; Lu, W.Q. Optimization of processing conditions for solid-state fermented soybean meal and its effects on growth performance and nutrient digestibility of weanling pigs. Livest. Sci., 2014, 170, 91-99.
[http://dx.doi.org/10.1016/j.livsci.2014.07.020]
[4]
Chang, M.; Zhao, Y.; Qin, G.; Zhang, X. Fructo-oligosaccharide alleviates soybean-induced anaphylaxis in piglets by modulating gut microbes. Front. Microbiol., 2018, 9, 2769.
[http://dx.doi.org/10.3389/fmicb.2018.02769] [PMID: 30524396]
[5]
Sun, P.; Li, D.; Dong, B.; Qiao, S.; Ma, X. Effects of soybean glycinin on performance and immune function in early weaned pigs. Arch. Anim. Nutr., 2008, 62(4), 313-321.
[http://dx.doi.org/10.1080/17450390802066419] [PMID: 18763625]
[6]
Johansson, M.E.V.; Sjövall, H.; Hansson, G.C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(6), 352-361.
[http://dx.doi.org/10.1038/nrgastro.2013.35] [PMID: 23478383]
[7]
Ulluwishewa, D.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Wells, J.M.; Roy, N.C. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr., 2011, 141(5), 769-776.
[http://dx.doi.org/10.3945/jn.110.135657] [PMID: 21430248]
[8]
Zhao, Y.; Qin, G.; Han, R.; Wang, J.; Zhang, X.; Liu, D. β-Conglycinin reduces the tight junction occludin and ZO-1 expression in IPEC-J2. Int. J. Mol. Sci., 2014, 15(2), 1915-1926.
[http://dx.doi.org/10.3390/ijms15021915] [PMID: 24473141]
[9]
Zhao, Y.; Liu, D.; Han, R.; Zhang, X.; Zhang, S.; Qin, G. Soybean allergen glycinin induced the destruction of the mechanical barrier function in IPEC-J2. Food Agric. Immunol., 2015, 26(4), 601-609.
[http://dx.doi.org/10.1080/09540105.2014.998638]
[10]
Zhao, Y.; Liu, D.; Zhang, S.; Pan, L.; Qin, G. Different damage to the mechanical barrier function of IPEC-J2 induced by soybean allergen β-conglycinin hydrolyzed peptides. Int. J. Food Eng., 2017, 13(10)
[http://dx.doi.org/10.1515/ijfe-2016-0370]
[11]
Tang, J.; Cao, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; Cai, J.; Shang, H.; Zhao, H. The protective effect of selenium from heat stress-induced porcine small intestinal epithelial cell line (IPEC-J2) injury is associated with regulation expression of selenoproteins. Br. J. Nutr., 2019, 122(10), 1081-1090.
[http://dx.doi.org/10.1017/S0007114519001910] [PMID: 31637977]
[12]
Rhoads, J.M.; Chen, W.; Chu, P.; Berschneider, H.M.; Argenzio, R.A.; Paradiso, A.M. L-glutamine and L-asparagine stimulate Na+ -H+ exchange in porcine jejunal enterocytes. Am. J. Physiol., 1994, 266(5 Pt 1), G828-G838.
[PMID: 8203529]
[13]
Weangsripanaval, T.; Murota, K.; Murakami, Y.; Kominami, M.; Kusudo, T.; Moriyama, T.; Ogawa, T.; Kawada, T. Sodium cromoglycate inhibits absorption of the major soybean allergen, Gly m Bd 30K, in mice and human intestinal Caco-2 cells. J. Nutr., 2006, 136(11), 2874-2880.
[http://dx.doi.org/10.1093/jn/136.11.2874] [PMID: 17056816]
[14]
Sewekow, E.; Bimczok, D.; Kähne, T.; Faber-Zuschratter, H.; Kessler, L.C.; Seidel-Morgenstern, A.; Rothkötter, H.J. The major soyabean allergen P34 resists proteolysis in vitro and is transported through intestinal epithelial cells by a caveolae-mediated mechanism. Br. J. Nutr., 2012, 108(9), 1603-1611.
[http://dx.doi.org/10.1017/S0007114511007045] [PMID: 22244500]
[15]
Gourbeyre, P.; Denery, S.; Bodinier, M. Probiotics, prebiotics, and synbiotics: Impact on the gut immune system and allergic reactions. J. Leukoc. Biol., 2011, 89(5), 685-695.
[http://dx.doi.org/10.1189/jlb.1109753] [PMID: 21233408]
[16]
Wongkrasant, P.; Pongkorpsakol, P.; Ariyadamrongkwan, J.; Meesomboon, R.; Satitsri, S.; Pichyangkura, R.; Barrett, K.E.; Muanprasat, C. A prebiotic fructo-oligosaccharide promotes tight junction assembly in intestinal epithelial cells via an AMPK-dependent pathway. Biomed. Pharmacother., 2020, 129, 110415.
[http://dx.doi.org/10.1016/j.biopha.2020.110415] [PMID: 32603892]
[17]
Wan, J.; Zhang, J.; Xu, Q.; Yin, H.; Chen, D.; Yu, B.; He, J. Alginate oligosaccharide protects against enterotoxigenic Escherichia coli-induced porcine intestinal barrier injury. Carbohydr. Polym., 2021, 270, 118316.
[http://dx.doi.org/10.1016/j.carbpol.2021.118316] [PMID: 34364589]
[18]
Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol., 2019, 103(16), 6463-6472.
[http://dx.doi.org/10.1007/s00253-019-09978-7] [PMID: 31267231]
[19]
Iwabuchi, S.; Yamauchi, F. Determination of glycinin and. beta.-conglycinin in soybean proteins by immunological methods. J. Agric. Food Chem., 1987, 35(2), 200-205.
[http://dx.doi.org/10.1021/jf00074a009]
[20]
Peng, C.; Cao, C.; He, M.; Shu, Y.; Tang, X.; Wang, Y.; Zhang, Y.; Xia, X.; Li, Y.; Wu, J. Soybean glycinin- and β-conglycinin-induced intestinal damage in piglets via the p38/JNK/NF-κB signaling pathway. J. Agric. Food Chem., 2018, 66(36), 9534-9541.
[http://dx.doi.org/10.1021/acs.jafc.8b03641] [PMID: 30139257]
[21]
Peng, C.; Ding, X.; Zhu, L.; He, M.; Shu, Y.; Zhang, Y.; Li, Y.; Wang, X.; Feng, S.; Li, J.; Wu, J. β-conglycinin-induced intestinal porcine epithelial cell damage via the nuclear factor κB/mitogen-activated protein kinase signaling pathway. J. Agric. Food Chem., 2019, 67(32), 9009-9021.
[http://dx.doi.org/10.1021/acs.jafc.9b02784] [PMID: 31319030]
[22]
Wu, J.J.; Zhang, Y.; Dong, J.H.; Cao, C.M.; Li, B.; Feng, S.B.; Ding, H.Y.; Ma, L.Y.; Wang, X.C.; Li, Y. Allergens and intestinal damage induced by soybean antigen proteins in weaned piglets. Ital. J. Anim. Sci., 2016, 15(3), 437-445.
[http://dx.doi.org/10.1080/1828051X.2016.1200441]
[23]
Flores-Maltos, D.A.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Teixeira, J.A.; Aguilar, C.N. Biotechnological production and application of fructooligosaccharides. Crit. Rev. Biotechnol., 2016, 36(2), 259-267.
[http://dx.doi.org/10.3109/07388551.2014.953443] [PMID: 25519697]
[24]
Daguet, D.; Pinheiro, I.; Verhelst, A.; Possemiers, S.; Marzorati, M. Arabinogalactan and fructooligosaccharides improve the gut barrier function in distinct areas of the colon in the simulator of the human intestinal microbial ecosystem. J. Funct. Foods, 2016, 20, 369-379.
[http://dx.doi.org/10.1016/j.jff.2015.11.005]
[25]
Schokker, D.; Fledderus, J.; Jansen, R.; Vastenhouw, S.A.; de Bree, F.M.; Smits, M.A.; Jansman, A.A.J.M. Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development. J. Anim. Sci., 2018, 96(6), 2139-2153.
[http://dx.doi.org/10.1093/jas/sky110] [PMID: 29800418]
[26]
Shang, Y.; Regassa, A.; Kim, J.H.; Kim, W.K. The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella enteritidis lipopolysaccharides. Poult. Sci., 2015, 94(12), 2887-2897.
[http://dx.doi.org/10.3382/ps/pev275] [PMID: 26467012]
[27]
Lafontaine, G.M.F.; Fish, N.M.; Connerton, I.F. In vitro evaluation of the effects of commercial prebiotic GOS and FOS products on human colonic Caco-2 cells. Nutrients, 2020, 12(5), 1281.
[http://dx.doi.org/10.3390/nu12051281] [PMID: 32366023]
[28]
Zhao, Y.; Zhang, S.; Zhang, X.; Pan, L.; Bao, N.; Qin, G. Fructooligosaccharide inhibits the absorption of β-conglycinin (a major Soybean allergen) in IPEC-J2. Int. J. Food Eng., 2018, 15(1-2)
[http://dx.doi.org/10.1515/ijfe-2018-0116]
[29]
Fukushima, D. Recent progress in research and technology on soybeans. Food Sci. Technol. Res., 2007, 7(1), 8-16.
[http://dx.doi.org/10.3136/fstr.7.8]
[30]
Geddes, K.; Philpott, D.J. A new role for intestinal alkaline phosphatase in gut barrier maintenance. Gastroenterology, 2008, 135(1), 8-12.
[http://dx.doi.org/10.1053/j.gastro.2008.06.006] [PMID: 18549817]
[31]
Shi, L.; Fang, B.; Yong, Y.; Li, X.; Gong, D.; Li, J.; Yu, T.; Gooneratne, R.; Gao, Z.; Li, S.; Ju, X. Chitosan oligosaccharide-mediated attenuation of LPS-induced inflammation in IPEC-J2 cells is related to the TLR4/NF-κB signaling pathway. Carbohydr. Polym., 2019, 219, 269-279.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.036] [PMID: 31151525]
[32]
Holmes, J.L.; Van Itallie, C.M.; Rasmussen, J.E.; Anderson, J.M. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr. Patterns, 2006, 6(6), 581-588.
[http://dx.doi.org/10.1016/j.modgep.2005.12.001] [PMID: 16458081]
[33]
Ewaschuk, J.B.; Diaz, H.; Meddings, L.; Diederichs, B.; Dmytrash, A.; Backer, J.; Looijer-van, L.M.; Madsen, K.L. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(5), G1025-G1034.
[http://dx.doi.org/10.1152/ajpgi.90227.2008] [PMID: 18787064]
[34]
Ma, X.; Fan, P.X.; Li, L.S.; Qiao, S.Y.; Zhang, G.L.; Li, D.F. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J. Anim. Sci., 2012, 90(S4), 266-268.
[http://dx.doi.org/10.2527/jas.50965] [PMID: 23365351]
[35]
Kessoku, T.; Kobayashi, T.; Imajo, K.; Tanaka, K.; Yamamoto, A.; Takahashi, K.; Kasai, Y.; Ozaki, A.; Iwaki, M.; Nogami, A.; Honda, Y.; Ogawa, Y.; Kato, S.; Higurashi, T.; Hosono, K.; Yoneda, M.; Okamoto, T.; Usuda, H.; Wada, K.; Kobayashi, N.; Saito, S.; Nakajima, A. Endotoxins and non-alcoholic fatty liver disease. Front. Endocrinol., 2021, 12(1451), 770986.
[http://dx.doi.org/10.3389/fendo.2021.770986] [PMID: 34777261]
[36]
Ludidi, S.; Jonkers, D.; Elamin, E.; Pieters, H.J.; Schaepkens, E.; Bours, P.; Kruimel, J.; Conchillo, J.; Masclee, A. The intestinal barrier in irritable bowel syndrome: Subtype-specific effects of the systemic compartment in an in vitro model. PLoS One, 2015, 10(5), e0123498.
[http://dx.doi.org/10.1371/journal.pone.0123498] [PMID: 25978614]
[37]
Murray, M.J.; Barbose, J.J.; Cobb, C.F.; Serum, D. Serum D(-)-lactate levels as a predictor of acute intestinal ischemia in a rat model. J. Surg. Res., 1993, 54(5), 507-509.
[http://dx.doi.org/10.1006/jsre.1993.1078] [PMID: 8361176]
[38]
Wu, G.; Meier, S.A.; Knabe, D.A. Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J. Nutr., 1996, 126(10), 2578-2584.
[http://dx.doi.org/10.1093/jn/126.10.2578] [PMID: 8857520]
[39]
Xiao, K.; Song, Z.H.; Jiao, L.F.; Ke, Y.L.; Hu, C.H. Developmental changes of TGF-β1 and Smads signaling pathway in intestinal adaption of weaned pigs. PLoS One, 2014, 9(8), e104589.
[http://dx.doi.org/10.1371/journal.pone.0104589] [PMID: 25170924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy