Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Antimicrobial Resistance and Current Alternatives in Veterinary Practice: A Review

Author(s): Annalisa Rizzo, Mariagrazia Piccinno, Edoardo Lillo, Alice Carbonari, Felicita Jirillo and Raffaele Luigi Sciorsci*

Volume 29, Issue 5, 2023

Published on: 07 February, 2023

Page: [312 - 322] Pages: 11

DOI: 10.2174/1381612829666230130144731

Price: $65

conference banner
Abstract

Antibiotics are commonly used to treat bacterial infections. For many years, antibiotics have been used at sub-therapeutic doses to promote animal growth and misused as prophylactics and metaphylactic on farms. The widespread and improper use of antibiotics has resulted in a serious problem, defined as antibiotic resistance by the World Health Organisation, which is a major public health threat in the 21st century. Bacteria have evolved sophisticated mechanistic strategies to avoid being killed by antibiotics. These strategies can be classified as intrinsic resistance (referring to the inherent structural or functional characteristics of a bacterial species) or acquired resistance (referring to mutations in chromosomal genes or the acquisition of external genetic determinants of resistance). In farm animals, the use of antibiotics warrants serious consideration, as their residues leach into the environment through effluents and come into contact with humans through food. Several factors have contributed to the emergence of antibiotic-resistant bacteria. This review provides an update on antibiotic resistance mechanisms, while focusing on the effects of this threat on veterinary medicine, and highlighting causal factors in clinical practice. Finally, it makes an excursus on alternative therapies, such as the use of bacteriophages, bacteriocins, antimicrobial photodynamic therapy, phytochemicals, and ozone therapy, which should be used to combat antibiotic-resistant infections. Some of these therapies, such as ozone therapy, are aimed at preventing the persistence of antibiotics in animal tissues and their contact with the final consumer of food of animal origin.

Keywords: Antibiotics, antibiotic resistance, farm animals, alternative therapy, phytotherapy, ozone therapy.

[1]
Stokstad ELR, Jukes TH, Pierce J, Page AC Jr, Franklin AL. The multiple nature of the animal protein factor. J Biol Chem 1949; 180(2): 647-54.
[http://dx.doi.org/10.1016/S0021-9258(18)56683-7] [PMID: 18135798]
[2]
Gustafson RH, Bowen RE. Antibiotic use in animal agriculture. J Appl Microbiol 1997; 83(5): 531-41.
[http://dx.doi.org/10.1046/j.1365-2672.1997.00280.x] [PMID: 9418018]
[3]
Ungemach FR, Müller-Bahrdt D, Abraham G. Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. Int J Med Microbiol 2006; 296(Suppl. 41): 33-8.
[http://dx.doi.org/10.1016/j.ijmm.2006.01.059] [PMID: 16520092]
[4]
Livermore DM. Bacterial resistance: Origins, epidemiology, and impact. Clin Infect Dis 2003; 36 (Suppl. 1): S11-23.
[http://dx.doi.org/10.1086/344654] [PMID: 12516026]
[5]
Arnold S, Gassner B, Giger T, Zwahlen R. Banning antimicrobial growth promoters in feedstuffs does not result in increased therapeutic use of antibiotics in medicated feed in pig farming. Pharmacoepidemiol Drug Saf 2004; 13(5): 323-31.
[http://dx.doi.org/10.1002/pds.874] [PMID: 15133785]
[6]
Phillips I, Casewell M, Cox T, et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 2003; 53(1): 28-52.
[http://dx.doi.org/10.1093/jac/dkg483] [PMID: 14657094]
[7]
Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 2001; 67(4): 1494-502.
[http://dx.doi.org/10.1128/AEM.67.4.1494-1502.2001] [PMID: 11282596]
[8]
De Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C. Use of oxytetracycline and tylosin in intensive calf farming: Evaluation of transfer to manure and soil. Chemosphere 2003; 52(1): 203-12.
[http://dx.doi.org/10.1016/S0045-6535(03)00284-4] [PMID: 12729703]
[9]
Sørum M, Johnsen PJ, Aasnes B, et al. Prevalence, persistence, and molecular characterization of glycopeptide-resistant enterococci in Norwegian poultry and poultry farmers 3 to 8 years after the ban on avoparcin. Appl Environ Microbiol 2006; 72(1): 516-21.
[http://dx.doi.org/10.1128/AEM.72.1.516-521.2006] [PMID: 16391086]
[10]
Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: A rundown of a global crisis. Infect Drug Resist 2018; 11: 1645-58.
[http://dx.doi.org/10.2147/IDR.S173867] [PMID: 30349322]
[11]
González Pereyra V, Pol M, Pastorino F, Herrero A. Quantification of antimicrobial usage in dairy cows and preweaned calves in Argentina. Prev Vet Med 2015; 122(3): 273-9.
[http://dx.doi.org/10.1016/j.prevetmed.2015.10.019] [PMID: 26558514]
[12]
Kools SAE, Moltmann JF, Knacker T. Estimating the use of veterinary medicines in the European union. Regul Toxicol Pharmacol 2008; 50(1): 59-65.
[http://dx.doi.org/10.1016/j.yrtph.2007.06.003] [PMID: 18006198]
[13]
Sarmah AK, Meyer MT, Boxall ABA. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006; 65(5): 725-59.
[http://dx.doi.org/10.1016/j.chemosphere.2006.03.026] [PMID: 16677683]
[14]
Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 2015; 112(18): 5649-54.
[http://dx.doi.org/10.1073/pnas.1503141112] [PMID: 25792457]
[15]
De Briyne N, Atkinson J, Borriello SP, Pokludová L. Antibiotics used most commonly to treat animals in Europe. Vet Rec 2014; 175(13): 325.
[http://dx.doi.org/10.1136/vr.102462] [PMID: 24899065]
[16]
Alanis AJ. Resistance to antibiotics: Are we in the post-antibiotic era? Arch Med Res 2005; 36(6): 697-705.
[http://dx.doi.org/10.1016/j.arcmed.2005.06.009] [PMID: 16216651]
[17]
Földi J, Kulcsár M, Pécsi A, et al. Bacterial complications of postpartum uterine involution in cattle. Anim Reprod Sci 2006; 96(3-4): 265-81.
[http://dx.doi.org/10.1016/j.anireprosci.2006.08.006] [PMID: 16956738]
[18]
Kollef MH, Fraser VJ. Antibiotic resistance in the intensive care unit. Ann Intern Med 2001; 134(4): 298-314.
[http://dx.doi.org/10.7326/0003-4819-134-4-200102200-00014] [PMID: 11182841]
[19]
Guardabassi L, Brønnum PT, Danø R, Forslund A, Dalsgaard A. Dissemination of vancomycin-resistant enterococci harboring vanA through disposal of waste derived from industrial production of vancomycin. Microb Drug Resist 2002; 8(4): 401-6.
[http://dx.doi.org/10.1089/10766290260469688] [PMID: 12523639]
[20]
Jayaraman R. Antibiotic resistance: An overview of mechanisms and a paradigm shift. Curr Sci 2009; 96: 1475-84.
[21]
Ruiz J. Mechanisms of resistance to quinolones: Target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother 2003; 51(5): 1109-17.
[http://dx.doi.org/10.1093/jac/dkg222] [PMID: 12697644]
[22]
Mann A, Nehra K, Rana JS, Dahiya T. Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Curr Res Microb Sci 2021; 2: 100030.
[http://dx.doi.org/10.1016/j.crmicr.2021.100030] [PMID: 34841321]
[23]
Baquero F, Martínez JL, Cantón R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 2008; 19(3): 260-5.
[http://dx.doi.org/10.1016/j.copbio.2008.05.006] [PMID: 18534838]
[24]
Canteón R. Antibiotic resistance genes from the environment: A perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect 2009; 15 (Suppl. 1): 20-5.
[http://dx.doi.org/10.1111/j.1469-0691.2008.02679.x] [PMID: 19220348]
[25]
Lim SM, Webb SAR. Nosocomial bacterial infections in intensive careunits. I: Organisms and mechanisms of antibiotic resistance. Anaesthesia 2005; 60(9): 887-902.
[http://dx.doi.org/10.1111/j.1365-2044.2005.04220.x] [PMID: 16115251]
[26]
Landini P, Antoniani D, Burgess JG, Nijland R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 2010; 86(3): 813-23.
[http://dx.doi.org/10.1007/s00253-010-2468-8] [PMID: 20165945]
[27]
Harrison J, Turner R, Marques L, et al. A new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. Am Sci 2005; 93: 508-15.
[http://dx.doi.org/10.1511/2005.56.508]
[28]
Bukharin OV, Zak VI, Kurlaev PP, Zykova LS. Potentiation of the antimicrobial action of antibiotics in combination with oxytocin. Antibiotiki 1984; 29(5): 365-9.
[PMID: 6742808]
[29]
Sciorsci RL, Piccinno M, Rizzo A. Contractile effect of rifaximin on bovine uterus in the presence of steroid hormone antagonists. Theriogenology 2018; 110: 74-8.
[http://dx.doi.org/10.1016/j.theriogenology.2017.12.049] [PMID: 29353143]
[30]
Piccinno M, Lillo E, Rizzo A, et al. Unconventional effects of anti-microbial agents in bovine reproduction. Large Anim Rev 2022; 28: 3-9.
[31]
Cadena M, Durso LM, Miller DN, et al. Tetracycline and sulfonamide antibiotic resistance genes in soils from nebraska organic farming operations. Front Microbiol 2018; 9: 1283.
[http://dx.doi.org/10.3389/fmicb.2018.01283] [PMID: 30002648]
[32]
Guo K, Zhao Y, Cui L, et al. The influencing factors of bacterial resistance related to livestock farm: Sources and mechanisms. Front Anim Sci 2021; 2.
[33]
Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: Mechanisms and modulation. Sci Prog 2002; 85(1): 57-72.
[http://dx.doi.org/10.3184/003685002783238870] [PMID: 11969119]
[34]
European Union. Ban on antibiotics as growth promoters in animal feed enters into effect. Regulation 2006; 1.
[35]
The judicious use of medically important antimicrobial drugs in food-producing animals. Fed Regist 2012; 201: 1-19.
[36]
US Food and Drug Administration. Timeline of FDA Action on Antimicrobial Resistance.
[37]
Zecconi A, Gusmara C, Di Giusto T, Cipolla M, Marconi P, Zanini L. Observational study on application of a selective dry-cow therapy protocol based on individual somatic cell count thresholds. Ital J Anim Sci 2020; 19(1): 1341-8.
[http://dx.doi.org/10.1080/1828051X.2020.1842812]
[38]
Cameron M, McKenna SL, MacDonald KA, Dohoo IR, Roy JP, Keefe GP. Evaluation of selective dry cow treatment following on-farm culture: Risk of postcalving intramammary infection and clinical mastitis in the subsequent lactation. J Dairy Sci 2014; 97(1): 270-84.
[http://dx.doi.org/10.3168/jds.2013-7060] [PMID: 24183691]
[39]
Rowe SM, Godden SM, Nydam DV, et al. Randomized controlled non-inferiority trial investigating the effect of 2 selective dry-cow therapy protocols on antibiotic use at dry-off and dry period intramammary infection dynamics. J Dairy Sci 2020; 103(7): 6473-92.
[http://dx.doi.org/10.3168/jds.2019-17728] [PMID: 32448572]
[40]
European Medicines Agency. Third joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA. EFSA J 2021; 19(6): e06712.
[41]
European Medicines Agency. Categorisation of antibiotics in the European Union. European Medicines Agency (EMA/CVMP/CHMP/682198/2017). 2019.
[42]
Callaway TR, Lillehoj H, Chuanchuen R, et al. Erratum: Callaway et al. Alternatives to antibiotics: A symposium on the challenges and solutions for animal health and production. Antibiotics 2021; 10: 471.
[43]
Buchy P, Ascioglu S, Buisson Y, et al. Impact of vaccines on antimicrobial resistance. Int J Infect Dis 2020; 90: 188-96.
[http://dx.doi.org/10.1016/j.ijid.2019.10.005] [PMID: 31622674]
[44]
Kennedy DA, Read AF. Why does drug resistance readily evolve but vaccine resistance does not? Proc Biol Sci 2017; 284(1851): 20162562.
[http://dx.doi.org/10.1098/rspb.2016.2562] [PMID: 28356449]
[45]
Hoelzer K, Bielke L, Blake DP, et al. Vaccines as alternatives to antibiotics for food producing animals. Part 2: New approaches and potential solutions. Vet Res 2018; 49(1): 70.
[http://dx.doi.org/10.1186/s13567-018-0561-7] [PMID: 30060759]
[46]
Sharma C, Rokana N, Chandra M, et al. Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci 2018; 4: 237.
[http://dx.doi.org/10.3389/fvets.2017.00237] [PMID: 29359135]
[47]
Calero-Cáceres W, Ye M, Balcázar JL. Bacteriophages as environmental reservoirs of antibiotic resistance. Trends Microbiol 2019; 27(7): 570-7.
[http://dx.doi.org/10.1016/j.tim.2019.02.008] [PMID: 30905524]
[48]
Keen EC. A century of phage research: Bacteriophages and the shaping of modern biology. Bio Essays 2015; 37(1): 6-9.
[http://dx.doi.org/10.1002/bies.201400152] [PMID: 25521633]
[49]
Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z. Phage therapy in bacterial infections treatment: One hundred years after the discovery of bacteriophages. Curr Microbiol 2017; 74(2): 277-83.
[http://dx.doi.org/10.1007/s00284-016-1166-x] [PMID: 27896482]
[50]
Jamal M, Bukhari SMAUS, Andleeb S, et al. Bacteriophages: An overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol 2019; 59(2): 123-33.
[http://dx.doi.org/10.1002/jobm.201800412] [PMID: 30485461]
[51]
O’Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol 2005; 71(4): 1836-42.
[http://dx.doi.org/10.1128/AEM.71.4.1836-1842.2005] [PMID: 15812009]
[52]
O’Flaherty S, Ross RP, Flynn J, Meaney WJ, Fitzgerald GF, Coffey A. Isolation and characterization of two anti-staphylococcal bacteriophages specific for pathogenic Staphylococcus aureus associated with bovine infections. Lett Appl Microbiol 2005; 41(6): 482-6.
[http://dx.doi.org/10.1111/j.1472-765X.2005.01781.x] [PMID: 16305674]
[53]
Gill JJ, Pacan JC, Carson ME, Leslie KE, Griffiths MW, Sabour PM. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother 2006; 50(9): 2912-8.
[http://dx.doi.org/10.1128/AAC.01630-05] [PMID: 16940081]
[54]
Mishra AK, Sharma N, Kumar A, et al. Isolation, characterization and therapeutic potential assessment of bacteriophages virulent to Staphylococcus aureus associated with goat mastitis. Majallah-i Tahqiqat-i Dampizishki-i Iran 2014; 15(4): 320-5.
[PMID: 27175124]
[55]
Bhargava K, Gururaj K, Aseri GK, et al. Bacteriophages: A possible solution to combat enteropathogenic Escherichia coli infections in neonatal goats. Lett Appl Microbiol 2022; 74(5): 707-17.
[http://dx.doi.org/10.1111/lam.13656] [PMID: 35060159]
[56]
Fong SA, Drilling AJ, Ooi ML, et al. Safety and efficacy of a bacteriophage cocktail in an in vivo model of Pseudomonas aeruginosa sinusitis. Transl Res 2019; 206: 41-56.
[http://dx.doi.org/10.1016/j.trsl.2018.12.002] [PMID: 30615845]
[57]
Raya RR, Varey P, Oot RA, et al. Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157:H7 levels in sheep. Appl Environ Microbiol 2006; 72(9): 6405-10.
[http://dx.doi.org/10.1128/AEM.03011-05] [PMID: 16957272]
[58]
Smith HW, Huggins MB. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 1983; 129(8): 2659-75.
[PMID: 6355391]
[59]
Jamalludeen N, Johnson RP, Shewen PE, Gyles CL. Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Vet Microbiol 2009; 136(1-2): 135-41.
[http://dx.doi.org/10.1016/j.vetmic.2008.10.021] [PMID: 19058927]
[60]
Cha SB, Yoo AN, Lee WJ, et al. Effect of bacteriophage in enterotoxigenic Escherichia coli (ETEC) infected pigs. J Vet Med Sci 2012; 74(8): 1037-9.
[http://dx.doi.org/10.1292/jvms.11-0556] [PMID: 22446401]
[61]
Park GY, Lee HM, Yu HJ, Son JS, Park SJ, Song KS. Bordetella bronchiseptica bateriophage suppresses B. bronchiseptica-induced inflammation in swine nasal turbinate cells. Genes Genomics 2018; 40(12): 1383-8.
[http://dx.doi.org/10.1007/s13258-018-0755-4] [PMID: 30353371]
[62]
Park GY, Yu HJ, Son JS, Park SJ, Cha HJ, Song KS. Pasteurella multocida specific bacteriophage suppresses P. multocida-induced inflammation: Identification of genes related to bacteriophage signaling by Pasteurella multocida-infected swine nasal turbinate cells. Genes Genomics 2020; 42(2): 235-43.
[http://dx.doi.org/10.1007/s13258-019-00898-4] [PMID: 31853889]
[63]
Furusawa T, Iwano H, Hiyashimizu Y, et al. Phage therapy is effective in a mouse model of bacterial equine keratitis. Appl Environ Microbiol 2016; 82(17): 5332-9.
[http://dx.doi.org/10.1128/AEM.01166-16] [PMID: 27342558]
[64]
Skurnik M, Pajunen M, Kiljunen S. Biotechnological challenges of phage therapy. Biotechnol Lett 2007; 29(7): 995-1003.
[http://dx.doi.org/10.1007/s10529-007-9346-1] [PMID: 17364214]
[65]
Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010; 8(5): 317-27.
[http://dx.doi.org/10.1038/nrmicro2315] [PMID: 20348932]
[66]
Zheng S, Sonomoto K. Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria. Appl Microbiol Biotechnol 2018; 102(10): 4243-53.
[http://dx.doi.org/10.1007/s00253-018-8917-5] [PMID: 29560521]
[67]
Schofs L, Sparo MD, Sánchez Bruni SF. Gram-positive bacteriocins: Usage as antimicrobial agents in veterinary medicine. Vet Res Commun 2020; 44(3-4): 89-100.
[http://dx.doi.org/10.1007/s11259-020-09776-x] [PMID: 32656740]
[68]
Bédard F, Biron E. Recent progress in the chemical synthesis of class II and S-glycosylated bacteriocins. Front Microbiol 2018; 9: 1048.
[http://dx.doi.org/10.3389/fmicb.2018.01048] [PMID: 29875754]
[69]
Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol 2013; 11(2): 95-105.
[http://dx.doi.org/10.1038/nrmicro2937] [PMID: 23268227]
[70]
Ben Lagha A, Haas B, Gottschalk M, Grenier D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res 2017; 48(1): 22.
[http://dx.doi.org/10.1186/s13567-017-0425-6] [PMID: 28399941]
[71]
Godoy-Santos F, Pinto MS, Barbosa AAT, Brito MAVP, Mantovani HC. Efficacy of a ruminal bacteriocin against pure and mixed cultures of bovine mastitis pathogens. Indian J Microbiol 2019; 59(3): 304-12.
[http://dx.doi.org/10.1007/s12088-019-00799-w] [PMID: 31388207]
[72]
Pérez-Ibarreche M, Field D, Ross RP, Hill C. A bioengineered nisin derivative to control Streptococcus uberis biofilms. Appl Environ Microbiol 2021; 87(16): e00391-21.
[http://dx.doi.org/10.1128/AEM.00391-21] [PMID: 34105992]
[73]
Field D, Considine K, O’Connor PM, Ross RP, Hill C, Cotter PD. Bio-engineered nisin with increased anti Staphylococcus and selectively reduced anti Lactococcus activity for treatment of bovine mastitis. Int J Mol Sci 2021; 22(7): 3480.
[http://dx.doi.org/10.3390/ijms22073480] [PMID: 33801752]
[74]
Hu J, Ma L, Nie Y, et al. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe 2018; 24(6): 817-832.e8.
[http://dx.doi.org/10.1016/j.chom.2018.11.006] [PMID: 30543777]
[75]
Cutler SA, Lonergan SM, Cornick N, Johnson AK, Stahl CH. Dietary inclusion of colicin e1 is effective in preventing postweaning diarrhea caused by F18-positive Escherichia coli in pigs. Antimicrob Agents Chemother 2007; 51(11): 3830-5.
[http://dx.doi.org/10.1128/AAC.00360-07] [PMID: 17724148]
[76]
Hrala M, Bosák J, Micenková L, et al. Escherichia coli strains producing selected bacteriocins inhibit porcine enterotoxigenic Escherichia coli (ETEC) under both in vitro and in vivo conditions. Appl Environ Microbiol 2021; 87(14): e03121-20.
[http://dx.doi.org/10.1128/AEM.03121-20] [PMID: 33962981]
[77]
Lauková A, Styková E, Kubašová I, et al. Enterocin M and its beneficial effects in horses-a pilot experiment. Probiotics Antimicrob Proteins 2018; 10(3): 420-6.
[http://dx.doi.org/10.1007/s12602-018-9390-2] [PMID: 29417475]
[78]
Bastos MCF, Coelho MLV, Santos OCS. Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology 2015; 161(4): 683-700.
[http://dx.doi.org/10.1099/mic.0.082289-0] [PMID: 25406453]
[79]
Rios AC, Moutinho CG, Pinto FC, et al. Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol Res 2016; 191: 51-80.
[http://dx.doi.org/10.1016/j.micres.2016.04.008] [PMID: 27524653]
[80]
Buchholz J, Walt H. Veterinary photodynamic therapy: A review. Photodiagn Photodyn Ther 2013; 10(4): 342-7.
[http://dx.doi.org/10.1016/j.pdpdt.2013.05.009] [PMID: 24284083]
[81]
Maisch T. A new strategy to destroy antibiotic resistant microorganisms: Antimicrobial photodynamic treatment. Mini Rev Med Chem 2009; 9(8): 974-83.
[http://dx.doi.org/10.2174/138955709788681582] [PMID: 19601890]
[82]
Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J Photochem Photobiol Photochem Rev 2015; 25: 1-29.
[http://dx.doi.org/10.1016/j.jphotochemrev.2015.08.003]
[83]
El-Sayed A, Kamel M. Bovine mastitis prevention and control in the post-antibiotic era. Trop Anim Health Prod 2021; 53(2): 236.
[http://dx.doi.org/10.1007/s11250-021-02680-9] [PMID: 33788033]
[84]
Sellera FP, Sabino CP, Ribeiro MS, et al. In vitro photoinactivation of bovine mastitis related pathogens. Photodiagn Photodyn Ther 2016; 13: 276-81.
[http://dx.doi.org/10.1016/j.pdpdt.2015.08.007] [PMID: 26315923]
[85]
Moreira LH, de Souza JCP, de Lima CJ, et al. Use of photodynamic therapy in the treatment of bovine subclinical mastitis. Photodiagn Photodyn Ther 2018; 21: 246-51.
[http://dx.doi.org/10.1016/j.pdpdt.2017.12.009] [PMID: 29258951]
[86]
Silva LO, da Silva Souza KL, de Jesus Beloti L, Neto WMR, Núñez SC, Frias DFR. Use of photodynamic therapy and photobiomodulation as alternatives for microbial control on clinical and subclinical mastitis in sheep. Lasers Med Sci 2022; 37(4): 2305-10.
[http://dx.doi.org/10.1007/s10103-022-03506-2] [PMID: 35031932]
[87]
Seeger MG, Ries AS, Gressler LT, Botton SA, Iglesias BA, Cargnelutti JF. In vitro antimicrobial photodynamic therapy using tetra-cationic porphyrins against multidrug-resistant bacteria isolated from canine otitis. Photodiagn Photodyn Ther 2020; 32: 101982.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101982] [PMID: 32890692]
[88]
Cabral FV, Sellera FP, Ribeiro MS. Methylene blue-mediated antimicrobial photodynamic therapy for canine dermatophytosis caused by Microsporum canis: A successful case report with 6 months follow-up. Photodiagn Photodyn Ther 2021; 36: 102602.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102602] [PMID: 34706277]
[89]
Svaasand LO, Svanberg K. Dosimetry for photodynamic therapy with topically administered photosensitizers. Opt InfoBase Conf Pap 1999; 149: JMA1.
[http://dx.doi.org/10.1364/BIO.1999.JMA1]
[90]
Ridgway TD, Lucroy MD. Phototoxic effects of 635-nm light on canine transitional cell carcinoma cells incubated with 5-aminolevulinic acid. Am J Vet Res 2003; 64(2): 131-6.
[http://dx.doi.org/10.2460/ajvr.2003.64.131] [PMID: 12602579]
[91]
Lillehoj H, Liu Y, Calsamiglia S, et al. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res 2018; 49(1): 76.
[http://dx.doi.org/10.1186/s13567-018-0562-6] [PMID: 30060764]
[92]
Magrone T, Jirillo E. Influence of polyphenols on allergic immune reactions: Mechanisms of action. Proc Nutr Soc 2012; 71(2): 316-21.
[http://dx.doi.org/10.1017/S0029665112000109] [PMID: 22369886]
[93]
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018; 10(11): 1618.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[94]
Coppo E, Marchese A. Antibacterial activity of polyphenols. Curr Pharm Biotechnol 2014; 15(4): 380-90.
[http://dx.doi.org/10.2174/138920101504140825121142] [PMID: 25312620]
[95]
Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016; 21(7): 901.
[http://dx.doi.org/10.3390/molecules21070901] [PMID: 27409600]
[96]
Xie Y, Chen J, Xiao A, Liu L. Antibacterial activity of polyphenols: Structure-activity relationship and influence of hyperglycemic condition. Molecules 2017; 22(11): 1913.
[http://dx.doi.org/10.3390/molecules22111913] [PMID: 29113147]
[97]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[98]
Cushnie TPT, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 2011; 38(2): 99-107.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.02.014] [PMID: 21514796]
[99]
Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol 2012; 23(2): 174-81.
[http://dx.doi.org/10.1016/j.copbio.2011.08.007] [PMID: 21925860]
[100]
Liu Y, Song M, Che TM, et al. Dietary plant extracts alleviate diarrhea and alter immune responses of weaned pigs experimentally infected with a pathogenic Escherichia coli. J Anim Sci 2013; 91(11): 5294-306.
[http://dx.doi.org/10.2527/jas.2012-6194] [PMID: 24045466]
[101]
Girard M, Hu D, Pradervand N, Neuenschwander S, Bee G. Chestnut extract but not sodium salicylate decreases the severity of diarrhea and enterotoxigenic Escherichia coli F4 shedding in artificially infected piglets. PLoS One 2020; 15(2): e0214267.
[http://dx.doi.org/10.1371/journal.pone.0214267] [PMID: 32106264]
[102]
Huang C, Wang Y, He X, et al. The involvement of NF- κ B/P38 pathways in Scutellaria baicalensis extracts attenuating of Escherichia coli K88-induced acute intestinal injury in weaned piglets. Br J Nutr 2019; 122(2): 152-61.
[http://dx.doi.org/10.1017/S0007114519000928] [PMID: 31006408]
[103]
Burmańczuk A, Hola P, Milczak A, et al. Quercetin decrease somatic cells count in mastitis of dairy cows. Res Vet Sci 2018; 117: 255-9.
[http://dx.doi.org/10.1016/j.rvsc.2018.01.006] [PMID: 29331686]
[104]
Santana HF, Barbosa AAT, Ferreira SO, Mantovani HC. Bactericidal activity of ethanolic extracts of propolis against Staphylococcus aureus isolated from mastitic cows. World J Microbiol Biotechnol 2012; 28(2): 485-91.
[http://dx.doi.org/10.1007/s11274-011-0839-7] [PMID: 22806843]
[105]
Fiordalisi SAL, Honorato LA, Loiko MR, et al. The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants. J Dairy Sci 2016; 99(3): 2308-18.
[http://dx.doi.org/10.3168/jds.2015-9777] [PMID: 26723111]
[106]
Abdalhamed AM, Zeedan GSG, Abou Zeina HAA. Isolation and identification of bacteria causing mastitis in small ruminants and their susceptibility to antibiotics, honey, essential oils, and plant extracts. Vet World 2018; 11(3): 355-62.
[http://dx.doi.org/10.14202/vetworld.2018.355-362] [PMID: 29657429]
[107]
Sciorsci RL, Lillo E, Occhiogrosso L, Rizzo A. Ozone therapy in veterinary medicine: A review. Res Vet Sci 2020; 130: 240-6.
[http://dx.doi.org/10.1016/j.rvsc.2020.03.026] [PMID: 32234614]
[108]
Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 2016; 150: 702-14.
[http://dx.doi.org/10.1016/j.chemosphere.2015.12.084] [PMID: 26775188]
[109]
Ogata A, Nagahata H. Intramammary application of ozone therapy to acute clinical mastitis in dairy cows. J Vet Med Sci 2000; 62(7): 681-6.
[http://dx.doi.org/10.1292/jvms.62.681] [PMID: 10945283]
[]
Lillo E, Cordisco M, Trotta A, Greco G, Carbonari A, Rizzo A, Sciorsci RL, Corrente M. Evaluation of antibacterial oxygen/ozone mixture in vitro activity on bacteria isolated from cervico- vaginal mucus of cows with acute metritis. Theriogenology 2023; 196: 25-30. doi: 10.1016/j.theriogenology.2022.10.031.
[111]
Escandón BM, Espinoza JS, Perea FP, et al. Intrauterine therapy with ozone reduces subclinical endometritis and improves reproductive performance in postpartum dairy cows managed in pasture-based systems. Trop Anim Health Prod 2020; 52(5): 2523-8.
[http://dx.doi.org/10.1007/s11250-020-02298-3] [PMID: 32445159]
[112]
Djuricic D, Vince S, Ablondi M, Dobranic T, Samardzija M. Effect of preventive intrauterine ozone application on reproductive efficiency in Holstein cows. Reprod Domest Anim 2012; 47(1): 87-91.
[http://dx.doi.org/10.1111/j.1439-0531.2011.01805.x] [PMID: 21615799]
[113]
Djuricic D, Vince S, Ablondi M, Dobranic T, Samardzija M. Intrauterine ozone treatment of retained fetal membrane in Simmental cows. Anim Reprod Sci 2012; 134(3-4): 119-24.
[http://dx.doi.org/10.1016/j.anireprosci.2012.08.023] [PMID: 22959513]
[114]
Djuricic D, Valpotic H, Samardzija M. The intrauterine treatment of the retained foetal membrane in dairy goats by ozone: Novel alternative to antibiotic therapy. Reprod Domest Anim 2015; 50(2): 236-9.
[http://dx.doi.org/10.1111/rda.12475] [PMID: 25604885]
[115]
Samardžija M, Turk R, Sobiech P, et al. Intrauterine ozone treatment of puerperal disorders in domestic ruminants: A review. Vet Arh 2017; 87(3): 363-75.
[http://dx.doi.org/10.24099/vet.arhiv.160119a]
[116]
Imhof S, Luternauer M, Hüsler J, Steiner A, Hirsbrunner G. Therapy of retained fetal membranes in cattle: Comparison of two treatment protocols. Anim Reprod Sci 2019; 206: 11-6.
[http://dx.doi.org/10.1016/j.anireprosci.2019.04.013] [PMID: 31103349]
[117]
Đuričić D, Valpotić H, Žura Žaja I, Samardžija M. Comparison of intrauterine antibiotics versus ozone medical use in sheep with retained placenta and following obstetric assistance. Reprod Domest Anim 2016; 51(4): 538-40.
[http://dx.doi.org/10.1111/rda.12715] [PMID: 27287827]
[118]
Ávila ACA, Diniz NC, Serpa RT, Chaves MMBC, Viu MAO, de Oliveira RA. Effectiveness of ozone therapy in the treatment of endometritis in mares. J Equine Vet Sci 2022; 112: 103900.
[http://dx.doi.org/10.1016/j.jevs.2022.103900] [PMID: 35183680]
[119]
Đuričić D, Valpotić H, Samardžija M. Prophylaxis and therapeutic potential of ozone in buiatrics: Current knowledge. Anim Reprod Sci 2015; 159: 1-7.
[http://dx.doi.org/10.1016/j.anireprosci.2015.05.017] [PMID: 26059777]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy