Generic placeholder image

Drug Delivery Letters


ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Quality by Design Driven Formulation Development, Optimization of Rosuvastatin Calcium Loaded Floating Microballoons: In Vitro and In Vivo Characterization

Author(s): Sasikanth Kothamasu, Suryakanta Swain*, Muddana Eswara Bhanoji Rao and Bikash Ranjan Jena

Volume 13, Issue 2, 2023

Published on: 10 February, 2023

Page: [103 - 119] Pages: 17

DOI: 10.2174/2210303113666230126103055

Price: $65


Background: The prime intent of this study was to formulate, optimize and evaluate the floating microballoons of rosuvastatin calcium to extend the stomach or gastrointestinal residence time, dissolution rate, and bioavailability of the drug.

Objective: Rosuvastatin calcium-loaded floating microballoons were prepared by solvent evaporation technique and systematic optimization of such formulations by response surface methodology using Box-Behnken Design, with the selected independent variables like concentration of HPMC K4M (X1), K15M (X2), and K100M (X3) and dependent variables as mean particle size in μm (R1), % entrapment efficiency (R2), and % drug released at 12h (R3).

Methods: For each of the studied response variables, the trial formulations were subsequently evaluated for in vitro floating lag time, drug content, total floating time, and drug content, and the data analysis through optimization was carried out by placing the experimental data with an appropriate mathematical model.

Results: In vivo pharmacokinetics study parameters for the optimized batch showed a 4 to 5 folds elevation of peak plasma concentration (Cmax), the area under the curve (AUC) data, and reduction of time to reach peak concentration (Tmax) value compared to marketed product (p < 0.05). As per ICH guidelines, the stability study results show that floating microballoons remain stable for 6 months.

Conclusion: Hence, the floating microballoons of rosuvastatin calcium are a valuable technique to improve the solubility, dissolution, and bioavailability of a poorly water-soluble drug, rosuvastatin calcium.

Keywords: Box-Behnken design, in vitro drug release, floating lag time, entrapment efficiency, mean particle size, pharmacokinetics evaluation.

Next »
Graphical Abstract
Ramachandran, S.; Shaheedha, S.; Thirumurugan, G.; Dhanaraju, M. Floating controlled drug delivery system of famotidine loaded hollow microspheres (microballoons) in the stomach. Curr. Drug Deliv., 2010, 7(1), 93-97.
[] [PMID: 20044907]
Gorde, N.K.; Pawar, H.A.; Khutle, N.; Chaudhari, Y. Formulation development and optimization of floating microballoons for oral delivery of domperidone. Int. J Pharm. Phytopharmacol Res., 2012, 2, 101-108.
Arora, S.; Ali, J.; Ahuja, A.; Khar, R.K.; Baboota, S. Floating drug delivery systems: A review. AAPS PharmSciTech, 2005, 6(3), E372-E390.
[] [PMID: 16353995]
Jelvehgari, M.; Maghsoodi, M.; Nemati, H. Development of theophylline floating microballoons using cellulose acetate butyrate and/or Eudragit RL 100 polymers with different permeability characteristics. Res. Pharm. Sci., 2010, 5(1), 29-39.
[PMID: 21589766]
Chaturvedi, A.K.; Verma, A.; Singh, A.; Kumar, A. Formulation and characterization of microballoons of norfloxacin. J. Drug Deliv. Ther., 2011, 1, 21-26.
Bhardwaj, P.; Chaurasia, H.; Chaurasia, D.; Prajapati, S.K.; Singh, S. Formulation and in vitro evaluation of floating microballoons of indomethacin. Acta Pol. Pharm., 2010, 67(3), 291-298.
[PMID: 20524432]
Patel, A.; Ray, S.; Thakur, R.S. In vitro evaluation and optimization of controlled release floating drug delivery system of metformin hydrochloride. Daru, 2006, 2006(14), 57-64.
Crisp, M.T.; Tucker, C.J.; Rogers, T.L.; Williams, R.O., III; Johnston, K.P. Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals. J. Control. Release, 2007, 117(3), 351-359.
[] [PMID: 17239469]
Jinno, J.; Kamada, N.; Miyake, M.; Yamada, K.; Mukai, T.; Odomi, M.; Toguchi, H.; Liversidge, G.G.; Higaki, K.; Kimura, T. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release, 2006, 111(1-2), 56-64.
[] [PMID: 16410029]
Schachter, M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam. Clin. Pharmacol., 2005, 19(1), 117-125.
[] [PMID: 15660968]
Swain, S.; Behera, A.; Dinda, S.C.; Patra, C.N.; Jammula, S.; Beg, S.; Rao, M.E. Formulation design, optimization and pharmacodynamic evaluation of sustained release mucoadhesive microcapsules of venlafaxine HCl. Indian J. Pharm. Sci., 2014, 76(4), 354-363.
[PMID: 25284934]
Beg, S.; Rahman, M.; Swain, S. Quality by design applications in pharmaceutical product development. Pharm. Sci. Asia., 2020, 38, 1-5.
Bansal, S.; Beg, S.; Asthana, A.; Garg, B.; Asthana, G.S.; Kapil, R.; Singh, B. QbD-enabled systematic development of gastroretentive multiple-unit microballoons of itopride hydrochloride. Drug Deliv., 2016, 23(2), 437-451.
[] [PMID: 24865292]
Malik, P.; Nagaich, U.; Malik, R.K.; Gulati, N. Pentoxifylline loaded floating microballoons: Design, Development and Characterization. J. Pharm., 2013, 2013, 1-5.
[] [PMID: 26555964]
Awasthi, R.; Kulkarni, G.T. Development and characterization of amoxicillin loaded floating microballoons for the treatment of Helicobacter pylori induced gastric ulcer. As. J. Pharm. Sci., 2013, 8(3), 174-180.
Majumdar, S.; Swain, S.; Bhanoji Rao, M.E.; Chakraborty, P.; Sachi Das, S. Acyclovir loaded solid lipid nanoparticulate gel for ocular delivery: optimization by using factorial design. Indian J. Pharm. Edu. Res., 2021, 55(1s), s122-s134.
Sharma, M.; Kohli, S.; Dinda, A. In vitro and in vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer. Saudi Pharm. J., 2015, 23(6), 675-682.
[] [PMID: 26702263]
Shakya, R.; Thapa, P.; Saha, R.N. In vitro and in vivo evaluation of gastroretentive floating drug delivery system of ofloxacin. As. J. Pharm. Sci., 2013, 8(3), 191-198.
Yadav, A.; Jain, D. Gastroretentive microballoons of metformin: Formulation development and characterization. J. Adv. Pharm. Technol. Res., 2011, 2(1), 51-55.
[] [PMID: 22171293]
Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 1963, 52(12), 1145-1149.
[] [PMID: 14088963]
Shereen, A.S.; Azza, A.H.; Marwa, H.A. Gastroretentive nizatidine loading microballoons for treatment of peptic ulcer. Int. J. Pharm. Pharm. Sci., 2015, 7, 220-225.
Yadav, A.; Jain, D.K. Formulation and evaluation of gastroretentive floating microballoons of anti-diabetic drug. Mater. Sci., 2011, 1, 101-112.
Maghsoodi, M.; Hemati, E.; Qadermazi, B.; Yari, Z. Hollow microspheres for gastroretentive floating- pulsatile drug delivery: preparation and in vitro evaluation. Adv. Pharm. Bull., 2011, 1(2), 55-61.
[] [PMID: 24312757]
Swain, S.; Jammula, S.; Patra, C.; Beg, S.; Rao, M.; Dinda, S. Formulation design, optimization, characterization and in vivo pharmacodynamic study of enteric coated mucoadhesive microcapsules of esomeprazole magnesium. Drug Deliv. Lett., 2015, 5(2), 86-99.
Deepa, M.K.; Karthikeyan, M. Cefpodoxime proxetil floating microspheres: formulation and in vitro evaluation. Iran. J. Pharm. Sci., 2009, 5, 69-72.
Sharma, A.; Keservani, R.; Dadarwal, S.; Choudhary, Y.; Ramteke, S. Formulation and in vitro characterization of cefpodoxime proxetil gastroretentive microballoons. Daru, 2011, 19(1), 33-40.
[PMID: 22615637]
Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm., 2010, 67(3), 217-223.
[PMID: 20524422]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy