Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Cancer-induced Pain Management by Nanotechnology-based Approach

Author(s): Somya Ranjan Dash and Chanakya Nath Kundu*

Volume 24, Issue 11, 2023

Published on: 07 February, 2023

Page: [1365 - 1375] Pages: 11

DOI: 10.2174/1389201024666230123150856

Price: $65

Abstract

Cancer patients frequently report experiencing pain as one of their symptoms. Cancerrelated pain is often caused by the tumor itself, especially when the tumor is pressing on nerves. In addition to the pain caused by the tumor itself, patients also experience discomfort from the treatment, such as surgery, chemotherapy, radiation therapy, and the diagnostic procedures. The majority of today's pain therapies rely on opioid analgesics, which have not been shown to be effective. The adverse effects of opioids and their addictive properties call for the development of innovative treatment techniques. Nanotechnology offers answers to the issues raised above, which are related to the utilization of more conventional modes of therapy. These nanotechnology-based nanotherapeutics reduce the systemic toxicity, offering outstanding selectiveness and prolonged release of the analgesic drugs at the target site. Thus, these reduce cancer-induced pain in the patients. In this article, we will explain the mechanism behind the most common types of pain that are caused by cancer, including neuropathic, somatic, and visceral pain. In addition, a comprehensive discussion is held on the use of various nanotherapeutics as analgesic drug carriers, as well as on their impacts and the potential opportunities that lie ahead in the field of cancer pain treatment.

Keywords: Cancer-induced pain, analgesic drug, side effects, nanotherapeutics, sustained release, pain management.

Graphical Abstract
[1]
Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract., 2017, 4(4), 127-129.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[2]
Maxwell, K. The challenges of cancer pain assessment and management. Ulster Med. J., 2012, 81(2), 100-101.
[PMID: 23526857]
[3]
Ji, R.R.; Xu, Z.Z.; Gao, Y.J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov., 2014, 13(7), 533-548.
[http://dx.doi.org/10.1038/nrd4334] [PMID: 24948120]
[4]
Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[5]
Society, A.C. Important facts about cancer pain treatment. CA Cancer J. Clin., 2001, 51(6), 365-366.
[http://dx.doi.org/10.3322/canjclin.51.6.365] [PMID: 11760570]
[6]
Abeloff, M.D.; Armitage, J.O.; Niederhuber, J.E. Abeloff’s Clinical Oncology E-Book; Elsevier: Amsterdam, 2008.
[7]
Lawrence, T.S.; Rosenberg, S.A.; DePinho, R.A. Cancer: Principles & Practice of Oncology; Lippincott Williams & Wilkins, 2011.
[8]
Raphael, J.; Ahmedzai, S.; Hester, J.; Urch, C.; Barrie, J.; Williams, J.; Farquhar-Smith, P.; Fallon, M.; Hoskin, P.; Robb, K.; Bennett, M.I.; Haines, R.; Johnson, M.; Bhaskar, A.; Chong, S.; Duarte, R.; Sparkes, E. Cancer pain: Part 1: Pathophysiology; oncological, pharmacologi-cal, and psychological treatments: A perspective from the british pain society endorsed by the uk association of palliative medicine and the royal college of general practitioners. Pain Med., 2010, 11(5), 742-764.
[http://dx.doi.org/10.1111/j.1526-4637.2010.00840.x] [PMID: 20546514]
[9]
Saggini, R.; Bellomo, R.G.; Carmignano, S.M.; Saggini, A. Cancer pain: The role of an integrated, comprehensive rehabilitation program in its management. Updat. Cancer Treat., 2015, 61, 116.
[http://dx.doi.org/10.5772/60548]
[10]
Chen, J.; Jin, T.; Zhang, H. Nanotechnology in chronic pain relief. Front. Bioeng. Biotechnol., 2020, 8, 682.
[http://dx.doi.org/10.3389/fbioe.2020.00682] [PMID: 32637406]
[11]
Gao, Y.J.; Ji, R.R. Targeting astrocyte signaling for chronic pain. Neurotherapeutics, 2010, 7(4), 482-493.
[http://dx.doi.org/10.1016/j.nurt.2010.05.016] [PMID: 20880510]
[12]
Moradkhani, M.R.; Karimi, A.; Negahdari, B. Nanotechnology application for pain therapy. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 368-373.
[http://dx.doi.org/10.1080/21691401.2017.1313265] [PMID: 28395516]
[13]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[14]
Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[15]
Watkins, L.R.; Milligan, E.D.; Maier, S.F. Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain. Adv. Exp. Med. Biol., 2003, 521, 1-21.
[PMID: 12617561]
[16]
Chang, F.; Wang, Y.; Liu, P.; Peng, J.; Han, G-H.; Ding, X.; Wei, S.; Gao, G.; Huang, K. Role of macrophages in peripheral nerve injury and repair. Neural Regen. Res., 2019, 14(8), 1335-1342.
[http://dx.doi.org/10.4103/1673-5374.253510] [PMID: 30964051]
[17]
Carvalho, C.R.; Oliveira, J.M.; Reis, R.L. Modern trends for peripheral nerve repair and regeneration: Beyond the hollow nerve guidance conduit. Front. Bioeng. Biotechnol., 2019, 7, 337.
[http://dx.doi.org/10.3389/fbioe.2019.00337] [PMID: 31824934]
[18]
Xie, W.R.; Deng, H.; Li, H.; Bowen, T.L.; Strong, J.A.; Zhang, J.M. Robust increase of cutaneous sensitivity, cytokine production and sympathetic sprouting in rats with localized inflammatory irritation of the spinal ganglia. Neuroscience, 2006, 142(3), 809-822.
[http://dx.doi.org/10.1016/j.neuroscience.2006.06.045] [PMID: 16887276]
[19]
Özaktay, A.C.; Kallakuri, S.; Takebayashi, T.; Cavanaugh, J.M.; Asik, I.; DeLeo, J.A.; Weinstein, J.N. Effects of interleukin-1 beta, inter-leukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur. Spine J., 2006, 15(10), 1529-1537.
[http://dx.doi.org/10.1007/s00586-005-0058-8] [PMID: 16474945]
[20]
Zhang, J.M.; Li, H.; Liu, B.; Brull, S.J. Acute topical application of tumor necrosis factor α evokes protein kinase A-dependent responses in rat sensory neurons. J. Neurophysiol., 2002, 88(3), 1387-1392.
[http://dx.doi.org/10.1152/jn.2002.88.3.1387] [PMID: 12205159]
[21]
Alvarez, P.; Green, P.G.; Levine, J.D. Role for monocyte chemoattractant protein-1 in the induction of chronic muscle pain in the rat. Pain, 2014, 155(6), 1161-1167.
[http://dx.doi.org/10.1016/j.pain.2014.03.004] [PMID: 24637038]
[22]
Leung, L.; Cahill, C.M. TNF-α and neuropathic pain - a review. J. Neuroinflammation, 2010, 7(1), 27.
[http://dx.doi.org/10.1186/1742-2094-7-27] [PMID: 20398373]
[23]
Davis, M.P.; Walsh, D. Epidemiology of cancer pain and factors influencing poor pain control. Am. J. Hosp. Palliat. Care, 2004, 21(2), 137-142.
[http://dx.doi.org/10.1177/104990910402100213] [PMID: 15055515]
[24]
Ogunyemi, O.; Rojas, A.; Hematpour, K.; Rogers, D.; Head, C.; Bennett, C. Metastasis of genitourinary tumors to the head and neck re-gion. Eur. Arch. Otorhinolaryngol., 2010, 267(2), 273-279.
[http://dx.doi.org/10.1007/s00405-009-1006-8] [PMID: 19536555]
[25]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[26]
Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. Safety of nanoparticles in medicine. Curr. Drug Targets, 2015, 16(14), 1671-1681.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]
[27]
Dash, S.R.; Kundu, C.N. Promising opportunities and potential risk of nanoparticle on the society. IET Nanobiotechnol., 2020, 14(4), 253-260.
[http://dx.doi.org/10.1049/iet-nbt.2019.0303] [PMID: 32463015]
[28]
Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic pain: From mechanisms to treatment. Physiol. Rev., 2021, 101(1), 259-301.
[http://dx.doi.org/10.1152/physrev.00045.2019] [PMID: 32584191]
[29]
Treede, R.D. The International Association for the Study of Pain definition of pain: As valid in 2018 as in 1979, but in need of regularly updated footnotes. Pain Rep., 2018, 3(2)e643 Epub ahead of print
[http://dx.doi.org/10.1097/PR9.0000000000000643] [PMID: 29756089]
[30]
Gribkoff, V.K.; Kaczmarek, L.K. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology, 2017, 120, 11-19.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.021] [PMID: 26979921]
[31]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobi-otechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[32]
Machelska, H.; Celik, M.Ö. Recent advances in understanding neuropathic pain: Glia, sex differences, and epigenetics. F1000 Res., 2016, 5, 2743.
[http://dx.doi.org/10.12688/f1000research.9621.1] [PMID: 28105313]
[33]
Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology, 2018, 129(2), 343-366.
[http://dx.doi.org/10.1097/ALN.0000000000002130] [PMID: 29462012]
[34]
Clark, A.K.; Yip, P.K.; Grist, J.; Gentry, C.; Staniland, A.A.; Marchand, F.; Dehvari, M.; Wotherspoon, G.; Winter, J.; Ullah, J.; Bevan, S.; Malcangio, M. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl. Acad. Sci., 2007, 104(25), 10655-10660.
[http://dx.doi.org/10.1073/pnas.0610811104] [PMID: 17551020]
[35]
Choi, B.; Soh, M.; Manandhar, Y.; Kim, D.; Han, S.I.; Baik, S.; Shin, K.; Koo, S.; Kwon, H.J.; Ko, G.; Oh, J.; Hwang, H.; Hyeon, T.; Lee, S.J. Highly selective microglial uptake of ceria-zirconia nanoparticles for enhanced analgesic treatment of neuropathic pain. Nanoscale, 2019, 11(41), 19437-19447.
[http://dx.doi.org/10.1039/C9NR02648G] [PMID: 31475711]
[36]
Zhao, H.; Alam, A.; Chen, Q.; Eusman, M.A.; Pal, A.; Eguchi, S.; Wu, L.; Ma, D. The role of microglia in the pathobiology of neuropathic pain development: What do we know? Br. J. Anaesth., 2017, 118(4), 504-516.
[http://dx.doi.org/10.1093/bja/aex006] [PMID: 28403399]
[37]
Noh, C.; Shin, H.J.; Lee, S.; Kim, S.I.; Kim, Y.H.; Lee, W.H.; Kim, D.W.; Lee, S.Y.; Ko, Y.K. CX3CR1-targeted PLGA nanoparticles re-duce microglia activation and pain behavior in rats with spinal nerve ligation. Int. J. Mol. Sci., 2020, 21(10), 3469.
[http://dx.doi.org/10.3390/ijms21103469] [PMID: 32423102]
[38]
Saffarpour, S.; Janzadeh, A.; Rahimi, B.; Ramezani, F.; Nasirinezhad, F. Chronic nanocurcumin treatment ameliorates pain-related behav-ior, improves spatial memory, and reduces hippocampal levels of IL-1β and TNFα in the chronic constriction injury model of neuro-pathic pain. Psychopharmacology, 2021, 238(3), 877-886.
[http://dx.doi.org/10.1007/s00213-020-05739-x] [PMID: 33404738]
[39]
Cunningham, M.O.; Jones, R.S.G. Lamotrigine decreases spontaneous glutamate release and increases GABA release in the rat entorhinal cortex in vitro. Neuropharmacology, 2000, 39, 2139-2146.
[http://dx.doi.org/10.1016/S0028-3908(00)00051-4] [PMID: 10963757]
[40]
Wiffen, P.J.; Derry, S.; Moore, R.A. Lamotrigine for acute and chronic pain. Cochrane Database of Systematic Reviews, 2011, (2), 1465-1858.
[http://dx.doi.org/10.1002/14651858.CD006044.pub3]
[41]
Lalani, J.; Patil, S.; Kolate, A.; Lalani, R.; Misra, A. Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain man-agement. AAPS PharmSciTech, 2015, 16(2), 413-427.
[http://dx.doi.org/10.1208/s12249-014-0235-3] [PMID: 25354788]
[42]
Ngo, V.T.H.; Bajaj, T. Ibuprofen.StatPearls; StatPearls Publishing: Treasure Island, FL, 2021. Available from: http://www.ncbi.nlm.nih.gov/books/NBK542299/
[43]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[http://dx.doi.org/10.1021/jm0613166] [PMID: 17341061]
[44]
Fitzpatrick, F. Cyclooxygenase enzymes: Regulation and function. Curr. Pharm. Des., 2004, 10(6), 577-588.
[http://dx.doi.org/10.2174/1381612043453144] [PMID: 14965321]
[45]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[46]
Bushra, R.; Aslam, N. An overview of clinical pharmacology of Ibuprofen. Oman Med. J., 2010, 25(3), 155-161.
[http://dx.doi.org/10.5001/omj.2010.49] [PMID: 22043330]
[47]
Catarina, P.R.; João, P.F.; Sara, C. Ibuprofen nanoparticles for oral delivery: proof of concept. J. Nanomed. Biother. Discov., 2013, 4, 1-5.
[48]
Ueno, T.; Tsuchiya, H.; Mizogami, M.; Takakura, K. Local anesthetic failure associated with inflammation: Verification of the acidosis mechanism and the hypothetic participation of inflammatory peroxynitrite. J. Inflamm. Res., 2008, 1, 41-48.
[PMID: 22096346]
[49]
Becker, D.E.; Reed, K.L. Local anesthetics: Review of pharmacological considerations. Anesth. Prog., 2012, 59(2), 90-102.
[http://dx.doi.org/10.2344/0003-3006-59.2.90] [PMID: 22822998]
[50]
Glorioso, J.C.; Fink, D.J. Gene therapy for pain: Introduction to the special issue. Gene Ther., 2009, 16(4), 453-454.
[http://dx.doi.org/10.1038/gt.2009.18] [PMID: 19357693]
[51]
Goins, W.F.; Cohen, J.B.; Glorioso, J.C. Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiol. Dis., 2012, 48(2), 255-270.
[http://dx.doi.org/10.1016/j.nbd.2012.05.005] [PMID: 22668775]
[52]
Garcia, X.; Escribano, E.; Domenech, J.; Queralt, J.; Freixes, J. in vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles. J. Nanopart. Res., 2011, 13(5), 2213-2223.
[http://dx.doi.org/10.1007/s11051-010-9979-1]
[53]
Silva De Melo, N.F.; De Araújo, D.R.; Grillo, R.; Moraes, C.M.; De Matos, A.P.; Paula, E.; Rosa, A.H.; Fraceto, L.F. Benzocaine-loaded polymeric nanocapsules: Study of the anesthetic activities. J. Pharm. Sci., 2012, 101(3), 1157-1165.
[http://dx.doi.org/10.1002/jps.22829] [PMID: 22105694]
[54]
Shen, H.; Hu, X.; Szymusiak, M.; Wang, Z.J.; Liu, Y. Orally administered nanocurcumin to attenuate morphine tolerance: comparison between negatively charged PLGA and partially and fully PEGylated nanoparticles. Mol. Pharm., 2013, 10(12), 4546-4551.
[http://dx.doi.org/10.1021/mp400358z] [PMID: 24195658]
[55]
Milligan, E.D.; Soderquist, R.G.; Malone, S.M.; Mahoney, J.H.; Hughes, T.S.; Langer, S.J.; Sloane, E.M.; Maier, S.F.; Leinwand, L.A.; Watkins, L.R.; Mahoney, M.J. Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. Neuron Glia Biol., 2006, 2(4), 293-308.
[http://dx.doi.org/10.1017/S1740925X07000488] [PMID: 18079973]
[56]
Berrocoso, E.; Rey-Brea, R.; Fernández-Arévalo, M.; Micó, J.A.; Martín-Banderas, L. Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. Nanomedicine, 2017, 13(8), 2623-2632.
[http://dx.doi.org/10.1016/j.nano.2017.07.010] [PMID: 28756090]
[57]
Linsell, O.; Brownjohn, P.W.; Nehoff, H.; Greish, K.; Ashton, J.C. Effect of styrene maleic acid WIN55,212-2 micelles on neuropathic pain in a rat model. J. Drug Target., 2015, 23(4), 353-359.
[http://dx.doi.org/10.3109/1061186X.2014.997737] [PMID: 25541465]
[58]
Ramos Campos, E.V.; Silva de Melo, N.F.; Guilherme, V.A.; de Paula, E.; Rosa, A.H.; de Araújo, D.R.; Fraceto, L.F. Preparation and characterization of poly(ε-caprolactone) nanospheres containing the local anesthetic lidocaine. J. Pharm. Sci., 2013, 102(1), 215-226.
[http://dx.doi.org/10.1002/jps.23350] [PMID: 23108693]
[59]
Cereda, C.M.S.; Mecatti, D.; Papini, J.; Bueno, D.; Franz-Montan, M.; Rocha, T.; Pedrazzoli Júnior, J.; de Paula, E.; de Araújo, D.R.; Gril-lo, R.; Fraceto, L.; Calafatti, S.A.; Tofoli, G. Bupivacaine in alginate and chitosan nanoparticles: an in vivo evaluation of efficacy, pharma-cokinetics, and local toxicity. J. Pain Res., 2018, 11, 683-691.
[http://dx.doi.org/10.2147/JPR.S158695] [PMID: 29670395]
[60]
Müller-Schwefe, G.; Ahlbeck, K.; Aldington, D.; Alon, E.; Coaccioli, S.; Coluzzi, F.; Huygen, F.; Jaksch, W.; Kalso, E.; Kocot-Kępska, M.; Kress, H.G.; Mangas, A.C.; Ferri, C.M.; Morlion, B.; Nicolaou, A.; Hernández, C.P.; Pergolizzi, J.; Schäfer, M.; Sichère, P. Pain in the can-cer patient: Different pain characteristics CHANGE pharmacological treatment requirements. Curr. Med. Res. Opin., 2014, 30(9), 1895-1908.
[http://dx.doi.org/10.1185/03007995.2014.925439] [PMID: 24841174]
[61]
Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wordliczek, J. Bone pain in cancer patients: Mechanisms and current treatment. Int. J. Mol. Sci., 2019, 20(23), 6047.
[http://dx.doi.org/10.3390/ijms20236047] [PMID: 31801267]
[62]
Dunne, F.J.; Getachew, H.; Cullenbrooke, F.; Dunne, C. Pain and pain syndromes. Br. J. Hosp. Med., 2018, 79(8), 449-453.
[http://dx.doi.org/10.12968/hmed.2018.79.8.449] [PMID: 30070953]
[63]
Chin, H.; Kim, J. Bone metastasis: Concise overview. Fed. Pract., 2015, 32(2), 24-30.
[PMID: 30766043]
[64]
Marras, F.; Leali, P.T. The role of drugs in bone pain. Clin. Cases Miner. Bone Metab., 2016, 13(2), 93-96.
[http://dx.doi.org/10.11138/ccmbm/2016.13.2.093] [PMID: 27920802]
[65]
Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid complications and side effects. Pain Physician, 2008, 2(11), S105-S120.
[http://dx.doi.org/10.36076/ppj.2008/11/S105] [PMID: 18443635]
[66]
Gdowski, A.S.; Ranjan, A.; Sarker, M.R.; Vishwanatha, J.K. Bone-targeted cabazitaxel nanoparticles for metastatic prostate cancer skeletal lesions and pain. Nanomedicine, 2017, 12(17), 2083-2095.
[http://dx.doi.org/10.2217/nnm-2017-0190] [PMID: 28805551]
[67]
Davis, M.P. Drug management of visceral pain: concepts from basic research. Pain Res. Treat., 2012, 2012265605
[http://dx.doi.org/10.1155/2012/265605]
[68]
Johnson, Q.; Borsheski, R.R.; Reeves-Viets, J.L. Pain management mini-series. Part I. A review of management of acute pain. Mo. Med., 2013, 110(1), 74-79.
[PMID: 23457757]
[69]
Ghoneum, M.; Gimzewski, J.; Ghoneum, A.; Katano, H.; Paw, U. C.; Agrawal, A. Inhibition of TRPV1 channel activity in human CD4+T cells by nanodiamond and nanoplatinum liquid, DPV576. Nanomaterials, 2018, 8(10), 770.
[http://dx.doi.org/10.3390/nano8100770] [PMID: 30274279]
[70]
Sharma, G.; Chopra, K.; Puri, S.; Bishnoi, M.; Rishi, P.; Kaur, I.P. Topical delivery of TRPsiRNA-loaded solid lipid nanoparticles confer reduced pain sensation via TRPV1 silencing, in rats. J. Drug Target., 2018, 26(2), 135-149.
[http://dx.doi.org/10.1080/1061186X.2017.1350857] [PMID: 28670930]
[71]
Teixeira, G.F.D.; Vieira-Neto, A.E.; da Costa, F.N.; Silva, A.R.A.; Campos, A.R. Antinociceptive effect of (-)-α-bisabolol in nanocap-sules. Biomed. Pharmacother., 2017, 91, 946-950.
[http://dx.doi.org/10.1016/j.biopha.2017.05.024] [PMID: 28514833]
[72]
Zhou, C.; Huang, J.; Yang, Q.; Li, T.; Liu, J.; Qian, Z. Gold nanorods-based thermosensitive hydrogel produces selective long-lasting regional anesthesia triggered by photothermal activation of transient receptor potential vanilloid type-1 channels. Colloids Surf. B Biointerfaces, 2018, 171, 17-23.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.002] [PMID: 30005286]
[73]
Moraes, C.M.; de Matos, A.P.; de Lima, R.; Rosa, A.H.; de Paula, E.; Fraceto, L.F. Initial development and characterization of PLGA nan-ospheres containing ropivacaine. J. Biol. Phys., 2007, 33(5-6), 455-461.
[http://dx.doi.org/10.1007/s10867-008-9094-z] [PMID: 19669531]
[74]
Zhu, M.; Whittaker, A.K.; Jiang, X.; Tang, R.; Li, X.; Xu, W.; Fu, C.; Smith, M.T.; Han, F.Y. Use of microfluidics to fabricate bioerodable lipid hybrid nanoparticles containing hydromorphone or ketamine for the relief of intractable pain. Pharm. Res., 2020, 37(10), 211.
[http://dx.doi.org/10.1007/s11095-020-02939-0] [PMID: 33009588]
[75]
Islam, N.U.; Amin, R.; Shahid, M.; Amin, M.; Zaib, S.; Iqbal, J. A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. BMC Complement. Altern. Med., 2017, 17(1), 276.
[http://dx.doi.org/10.1186/s12906-017-1791-3] [PMID: 28535789]
[76]
Ramírez-García, P.D.; Retamal, J.S.; Shenoy, P.; Imlach, W.; Sykes, M.; Truong, N.; Constandil, L.; Pelissier, T.; Nowell, C.J.; Khor, S.Y.; Layani, L.M.; Lumb, C.; Poole, D.P.; Lieu, T.; Stewart, G.D.; Mai, Q.N.; Jensen, D.D.; Latorre, R.; Scheff, N.N.; Schmidt, B.L.; Quinn, J.F.; Whittaker, M.R.; Veldhuis, N.A.; Davis, T.P.; Bunnett, N.W. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endo-somes to prevent chronic pain. Nat. Nanotechnol., 2019, 14(12), 1150-1159.
[http://dx.doi.org/10.1038/s41565-019-0568-x] [PMID: 31686009]
[77]
Yang, F.; Zheng, J. Understand spiciness: Mechanism of TRPV1 channel activation by capsaicin. Protein Cell, 2017, 8(3), 169-177.
[http://dx.doi.org/10.1007/s13238-016-0353-7] [PMID: 28044278]
[78]
Chung, M.K.; Campbell, J. Use of capsaicin to treat pain: Mechanistic and therapeutic considerations. Pharmaceuticals, 2016, 9(4), 66. Epub ahead of print
[http://dx.doi.org/10.3390/ph9040066] [PMID: 27809268]
[79]
Basith, S.; Cui, M.; Hong, S.; Choi, S. Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases. Molecules, 2016, 21(8), 966.
[http://dx.doi.org/10.3390/molecules21080966] [PMID: 27455231]
[80]
Anand, P.; Bley, K. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth., 2011, 107(4), 490-502.
[http://dx.doi.org/10.1093/bja/aer260] [PMID: 21852280]
[81]
Baskaran, M.; Baskaran, P.; Arulsamy, N.; Thyagarajan, B. Preparation and evaluation of plga-coated capsaicin magnetic nanoparticles. Pharm. Res., 2017, 34(6), 1255-1263.
[http://dx.doi.org/10.1007/s11095-017-2142-2] [PMID: 28326459]
[82]
Puglia, C.; Santonocito, D.; Bonaccorso, A.; Musumeci, T.; Ruozi, B.; Pignatello, R.; Carbone, C.; Parenti, C.; Chiechio, S. Lipid nanoparti-cle inclusion prevents capsaicin-induced TRPV1 defunctionalization. Pharmaceutics, 2020, 12(4), 339.
[http://dx.doi.org/10.3390/pharmaceutics12040339] [PMID: 32290081]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy