Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Review Article

The Novel Role of the B-Cell Lymphoma/Leukemia 11A (BCL11A) Gene in β-Thalassaemia Treatment

Author(s): Nahil Hassan Mahmoud Ahmed and Mei I Lai*

Volume 22, Issue 4, 2022

Published on: 27 January, 2023

Page: [226 - 236] Pages: 11

DOI: 10.2174/1871529X23666230123140926

Price: $65

Abstract

β-thalassaemia is a genetic disorder resulting in a reduction or absence of β-globin gene expression. Due to the high prevalence of β-thalassaemia and the lack of available treatment other than blood transfusion and haematopoietic stem cell (HSC) transplantation, the disease represents a considerable burden to clinical and economic systems. Foetal haemoglobin has an appreciated ameliorating effect in β-haemoglobinopathy, as the γ-globin chain substitutes the β-globin chain reduction by pairing with the excess α-globin chain in β-thalassaemia and reduces sickling in sickle cell disease (SCD). BCL11A is a critical regulator and repressor of foetal haemoglobin. Downregulation of BCL11A in adult erythroblasts and cell lines expressing adult haemoglobin led to a significant increase in foetal haemoglobin levels. Disruption of BCL11A erythroid enhancer resulted in disruption of the BCL11A gene solely in the erythroid lineages and increased γ-globin expression in adult erythroid cells. Autologous haematopoietic stem cell gene therapy represents an attractive treatment option to overcome the immune complications and donor availability associated with allogeneic transplantation. Using genome editing technologies, the disruption of BCL11A to induce γ- globin expression in HSCs has emerged as an alternative approach to treat β-thalassaemia. Targeting the +58 BCL11A erythroid enhancer or BCL11A binding motif at the γ-gene promoter with CRISPR-Cas9 or base editors has successfully disrupted the gene and the binding motif with a subsequent increment in HbF levels. This review outlines the critical role of BCL11A in γ-globin gene silencing and discusses the different genome editing approaches to downregulate BCL11A as a means for ameliorating β-thalassaemia.

Keywords: β-thalassaemia, foetal haemoglobin, γ-globin gene, BCL11A, HSC, genome editing technologies.

Graphical Abstract
[1]
Galanello, R.; Origa, R. Beta-thalassemia. Orphanet J. Rare Dis., 2010, 5(1), 11.
[http://dx.doi.org/10.1186/1750-1172-5-11] [PMID: 20492708]
[2]
Piccin, A.; Fleming, P.; Eakins, E.; McGovern, E.; Smith, O.P.; McMahon, C. Sickle cell disease and dental treatment. J. Ir. Dent. Assoc., 2008, 54(2), 75-79.
[PMID: 18578383]
[3]
Thein, S.L. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol. Dis., 2018, 70, 54-65.
[http://dx.doi.org/10.1016/j.bcmd.2017.06.001] [PMID: 28651846]
[4]
Colah, R.; Gorakshakar, A.; Nadkarni, A. Global burden, distribution and prevention of β-thalassemias and hemoglobin E disorders. Expert Rev. Hematol., 2010, 3(1), 103-117.
[http://dx.doi.org/10.1586/ehm.09.74] [PMID: 21082937]
[5]
Nienhuis, A.W.; Nathan, D.G. Pathophysiology and clinical manifestations of the β-. Thalassemias. Cold Spring Harb. Perspect. Med., 2012, 2(12), a011726.
[http://dx.doi.org/10.1101/cshperspect.a011726]
[6]
Mohd Ibrahim, H.; Muda, Z.; Othman, I.S.; Mohamed Unni, M.N.; Teh, K.H.; Thevarajah, A.; Gunasagaran, K.; Ong, G.B.; Yeoh, S.L.; Muhammad Rivai, A.; Che Mohd Razali, C.H.; Din, N.D.; Abdul Latiff, Z.; Jamal, R.; Mohamad, N.; Mohd Ariffin, H.; Alias, H. Observational study on the current status of thalassaemia in Malaysia: a report from the Malaysian Thalassaemia Registry. BMJ Open, 2020, 10(6), e037974.
[http://dx.doi.org/10.1136/bmjopen-2020-037974] [PMID: 32601117]
[7]
Lucarelli, G.; Isgrò, A.; Sodani, P.; Gaziev, J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb. Perspect. Med., 2012, 2(5), a011825.
[http://dx.doi.org/10.1101/cshperspect.a011825] [PMID: 22553502]
[8]
Staal, F.J.T.; Aiuti, A.; Cavazzana, M. Autologous stem-cell-based gene therapy for inherited disorders: State of the art and perspectives. Front Pediatr., 2019, 7, 443.
[http://dx.doi.org/10.3389/fped.2019.00443] [PMID: 31737588]
[9]
Galanello, R.; Sanna, S.; Perseu, L.; Sollaino, M.C.; Satta, S.; Lai, M.E.; Barella, S.; Uda, M.; Usala, G.; Abecasis, G.R.; Cao, A. Amelioration of Sardinian 0 thalassemia by genetic modifiers. Blood, 2009, 114(18), 3935-3937.
[http://dx.doi.org/10.1182/blood-2009-04-217901] [PMID: 19696200]
[10]
Uda, M.; Galanello, R.; Sanna, S.; Lettre, G.; Sankaran, V.G.; Chen, W.; Usala, G.; Busonero, F.; Maschio, A.; Albai, G.; Piras, M.G.; Sestu, N.; Lai, S.; Dei, M.; Mulas, A.; Crisponi, L.; Naitza, S.; Asunis, I.; Deiana, M.; Nagaraja, R.; Perseu, L.; Satta, S.; Cipollina, M.D.; Sollaino, C.; Moi, P.; Hirschhorn, J.N.; Orkin, S.H.; Abecasis, G.R.; Schlessinger, D.; Cao, A. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β;-thalassemia. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1620-1625.
[http://dx.doi.org/10.1073/pnas.0711566105] [PMID: 18245381]
[11]
Nagel, R.L.; Fabry, M.E.; Pagnier, J.; Zohoun, I.; Wajcman, H.; Baudin, V.; Labie, D. Hematologically and genetically distinct forms of sickle cell anemia in Africa. The Senegal type and the Benin type. N. Engl. J. Med., 1985, 312(14), 880-884.
[http://dx.doi.org/10.1056/NEJM198504043121403] [PMID: 2579336]
[12]
Marinucci, M.; Mavilio, F.; Giuliani, A.; Gabbianelli, M.; Tentori, L., Jr; Tentori, L.; Zorini, C.O.; Lamberti, E.; Palazzolo, A.; Lanzo, D. beta Thalassemia associated with increased HB F production. Evidence for the existence of a heterocellular hereditary persistence of fetal hemoglobin (HPFH) determinant linked to beta thalassemia in a southern Italian population. Hemoglobin, 1981, 5(1), 1-17.
[http://dx.doi.org/10.3109/03630268108996907] [PMID: 6162827]
[13]
Murray, N.; Serjeant, B.E.; Serjeant, G.R. Sickle cell-hereditary persistence of fetal haemoglobin and its differentiation from other sickle cell syndromes. Br. J. Haematol., 1988, 69(1), 89-92.
[http://dx.doi.org/10.1111/j.1365-2141.1988.tb07607.x] [PMID: 2454649]
[14]
Thein, S.L.; Menzel, S.; Lathrop, M.; Garner, C. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum. Mol. Genet., 2009, 18(R2), R216-R223.
[http://dx.doi.org/10.1093/hmg/ddp401] [PMID: 19808799]
[15]
Harju, S.; McQueen, K.J.; Peterson, K.R. Chromatin structure and control of β-like globin gene switching SAGE J. 2016, 227(9), 683-700.
[http://dx.doi.org/10.1177/153537020222700902]
[16]
Farid, Y.; Bowman, N.S.; Lecat, P. Biochemistry, Hemoglobin Synthesis; StatPearls: FL, USA, 2022.
[17]
Donze, D.; Townes, T.M.; Bieker, J.J. Role of erythroid Kruppel-like factor in human gamma- to beta-globin gene switching. J. Biol. Chem., 1995, 270(4), 1955-1959.
[http://dx.doi.org/10.1074/jbc.270.4.1955] [PMID: 7829533]
[18]
Ludwig, L.S.; Lareau, C.A.; Bao, E.L.; Nandakumar, S.K.; Muus, C.; Ulirsch, J.C.; Chowdhary, K.; Buenrostro, J.D.; Mohandas, N.; An, X.; Aryee, M.J.; Regev, A.; Sankaran, V.G. Transcriptional states and chromatin accessibility underlying human erythropoiesis. Cell Rep., 2019, 27(11), 3228-3240.e7.
[http://dx.doi.org/10.1016/j.celrep.2019.05.046] [PMID: 31189107]
[19]
Zhou, D.; Liu, K.; Sun, C.W.; Pawlik, K.M.; Townes, T.M. KLF1 regulates BCL11A expression and γ- to β-globin gene switching. Nat. Genet., 2010, 42(9), 742-744.
[20]
Khamphikham, P.; Jearawiriyapaisarn, N.; Tangprasittipap, A.; Hongeng, S. Downregulation of KLF4 activates embryonic and fetal globin mRNA expression in human erythroid progenitor cells. Exp. Ther. Med., 2021, 22(4), 1105.
[http://dx.doi.org/10.3892/etm.2021.10539]
[21]
Sankaran, V.G.; Menne, T.F.; Xu, J.; Akie, T.E.; Lettre, G.; Van Handel, B. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science (80-) 2008, 322(5909), 1839-42.
[22]
Xu, J.; Sankaran, V.G.; Ni, M.; Menne, T.F.; Puram, R.V.; Kim, W.; Orkin, S.H. Transcriptional silencing of γ-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev., 2010, 24(8), 783-798.
[http://dx.doi.org/10.1101/gad.1897310] [PMID: 20395365]
[23]
Xu, J.; Bauer, D.E.; Kerenyi, M.A.; Vo, T.D.; Hou, S.; Hsu, Y.J.; Yao, H.; Trowbridge, J.J.; Mandel, G.; Orkin, S.H. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc. Natl. Acad. Sci. USA, 2013, 110(16), 6518-6523.
[http://dx.doi.org/10.1073/pnas.1303976110] [PMID: 23576758]
[24]
Chumchuen, S.; Pornsukjantra, T.; Khamphikham, P.; Anurathapan, U.; Sripichai, O.; Songdej, D.; Hongeng, S. Downregulation of transcription factor LRF/ZBTB7A increases fetal hemoglobin expression in β-Thalassemia/Hemoglobin E erythroid cells. Blood, 2019, 134(Suppl. 1), 3549-3549.
[http://dx.doi.org/10.1182/blood-2019-126664]
[25]
Masuda, T.; Wang, X.; Maeda, M.; Canver, M.C.; Sher, F.; Funnell, A.P.W.; Fisher, C.; Suciu, M.; Martyn, G.E.; Norton, L.J.; Zhu, C.; Kurita, R.; Nakamura, Y.; Xu, J.; Higgs, D.R.; Crossley, M.; Bauer, D.E.; Orkin, S.H.; Kharchenko, P.V.; Maeda, T. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science, 2016, 351(6270), 285-289.
[http://dx.doi.org/10.1126/science.aad3312] [PMID: 26816381]
[26]
Yin, J.; Xie, X.; Ye, Y.; Wang, L.; Che, F. BCL11A: a potential diagnostic biomarker and therapeutic target in human diseases. Biosci. Rep., 2019, 39(11), BSR20190604.
[http://dx.doi.org/10.1042/BSR20190604] [PMID: 31654056]
[27]
Nuinoon, M.; Makarasara, W.; Mushiroda, T.; Setianingsih, I.; Wahidiyat, P.A.; Sripichai, O.; Kumasaka, N.; Takahashi, A.; Svasti, S.; Munkongdee, T.; Mahasirimongkol, S.; Peerapittayamongkol, C.; Viprakasit, V.; Kamatani, N.; Winichagoon, P.; Kubo, M.; Nakamura, Y.; Fucharoen, S. A genome-wide association identified the common genetic variants influence disease severity in β0-thalassemia/hemoglobin E. Hum. Genet., 2010, 127(3), 303-314.
[http://dx.doi.org/10.1007/s00439-009-0770-2] [PMID: 20183929]
[28]
Sankaran, V.G.; Xu, J.; Ragoczy, T.; Ippolito, G.C.; Walkley, C.R.; Maika, S.D.; Fujiwara, Y.; Ito, M.; Groudine, M.; Bender, M.A.; Tucker, P.W.; Orkin, S.H. Developmental and species-divergent globin switching are driven by BCL11A. Nature, 2009, 460(7259), 1093-1097.
[http://dx.doi.org/10.1038/nature08243] [PMID: 19657335]
[29]
Xu, J.; Peng, C.; Sankaran, V.G.; Shao, Z.; Esrick, E.B.; Chong, B.G.; Ippolito, G.C.; Fujiwara, Y.; Ebert, B.L.; Tucker, P.W.; Orkin, S.H. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science, 2011, 334(6058), 993-996.
[http://dx.doi.org/10.1126/science.1211053] [PMID: 21998251]
[30]
Wessels, M.W.; Cnossen, M.H.; van Dijk, T.B.; Gillemans, N.; Schmidt, K.L.J.; van Lom, K.; Vinjamur, D.S.; Coyne, S.; Kurita, R.; Nakamura, Y.; de Man, S.A.; Pfundt, R.; Azmani, Z.; Brouwer, R.W.W.; Bauer, D.E.; van den Hout, M.C.G.N.; van IJcken, W.F.J.; Philipsen, S. Molecular analysis of the erythroid phenotype of a patient with BCL11A haploinsufficiency. Blood Adv., 2021, 5(9), 2339-2349.
[http://dx.doi.org/10.1182/bloodadvances.2020003753] [PMID: 33938942]
[31]
Martyn, G.E.; Wienert, B.; Yang, L.; Shah, M.; Norton, L.J.; Burdach, J.; Kurita, R.; Nakamura, Y.; Pearson, R.C.M.; Funnell, A.P.W.; Quinlan, K.G.R.; Crossley, M. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat. Genet., 2018, 50(4), 498-503.
[http://dx.doi.org/10.1038/s41588-018-0085-0] [PMID: 29610478]
[32]
Liu, N.; Hargreaves, V.V.; Zhu, Q.; Kurland, J.V.; Hong, J.; Kim, W.; Sher, F.; Macias-Trevino, C.; Rogers, J.M.; Kurita, R.; Nakamura, Y.; Yuan, G.C.; Bauer, D.E.; Xu, J.; Bulyk, M.L.; Orkin, S.H. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell, 2018, 173(2), 430-442.e17.
[http://dx.doi.org/10.1016/j.cell.2018.03.016] [PMID: 29606353]
[33]
Yu, Y.; Wang, J.; Khaled, W.; Burke, S.; Li, P.; Chen, X. Bcl11a is essential for lymphoid development and negatively regulates p53. J. Exp. Med., 2012, 209(13), 2467.
[34]
John, A.; Brylka, H.; Wiegreffe, C.; Simon, R.; Liu, P.; Jüttner, R. Bcl11a is required for neuronal morphogenesis and sensory circuit formation in dorsal spinal cord development. Development, 2012, 139(10), 1831.
[35]
Ippolito, G.C.; Dekker, J.D.; Wang, Y.H.; Lee, B.K.; Shaffer, A.L., III; Lin, J.; Wall, J.K.; Lee, B.S.; Staudt, L.M.; Liu, Y.J.; Iyer, V.R.; Tucker, H.O. Dendritic cell fate is determined by BCL11A. Proc. Natl. Acad. Sci. USA, 2014, 111(11), E998-E1006.
[http://dx.doi.org/10.1073/pnas.1319228111] [PMID: 24591644]
[36]
Luc, S.; Huang, J.; McEldoon, J.L.; Somuncular, E.; Li, D.; Rhodes, C.; Mamoor, S.; Hou, S.; Xu, J.; Orkin, S.H. Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype. Cell Rep., 2016, 16(12), 3181-3194.
[http://dx.doi.org/10.1016/j.celrep.2016.08.064] [PMID: 27653684]
[37]
Bauer, D.E.; Kamran, S.C.; Lessard, S.; Xu, J.; Fujiwara, Y.; Lin, C. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science, 2013, 342(6155), 253-257.
[http://dx.doi.org/10.1126/science.1242088]
[38]
Canver, M.C.; Smith, E.C.; Sher, F.; Pinello, L.; Sanjana, N.E.; Shalem, O.; Chen, D.D.; Schupp, P.G.; Vinjamur, D.S.; Garcia, S.P.; Luc, S.; Kurita, R.; Nakamura, Y.; Fujiwara, Y.; Maeda, T.; Yuan, G.C.; Zhang, F.; Orkin, S.H.; Bauer, D.E. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 2015, 527(7577), 192-197.
[http://dx.doi.org/10.1038/nature15521] [PMID: 26375006]
[39]
Smith, E.C.; Luc, S.; Croney, D.M.; Woodworth, M.B.; Greig, L.C.; Fujiwara, Y.; Nguyen, M.; Sher, F.; Macklis, J.D.; Bauer, D.E.; Orkin, S.H. Strict in vivo specificity of the Bcl11a erythroid enhancer. Blood, 2016, 128(19), 2338-2342.
[http://dx.doi.org/10.1182/blood-2016-08-736249] [PMID: 27707736]
[40]
Verma, H.K.; Ratre, Y.K.; Bhaskar, L.V.K.S.; Colombatti, R. Erythrocyte microRNAs: a tiny magic bullet with great potential for sickle cell disease therapy. Ann. Hematol., 2021, 100(3), 607-614.
[http://dx.doi.org/10.1007/s00277-020-04390-y] [PMID: 33398452]
[41]
Basak, A.; Munschauer, M.; Lareau, C.A.; Montbleau, K.E.; Ulirsch, J.C.; Hartigan, C.R. Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation. Nat. Genet., 2020, 52(2), 138-145.
[42]
Lee, Y.T.; de Vasconcellos, J.F.; Yuan, J.; Byrnes, C.; Noh, S.J.; Meier, E.R.; Kim, K.S.; Rabel, A.; Kaushal, M.; Muljo, S.A.; Miller, J.L. LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood, 2013, 122(6), 1034-1041.
[http://dx.doi.org/10.1182/blood-2012-12-472308] [PMID: 23798711]
[43]
Lulli, V.; Romania, P.; Morsilli, O.; Cianciulli, P.; Gabbianelli, M.; Testa, U.; Giuliani, A.; Marziali, G. MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A. PLoS One, 2013, 8(4), e60436.
[http://dx.doi.org/10.1371/journal.pone.0060436] [PMID: 23593217]
[44]
Gholampour, M.A.; Asadi, M.; Naderi, M.; Azarkeivan, A.; Soleimani, M.; Atashi, A. miR-30a regulates γ-globin expression in erythoid precursors of intermedia thalassemia through targeting BCL11A. Mol. Biol. Rep., 2020, 47(5), 3909-3918.
[http://dx.doi.org/10.1007/s11033-020-05483-7] [PMID: 32406020]
[45]
Platt, O.S.; Orkin, S.H.; Dover, G.; Beardsley, G.P.; Miller, B.; Nathan, D.G. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J. Clin. Invest., 1984, 74(2), 652-656.
[http://dx.doi.org/10.1172/JCI111464] [PMID: 6205021]
[46]
Bayanzay, K.; Khan, R. Meta-analysis on effectiveness of hydroxyurea to treat transfusion-dependent beta-thalassemia. Hematology, 2015, 20(8), 469-476.
[http://dx.doi.org/10.1179/1607845414Y.0000000222] [PMID: 25535888]
[47]
Pule, G.D.; Mowla, S.; Novitzky, N.; Wonkam, A. Hydroxyurea down-regulates BCL11A, KLF - 1 and MYB through miRNA-mediated actions to induce γ-globin expression: implications for new therapeutic approaches of sickle cell disease. Clin. Transl. Med., 2016, 5(1), 15.
[http://dx.doi.org/10.1186/s40169-016-0092-7] [PMID: 27056246]
[48]
Ali, H.; Khan, F.; Ghulam Musharraf, S. Acyclovir induces fetal hemoglobin via downregulation of γ-globin repressors, BCL11A and SOX6 trans-acting factors. Biochem. Pharmacol., 2021, 190, 114612.
[http://dx.doi.org/10.1016/j.bcp.2021.114612] [PMID: 34010599]
[49]
Selvam, C.; Mutisya, D.; Prakash, S.; Ranganna, K.; Thilagavathi, R. Therapeutic potential of chemically modified siRNA: Recent trends. Chem. Biol. Drug Des., 2017, 90(5), 665-678.
[http://dx.doi.org/10.1111/cbdd.12993] [PMID: 28378934]
[50]
Wilber, A.; Hargrove, P.W.; Kim, Y.S.; Riberdy, J.M.; Sankaran, V.G.; Papanikolaou, E.; Georgomanoli, M.; Anagnou, N.P.; Orkin, S.H.; Nienhuis, A.W.; Persons, D.A. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer. Blood, 2011, 117(10), 2817-2826.
[http://dx.doi.org/10.1182/blood-2010-08-300723] [PMID: 21156846]
[51]
Guda, S.; Brendel, C.; Renella, R.; Du, P.; Bauer, D.E.; Canver, M.C.; Grenier, J.K.; Grimson, A.W.; Kamran, S.C.; Thornton, J.; de Boer, H.; Root, D.E.; Milsom, M.D.; Orkin, S.H.; Gregory, R.I.; Williams, D.A. miRNA-embedded shRNAs for lineage-specific BCL11A knockdown and hemoglobin F Induction. Mol. Ther., 2015, 23(9), 1465-1474.
[http://dx.doi.org/10.1038/mt.2015.113] [PMID: 26080908]
[52]
Brendel, C.; Guda, S.; Renella, R.; Bauer, D.E.; Canver, M.C.; Kim, Y.J.; Heeney, M.M.; Klatt, D.; Fogel, J.; Milsom, M.D.; Orkin, S.H.; Gregory, R.I.; Williams, D.A. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J. Clin. Invest., 2016, 126(10), 3868-3878.
[http://dx.doi.org/10.1172/JCI87885] [PMID: 27599293]
[53]
Li, J.; Lai, Y.; Shi, L. BCL11A Down-regulation induces γ-Globin in human β-thalassemia major erythroid cells. Hemoglobin, 2018, 42(4), 225-230.
[http://dx.doi.org/10.1080/03630269.2018.1515774] [PMID: 30821197]
[54]
Brendel, C.; Negre, O.; Rothe, M.; Guda, S.; Parsons, G.; Harris, C.; McGuinness, M.; Abriss, D.; Tsytsykova, A.; Klatt, D.; Bentler, M.; Pellin, D.; Christiansen, L.; Schambach, A.; Manis, J.; Trebeden-Negre, H.; Bonner, M.; Esrick, E.; Veres, G.; Armant, M.; Williams, D.A. Preclinical evaluation of a novel lentiviral vector driving lineage-specific BCL11A knockdown for sickle cell gene therapy. Mol. Ther. Methods Clin. Dev., 2020, 17, 589-600.
[http://dx.doi.org/10.1016/j.omtm.2020.03.015] [PMID: 32300607]
[55]
Maeder, M.L.; Gersbach, C.A. Genome-editing technologies for gene and cell therapy. Mol. Ther., 2016, 24(3), 430-446.
[http://dx.doi.org/10.1038/mt.2016.10] [PMID: 26755333]
[56]
Genovese, P.; Schiroli, G.; Escobar, G.; Di Tomaso, T.; Firrito, C.; Calabria, A.; Moi, D.; Mazzieri, R.; Bonini, C.; Holmes, M.C.; Gregory, P.D.; van der Burg, M.; Gentner, B.; Montini, E.; Lombardo, A.; Naldini, L. Targeted genome editing in human repopulating haematopoietic stem cells. Nature, 2014, 510(7504), 235-240.
[http://dx.doi.org/10.1038/nature13420] [PMID: 24870228]
[57]
Gaj, T.; Gersbach, C.A.; Barbas, C.F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 2013, 31(7), 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[58]
Chang, K.H.; Smith, S.E.; Sullivan, T.; Chen, K.; Zhou, Q.; West, J.A.; Liu, M.; Liu, Y.; Vieira, B.F.; Sun, C.; Hong, V.P.; Zhang, M.; Yang, X.; Reik, A.; Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Danos, O.; Jiang, H.; Tan, S. Long-term engraftment and fetal globin induction upon BCL11A gene editing in bone-marrow-derived CD34 + hematopoietic stem and progenitor cells. Mol. Ther. Methods Clin. Dev., 2017, 4, 137-148.
[http://dx.doi.org/10.1016/j.omtm.2016.12.009] [PMID: 28344999]
[59]
Psatha, N.; Reik, A.; Phelps, S.; Zhou, Y.; Dalas, D.; Yannaki, E. Disruption of the BCL11A erythroid enhancer reactivates fetal hemoglobin in erythroid cells of patients with β-thalassemia major. Mol. Ther. Methods Clin. Dev., 2018, 10, 313.
[http://dx.doi.org/10.1016/j.omtm.2018.08.003]
[60]
Wu, Y.; Zeng, J.; Roscoe, B.P.; Liu, P.; Yao, Q.; Lazzarotto, C.R.; Clement, K.; Cole, M.A.; Luk, K.; Baricordi, C.; Shen, A.H.; Ren, C.; Esrick, E.B.; Manis, J.P.; Dorfman, D.M.; Williams, D.A.; Biffi, A.; Brugnara, C.; Biasco, L.; Brendel, C.; Pinello, L.; Tsai, S.Q.; Wolfe, S.A.; Bauer, D.E. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med., 2019, 25(5), 776-783.
[http://dx.doi.org/10.1038/s41591-019-0401-y] [PMID: 30911135]
[61]
Humbert, O.; Peterson, C.W.; Norgaard, Z.K.; Radtke, S.; Kiem, H.P. A nonhuman primate transplantation model to evaluate hematopoietic stem cell gene editing strategies for β-hemoglobinopathies. Mol. Ther. Methods Clin. Dev., 2018, 8, 75-86.
[http://dx.doi.org/10.1016/j.omtm.2017.11.005] [PMID: 29276718]
[62]
Demirci, S.; Zeng, J.; Wu, Y.; Uchida, N.; Shen, A.H.; Pellin, D.; Gamer, J.; Yapundich, M.; Drysdale, C.; Bonanno, J.; Bonifacino, A.C.; Krouse, A.E.; Linde, N.S.; Engels, T.; Donahue, R.E.; Haro-Mora, J.J.; Leonard, A.; Nassehi, T.; Luk, K.; Porter, S.N.; Lazzarotto, C.R.; Tsai, S.Q.; Weiss, M.J.; Pruett-Miller, S.M.; Wolfe, S.A.; Bauer, D.E.; Tisdale, J.F. BCL11A enhancer–edited hematopoietic stem cells persist in rhesus monkeys without toxicity. J. Clin. Invest., 2020, 130(12), 6677-6687.
[http://dx.doi.org/10.1172/JCI140189] [PMID: 32897878]
[63]
Liu, N.; Xu, S.; Yao, Q.; Zhu, Q.; Kai, Y.; Hsu, J.Y.; Sakon, P.; Pinello, L.; Yuan, G.C.; Bauer, D.E.; Orkin, S.H. Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nat. Genet., 2021, 53(4), 511-520.
[http://dx.doi.org/10.1038/s41588-021-00798-y] [PMID: 33649594]
[64]
Gilman, J.G.; Mishima, N.; Wen, X.J.; Stoming, T.A.; Lobel, J.; Huisman, T.H.J. Distal CCAAT box deletion in the A globin gene of two black adolescents with elevated fetal A globin. Nucleic Acids Res., 1988, 16(22), 10635-10642.
[http://dx.doi.org/10.1093/nar/16.22.10635] [PMID: 2462713]
[65]
Lux, C.T.; Pattabhi, S.; Berger, M.; Nourigat, C.; Flowers, D.A.; Negre, O.; Humbert, O.; Yang, J.G.; Lee, C.; Jacoby, K.; Bernstein, I.; Kiem, H.P.; Scharenberg, A.; Rawlings, D.J. TALEN-mediated gene editing of HBG in human hematopoietic stem cells leads to therapeutic fetal hemoglobin induction. Mol. Ther. Methods Clin. Dev., 2019, 12, 175-183.
[http://dx.doi.org/10.1016/j.omtm.2018.12.008] [PMID: 30705922]
[66]
Traxler, E.A.; Yao, Y.; Wang, Y.D.; Woodard, K.J.; Kurita, R.; Nakamura, Y.; Hughes, J.R.; Hardison, R.C.; Blobel, G.A.; Li, C.; Weiss, M.J. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat. Med., 2016, 22(9), 987-990.
[http://dx.doi.org/10.1038/nm.4170] [PMID: 27525524]
[67]
Weber, L.; Frati, G.; Felix, T.; Hardouin, G.; Casini, A.; Wollenschlaeger, C.; Meneghini, V.; Masson, C.; De Cian, A.; Chalumeau, A.; Mavilio, F.; Amendola, M.; Andre-Schmutz, I.; Cereseto, A.; El Nemer, W.; Concordet, J.P.; Giovannangeli, C.; Cavazzana, M.; Miccio, A. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci. Adv., 2020, 6(7), eaay9392.
[http://dx.doi.org/10.1126/sciadv.aay9392] [PMID: 32917636]
[68]
Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nat, 2015, 533(7603), 420-424.
[69]
Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nat, 2017, 551(7681), 464-471.
[70]
Zeng, J.; Wu, Y.; Ren, C.; Bonanno, J.; Shen, A.H.; Shea, D.; Gehrke, J.M.; Clement, K.; Luk, K.; Yao, Q.; Kim, R.; Wolfe, S.A.; Manis, J.P.; Pinello, L.; Joung, J.K.; Bauer, D.E. Therapeutic base editing of human hematopoietic stem cells. Nat. Med., 2020, 26(4), 535-541.
[http://dx.doi.org/10.1038/s41591-020-0790-y] [PMID: 32284612]
[71]
Wang, L.; Li, L.; Ma, Y.; Hu, H.; Li, Q.; Yang, Y.; Liu, W.; Yin, S.; Li, W.; Fu, B.; Kurita, R.; Nakamura, Y.; Liu, M.; Lai, Y.; Li, D. Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies. Cell Res., 2020, 30(3), 276-278.
[http://dx.doi.org/10.1038/s41422-019-0267-z] [PMID: 31911671]
[72]
Li, C.; Georgakopoulou, A.; Mishra, A.; Gil, S.; Hawkins, R.D.; Yannaki, E.; Lieber, A. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β;-YAC mice. Blood Adv., 2021, 5(4), 1122-1135.
[http://dx.doi.org/10.1182/bloodadvances.2020003702] [PMID: 33620431]
[73]
Gaudelli, N.M.; Lam, D.K.; Rees, H.A.; Solá-Esteves, N.M.; Barrera, L.A.; Born, D.A.; Edwards, A.; Gehrke, J.M.; Lee, S.J.; Liquori, A.J.; Murray, R.; Packer, M.S.; Rinaldi, C.; Slaymaker, I.M.; Yen, J.; Young, L.E.; Ciaramella, G. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol., 2020, 38(7), 892-900.
[http://dx.doi.org/10.1038/s41587-020-0491-6] [PMID: 32284586]
[74]
Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; Liu, D.R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785), 149-157.
[http://dx.doi.org/10.1038/s41586-019-1711-4] [PMID: 31634902]
[75]
Ji, K. Correction of the sickle cell mutation through base and prime editing in hematopoietic stem cells. Preprint, 2020, 2020, 090490.
[http://dx.doi.org/10.20944/preprints202009.0490.v1]
[76]
Esrick, E.B.; Lehmann, L.E.; Biffi, A.; Achebe, M.; Brendel, C.; Ciuculescu, M.F.; Daley, H.; MacKinnon, B.; Morris, E.; Federico, A.; Abriss, D.; Boardman, K.; Khelladi, R.; Shaw, K.; Negre, H.; Negre, O.; Nikiforow, S.; Ritz, J.; Pai, S.Y.; London, W.B.; Dansereau, C.; Heeney, M.M.; Armant, M.; Manis, J.P.; Williams, D.A. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med., 2021, 384(3), 205-215.
[http://dx.doi.org/10.1056/NEJMoa2029392] [PMID: 33283990]
[77]
Frangoul, H.; Bobruff, Y.; Cappellini, M.D.; Corbacioglu, S.; Fernandez, C.M.; de la Fuente, J.; Grupp, S.A.; Handgretinger, R.; Ho, T.W.; Imren, S.; Kattamis, A.; Lekstrom-Himes, J.; Locatelli, F.; Lu, Y.; Mapara, M.Y.; de Montalembert, M.; Mulcahey, S.D.; Rondelli, D.; Shanbhag, N.; Sheth, S.; Soni, S.; Steinberg, M.H.; Weinstein, M.J.; Wu, J.K.; Wall, D. Safety and efficacy of CTX001 in patients with transfusion-dependent β-Thalassemia and sickle cell disease: Early results from the climb THAL-111 and climb SCD-121 studies of autologous CRISPR-CAS9-Modified CD34+ hematopoietic stem and progenitor cells. Blood, 2020, 136(Suppl. 1), 3-4.
[http://dx.doi.org/10.1182/blood-2020-139575]
[78]
Locatelli, F.; Ailinca-Luchian, S.; Bobruff, Y.; Cappellini, M.D.; Corbacioglu, S.; Domm, J. CTX001 for transfusion-dependent β- thalassemia: safety and efficacy results from the ongoing CLIMB THAL-111 study of autologous. crispr-cas9-modified cd34+ hematopoietic stem and progenitor cells. Hemasphere 5 2021. S2, 335-6. Available from: http://ir.crisprtx.com/static-files/eba6bb99-4213-4b96-8d1a-4e4a85c9c637
[79]
Vertex and CRISPR therapeutics present new data in 22 patients with greater than 3 months follow-up post-treatment with investigational CRISPR/Cas9 gene-editing therapy, CTX001TM at European hematology association annual meeting-vertex pharmaceuticals. Available from: https://investors.vrtx.com/newsreleases/news-release-details/vertex-and-crispr-therapeutics-present-new-data-22-patients
[80]
Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.S.; Domm, J.; Eustace, B.K.; Foell, J.; de la Fuente, J.; Grupp, S.; Handgretinger, R.; Ho, T.W.; Kattamis, A.; Kernytsky, A.; Lekstrom-Himes, J.; Li, A.M.; Locatelli, F.; Mapara, M.Y.; de Montalembert, M.; Rondelli, D.; Sharma, A.; Sheth, S.; Soni, S.; Steinberg, M.H.; Wall, D.; Yen, A.; Corbacioglu, S. CRISPR-Cas9 gene editing for sickle cell disease and β-Thalassemia. N. Engl. J. Med., 2021, 384(3), 252-260.
[http://dx.doi.org/10.1056/NEJMoa2031054] [PMID: 33283989]
[81]
Smith, A.R.; Schiller, G.J.; Vercellotti, G.M.; Kwiatkowski, J.L.; Krishnamurti, L.; Esrick, E.B.; Williams, D.A.; Miller, W.P.; Woolfson, A.; Walters, M.C. Preliminary Results of a Phase 1/2 Clinical Study of Zinc Finger Nuclease-Mediated Editing of BCL11A in Autologous Hematopoietic Stem Cells for Transfusion-Dependent Beta Thalassemia. Blood, 2019, 134(Suppl. 1), 3544-3544.
[http://dx.doi.org/10.1182/blood-2019-125743]
[82]
A Study to Assess the Safety, Tolerability, and Efficacy of BIVV003 for Autologous Hematopoietic Stem Cell Transplantation in Patients With Severe Sickle Cell Disease. NIH, Available from: https://clinicaltrials.gov/ct2/show/NCT03653247
[83]
Sheth, S.; Weiss, M.; Parisi, M.; Ni, Q. Clinical and economic burden of transfusion-dependent β;-thalassemia in adult patients in the United States. Blood, 2017, 130(Suppl. 1), 2095-2095.
[84]
Piccin, A.; Murphy, C.; Eakins, E.; Rondinelli, M.B.; Daves, M.; Vecchiato, C.; Wolf, D.; Mc Mahon, C.; Smith, O.P. Insight into the complex pathophysiology of sickle cell anaemia and possible treatment. Eur. J. Haematol., 2019, 102(4), 319-330.
[http://dx.doi.org/10.1111/ejh.13212] [PMID: 30664257]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy