Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

An Overview of Recent Patents and Future Perspective Based on Cyclodextrin Complexation

Author(s): Ritu Kaushik, Ravinder Verma, Vikas Budhwar and Deepak Kaushik*

Volume 17, Issue 1, 2023

Published on: 07 February, 2023

Page: [31 - 46] Pages: 16

DOI: 10.2174/2667387817666230123114114

Price: $65

Abstract

The majority of drugs taken orally have limited aqueous solubility and dissolution rate. Cyclodextrin (CD) and its derivatives are used as pharmaceutical adjuvants, contributing to the development of safe and high bioavailability formulations. CDs have a unique structure with a variety of physicochemical features that aid pharmaceutical scientists in solving drug delivery issues for poorly water-soluble drugs (PWS). This article covers information about cyclodextrin and its various derivatives, its different manufacturing process, physicochemical properties, advantages, and recent advancements. There are various advantages of CD-based inclusion complexes, such as enhancement of solubility, bioavailability, and stability and reduction of irritation caused by the drug. Moreover, they are used as odor and taste enhancers and also prevent incompatibility by physically isolating the incompatible drug components in drug formulation. CD and its derivatives are extensively employed as solubilizers in the manufacturing of parenteral and oral dosage forms. Inclusion complexes formed by CDs with appropriately sized guest molecules improve drug water solubility, physical-chemical stability, and bioavailability. Simultaneously CDs prevent the drugs from degradation like oxidation, hydrolysis, and photodegradation and extend the shelf life of the drug. The manuscript also highlights patents and exclusive branded formulations of modified CDs. It also discusses the different examples of chemically modified CDs, i.e., captisol, sulfobutyl ether-β-CD, hydroxy propyl betadex, randomly methylated β-CD, methyl β-CD, and hydoxy propyl γ-CD, all are used in the various dosage forms.

Keywords: CD, inclusion complexes, patented technologies, captisol, modified CD, advantage of α-CD, β-CD, γ -CD.

Graphical Abstract
[1]
Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharmaceut Sci 2015; 10(4): 255-74.
[http://dx.doi.org/10.1016/j.ajps.2014.12.006]
[2]
Kalepu S, Nekkanti V. Improved delivery of poorly soluble compounds using nanoparticle technology: A review. Drug Deliv Transl Res 2016; 6(3): 319-32.
[http://dx.doi.org/10.1007/s13346-016-0283-1] [PMID: 26891912]
[3]
Lipinski C. Avoiding investment in doomed drugs is poor solubility an industry wide problem. Curr Drug Dis 2001; 4: 17-9.
[4]
Lipinski CA. Poor aqueous solubility-An industry wide problem in ADME screening. Am Pharm Rev 2002; 5: 82-5.
[5]
Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs. Int J Pharm 1998; 160(2): 229-37.
[http://dx.doi.org/10.1016/S0378-5173(97)00311-6]
[6]
Good DJ, Rodríguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des 2009; 9(5): 2252-64.
[http://dx.doi.org/10.1021/cg801039j]
[7]
Patel BB, Patel JK, Chakraborty S, Shukla D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J 2015; 23(4): 352-65.
[http://dx.doi.org/10.1016/j.jsps.2013.12.013] [PMID: 27134535]
[8]
Giri TK, Alexander A, Tripathi DK. Physicochemical classification and formulation development of solid dispersion of poorly water-soluble drugs: An updated review. Int J Pharm Biol Arch 2010; 1: 309-24.
[9]
Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharmaceut Sci 2014; 9(6): 304-16.
[http://dx.doi.org/10.1016/j.ajps.2014.05.005]
[10]
Gwak H, Choi J, Choi H. Enhanced bioavailability of piroxicam via salt formation with ethanolamines. Int J Pharm 2005; 297(1-2): 156-61.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.016] [PMID: 15907602]
[11]
Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: A challenge for the drug development. Pharmacol Rep 2013; 65(1): 1-14.
[http://dx.doi.org/10.1016/S1734-1140(13)70959-9] [PMID: 23563019]
[12]
Jouyban A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharm Sci 2008; 11(1): 32-58.
[http://dx.doi.org/10.18433/J3PP4K] [PMID: 18445363]
[13]
Mourya VK, Inamdar N, Nawale RB, Kulthe SS. Polymeric micelles: General considerations and their applications. Indian J Pharm Edu Res 2011; 45: 128-38.
[14]
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers Adv drug Del Rev 2007; 59: 645-6.
[http://dx.doi.org/10.1016/j.addr.2007.05.012]
[15]
Gao P, Rush BD, Pfund WP, et al. Development of a supersaturable SEDDS (S‐SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci 2003; 92(12): 2386-98.
[http://dx.doi.org/10.1002/jps.10511] [PMID: 14603484]
[16]
Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000; 50(1): 47-60.
[http://dx.doi.org/10.1016/S0939-6411(00)00076-X] [PMID: 10840192]
[17]
Jain S, Patel N, Lin S. Solubility and dissolution enhancement strategies: Current understanding and recent trends. Drug Dev Ind Pharm 2015; 41(6): 875-87.
[http://dx.doi.org/10.3109/03639045.2014.971027] [PMID: 25342479]
[18]
Kumar A, Sahoo SK, Padhee K. Review on solubility enhancement techniques for hydrophobic drugs. Int J Comp Pharm 2011; 3: 1-7.
[19]
Patel TB, Patel LD. Formulation and development strategies for drugs insoluble in gastric fluid. Int Res J Pharm 2012; 3: 106-13.
[20]
Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 2014; 4(1): 18-25.
[http://dx.doi.org/10.1016/j.apsb.2013.11.001] [PMID: 26579360]
[21]
Dhirendra K, Lewis S, Udupa N, Atin K. Solid dispersions: a review. Pak J Pharm Sci 2009; 22(2): 234-46.
[PMID: 19339238]
[22]
Ingle US, Gaikwad PD, Bankar VH, Pawar SP. A review on solid dispersion: A dissolution enhancement technique. Int J Res Ayurveda Pharm 2011; 2: 751-7.
[23]
Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci 2016; 105(9): 2527-44.
[http://dx.doi.org/10.1016/j.xphs.2015.10.008] [PMID: 26886314]
[24]
Mohammad A, Singh S, Swain S. Cyclodextrins: Concept to applications, regulatory issues and challenges. Nanomedicine Res J 2020; 5(3): 202-14.
[25]
Kurkov SV, Loftsson T. Cyclodextrins. Int J Pharm 2013; 453(1): 167-80.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.055] [PMID: 22771733]
[26]
Crini G. Review: A history of cyclodextrins. Chem Rev 2014; 114(21): 10940-75.
[http://dx.doi.org/10.1021/cr500081p] [PMID: 25247843]
[27]
Villiers A. Sur la fermentation de la fécule par l’action du ferment butyrique. Compt Rend Acad Sci 1891; 112: 536-8.
[28]
Schardinger F. Polysaccharide (Dextrine) aus stärke. Z Unters Nahr Genussm 1903; 6: 865-80.
[http://dx.doi.org/10.1007/BF02067497]
[29]
Schardinger F. Bildung kristallisierter polysaccharide (Dextrine) aus Stärkekleisterdurch Microben. Zentralbl Bakteriol Parasitenkd Abt 1911; 29: 188-97.
[30]
Freudenberg K, Jacobi R, Schardinger U. Dextrine and starch. Justus Liebigs Ann Chem 1935; 518(1): 102-8.
[http://dx.doi.org/10.1002/jlac.19355180107]
[31]
Cid-Samamed A. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem 2022; 384: 132467.
[32]
Wankar J, Kotla NG, Gera S, Rasala S, Pandit A, Rochev YA. Recent advances in host–guest self-assembled cyclodextrin carriers: implications for responsive drug delivery and biomedical engineering. Adv Funct Mater 2020; 44: 1909049.
[http://dx.doi.org/10.1002/adfm.201909049]
[34]
Gidwani B, Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Int 2015; 2015: 198268.
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[35]
Chopra H, Verma R, Kaushik S, et al. Cyclodextrin based arsenal for anti – tumour treatment. doi:10. Crit Rev Ther Drug Carrier Syst. 1615; 20220(38398)
[36]
Kaushik S, Verma R, Purohit D, et al. Development of binary and ternary complex of cefuroxime axetil with cyclodextrin for improving pharmaceutical characteristics. Int J Applied Pharm 2022; 12(6): 107-17.
[37]
Verma R, Kaushik A, Almeer R, Rahman MH, Abdel-Daim MM, Kaushik D. improved pharmacodynamic potential of rosuvastatin by self-nanoemulsifying drug delivery system: An in vitro and in vivo evaluation. Int J Nanomedicine 2021; 16: 905-24.
[http://dx.doi.org/10.2147/IJN.S287665] [PMID: 33603359]
[38]
Verma R, Kaushik D. Design and optimization of candesartan loaded self-nanoemulsifying drug delivery system for improving its dissolution rate and pharmacodynamic potential. Drug Deliv 2020; 27(1): 756-71.
[http://dx.doi.org/10.1080/10717544.2020.1760961] [PMID: 32397771]
[39]
Liu Y, Yuan X, Huang M, et al. Redox-modulated host–guest complex realizing stable two-electron storage viologen for flow battery. Ind Eng Chem Res 2022; 61(39): 14508-14.
[http://dx.doi.org/10.1021/acs.iecr.2c02272]
[40]
Uekama K, Hirayama F, Arima H. Recent aspects of cyclodextrin based drug delivery systems. J Incl Phenom Macrocycl Chem 2006; 56(1-2): 3-8.
[http://dx.doi.org/10.1007/s10847-006-9052-y]
[41]
Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res 2004; 21(2): 201-30.
[http://dx.doi.org/10.1023/B:PHAM.0000016235.32639.23] [PMID: 15032302]
[42]
Del Valle EMM. Cyclodextrins and their uses: A review. Process Biochem 2004; 39(9): 1033-46.
[http://dx.doi.org/10.1016/S0032-9592(03)00258-9]
[43]
ArunRasheed A, Kumar AC, Sravanthi VV. Cyclodextrins as drug carrier molecule: A review. Sci Pharm 2008; 76(4): 567-98.
[http://dx.doi.org/10.3797/scipharm.0808-05]
[44]
John Marshall J, Miwa I. Kinetic difference between hydrolyses of γ-cyclodextrin by human salivary and pancreatic α-amylases. Biochimica et Biophysica Acta (BBA) -. Enzymology 1981; 661(1): 142-7.
[http://dx.doi.org/10.1016/0005-2744(81)90093-0] [PMID: 6170334]
[45]
Qin W, Mei-Chen L, Wen-Qi S, Rui-Lian L, Rong-Guang L, Jing-Xin L. Solid-state supramolecular inclusion complexes of β-cyclodextrin with carboxyphenyl viologens showing photochromic properties. J Phys Chem 2022; 126(1): 844-50.
[46]
De Bie ATHJ, Van Ommen B, Bär A. Disposition of [14C]gamma-cyclodextrin in germ-free and conventional rats. Regul Toxicol Pharmacol 1998; 27(2): 150-8.
[http://dx.doi.org/10.1006/rtph.1998.1219] [PMID: 9671569]
[47]
Lai CS, Chow JM, Wolf BW. Method of using gamma cyclodextrin to control blood glucose and insulin secretion. US Patent 20050215523A1, 2005.
[48]
Li Z, Wang M, Wang F, et al. γ-Cyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol 2007; 77(2): 245-55.
[http://dx.doi.org/10.1007/s00253-007-1166-7] [PMID: 17891389]
[49]
Zafar N, Fessi H, Elaissari A. Cyclodextrin containing biodegradable particles: From preparation to drug delivery applications. Int J Pharm 2014; 461(1-2): 351-66.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.004] [PMID: 24342710]
[50]
Varan G, Varan C. Erdoğar N, Hıncal AA, Bilensoy E. Amphiphilic cyclodextrin nanoparticles. Int J Pharm 2017; 531(2): 457-69.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.010] [PMID: 28596142]
[51]
Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev 1998; 98(5): 1743-54.
[http://dx.doi.org/10.1021/cr970022c] [PMID: 11848947]
[52]
De Sousa FB, Lima AC, Denadai ÂML, et al. Superstructure based on β-CD self-assembly induced by a small guest molecule. Phys Chem Chem Phys 2012; 14(6): 1934-44.
[http://dx.doi.org/10.1039/c2cp22768a] [PMID: 22234498]
[53]
Connors KA. The stability of cyclodextrin complexes in solution. Chem Rev 1997; 97(5): 1325-58.
[http://dx.doi.org/10.1021/cr960371r] [PMID: 11851454]
[54]
Roy MN, Saha S, Kundu M, Saha BC, Barman S. Exploration of inclusion complexes of neurotransmitters with β-cyclodextrin by physicochemical techniques. Chem Phys Lett 2016; 655-656: 43-50.
[http://dx.doi.org/10.1016/j.cplett.2016.05.031]
[55]
Szejtli J. Cyclodextrins and their inclusion complexes. Biosynthesis nutrition biomedical akademiai kiado. Budapest 1982; 34: p. 395.
[56]
Archontaki HA, Vertzoni MV, Athanassiou-Malaki MH. Study on the inclusion complexes of bromazepam with β- and β- hydroxypropyl-cyclodextrins. J Pharm Biomed Anal. 2002; 28(3-4): 761-9.
[http://dx.doi.org/10.1016/S0731-7085(01)00679-3] [PMID: 12008156]
[57]
Arima H, Yunomae K, Miyake K, Irie T, Hirayama F, Uekama K. Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J Pharm Sci 2001; 90(6): 690-701.
[http://dx.doi.org/10.1002/jps.1025] [PMID: 11357172]
[58]
Arima H, Miyaji T, Irie T, Hirayama F, Uekama K. Enhancing effect of hydroxypropyl-β-cyclodextrin on cutaneous penetration and activation of ethyl 4-biphenylyl acetate in hairless mouse skin. Eur J Pharm Sci 1998; 6(1): 53-9.
[http://dx.doi.org/10.1016/S0928-0987(97)00068-7] [PMID: 16256708]
[59]
Arias MJ, Arias-Blanco MJ, Moyano JR, et al. Study of omeprazole-gamma-cyclodextrin complexation in the solid state. Drug Dev Ind Pharm 2000; 26(3): 253-9.
[http://dx.doi.org/10.1081/DDC-100100353] [PMID: 10738642]
[60]
Asai K, Morishita M, Katsuta H, et al. The effects of water-soluble cyclodextrins on the histological integrity of the rat nasal mucosa. Int J Pharm 2002; 246(1-2): 25-35.
[http://dx.doi.org/10.1016/S0378-5173(02)00345-9] [PMID: 12270606]
[61]
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007; 59(7): 645-66.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[62]
Zultanski SL, Kuhl N, Zhong W, et al. Mechanistic understanding of a robust and scalable synthesis of per(6-deoxy-6-halo) cyclodextrins, versatile intermediates for cyclodextrin modification. Org. Org Process Res Dev 2021; 25(3): 597-607.
[http://dx.doi.org/10.1021/acs.oprd.0c00249]
[63]
Loftsson T, Vogensen SB, Brewster ME, Konráðsdóttir F. Effects of cyclodextrins on drug delivery through biological membranes. J Pharm Sci 2007; 96(10): 2532-46.
[http://dx.doi.org/10.1002/jps.20992] [PMID: 17630644]
[64]
Kondo H, Nakatani H, Hiromi K. In vitro action of human and porcine α-amylases on cyclomalto-oligosaccharides. Carbohydr Res 1990; 204: 207-13.
[http://dx.doi.org/10.1016/0008-6215(90)84036-T] [PMID: 2279246]
[65]
Lumholdt LR, Holm R, Jørgensen EB, Larsen KL. In vitro investigations of α-amylase mediated hydrolysis of cyclodextrins in the presence of ibuprofen, flurbiprofen, or benzo[a]pyrene. Carbohydr Res 2012; 362: 56-61.
[http://dx.doi.org/10.1016/j.carres.2012.09.018] [PMID: 23085220]
[66]
Gaidamauskas E, Norkus E, Butkus E, Crans DC. Grincienė G. Deprotonation of β-cyclodextrin in alkaline solutions. Carbohydr Res 2009; 344(2): 250-4.
[http://dx.doi.org/10.1016/j.carres.2008.10.025] [PMID: 19084825]
[67]
Loftsson T, Brewster ME. Cyclodextrins as functional excipients: Methods to enhance complexation efficiency. J Pharm Sci 2012; 101(9): 3019-32.
[http://dx.doi.org/10.1002/jps.23077] [PMID: 22334484]
[68]
Saha S, Roy A, Roy K, Roy MN. Study to explore the mechanism to form inclusion complexes of β-cyclodextrin with vitamin molecules. Sci Rep 2016; 6(1): 35764.
[http://dx.doi.org/10.1038/srep35764] [PMID: 27762346]
[69]
Coleman AW, Nicolis I, Keller N, Dalbiez JP. Aggregation of cyclodextrins: An explanation of the abnormal solubility of?-cyclodextrin. J Incl Phenom Macrocycl Chem 1992; 13(2): 139-43.
[http://dx.doi.org/10.1007/BF01053637]
[70]
Sabadini E, Cosgrove T, Egídio FC. Solubility of cyclomaltooligosaccharides (cyclodextrins) in H2O and D2O: a comparative study. Carbohydr Res 2006; 341(2): 270-4.
[http://dx.doi.org/10.1016/j.carres.2005.11.004] [PMID: 16325788]
[71]
Naidoo KJ, Chen JYJ, Jansson JLM, Widmalm G, Maliniak A. Molecular properties related to the anomalous solubility of β-cyclodextrin. J Phys Chem B 2004; 108(14): 4236-8.
[http://dx.doi.org/10.1021/jp037704q]
[72]
Cai W, Sun T, Shao X, Chipot C. Can the anomalous aqueous solubility of β-cyclodextrin be explained by its hydration free energy alone? Phys Chem Chem Phys 2008; 10(22): 3236-43.
[http://dx.doi.org/10.1039/b717509d] [PMID: 18500400]
[73]
Marques HC. Structure and properties of cyclodextrins. Inclusion complex formation. Rev Port Farm 1994; 44: 77-84.
[74]
Daletos G, Papaioannou G, Miguel G, Marques HC. Proceedings of the 14th International Cyclodextrin Symposium. Kyoto, Japan. Japan: The Society of Cyclodextrins 2008; pp. 291-5.
[75]
Tao F, Hill LE, Peng Y, Gomes CL. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. Lebensm Wiss Technol 2014; 59(1): 247-55.
[http://dx.doi.org/10.1016/j.lwt.2014.05.037]
[76]
Ünlüsayin M. Hădărugă NG, Rusu G, Gruia AT, Păunescu V, Hădărugă DI. Nano-encapsulation competitiveness of omega-3 fatty acids and correlations of thermal analysis and Karl Fischer water titration for European anchovy (Engraulis encrasicolus L.) oil/β-cyclodextrin complexes. Lebensm Wiss Technol 2016; 68: 135-44.
[http://dx.doi.org/10.1016/j.lwt.2015.12.017]
[77]
Cheirsilp B, Rakmai J. Inclusion complex formation of cyclodextrin with its guest and their applications. Biol Eng Med 2016; 2: 1-6.
[78]
Saenger W. Cyclodextrin inclusion compounds in research and industry. Angew Chem Int Ed Engl 1980; 19(5): 344-62.
[http://dx.doi.org/10.1002/anie.198003441]
[79]
Hirayama F, Uekama K. Methods of investigating and preparing inclusion compounds. Semin Scholar 1987; 1987: 100033744.
[80]
Duchěne D, Wouessidjewe D. Pharmaceutical uses of cyclodextrins and derivatives. Drug Dev Ind Pharm 1990; 16(17): 2487-99.
[http://dx.doi.org/10.3109/03639049009058543]
[81]
Mennini N, Maestrelli F, Cirri M, Mura P. Analysis of physicochemical properties of ternary systems of oxaprozin with randomly methylated-ß-cyclodextrin and l -arginine aimed to improve the drug solubility. J Pharm Biomed Anal 2016; 129: 350-8.
[http://dx.doi.org/10.1016/j.jpba.2016.07.024] [PMID: 27454086]
[82]
Cao H, Jiang Y, Zhang H, et al. Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation. Enzyme Microb Technol 2017; 96: 157-62.
[http://dx.doi.org/10.1016/j.enzmictec.2016.10.007] [PMID: 27871377]
[83]
Bratu I, Hernanz A, Gavira JM, Bora GH. FT-IR Spectroscopy of inclusion complexes of β-cyclodextrin with fenbufen and ibuprofen. Rom J Phys 2005; 50: 1063-9.
[84]
Kumar KS, Sushma M, Raju YP. Dissolution enhancement of poorly soluble drugs by using complexation technique. J Pharm Sci Res 2013; 5: 120-4.
[85]
Loh GOK, Tan YTF, Peh KK. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J Pharmaceut Sci 2016; 11(4): 536-46.
[http://dx.doi.org/10.1016/j.ajps.2016.02.009]
[86]
Jones SP, Grant DJ, Hadgraft J, Parr GD. Cyclodextrins in the pharmaceutical sciences. Part I: Preparation, structure and properties of cyclodextrins and cyclodextrin inclusion compounds. Acta Pharm Tech 1984; 30: 213-23.
[87]
Junco S, Casimiro T, Ribeiro N, Cabral Marques H, Marques HM. A comparative study of naproxen-β-cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J Incl Phenom Macrocycl Chem 2002; 44(1/4): 117-21.
[http://dx.doi.org/10.1023/A:1023022008337]
[88]
Hill LE, Gomes C, Taylor TM. Characterization of β-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. Lebensm Wiss Technol 2013; 51(1): 86-93.
[http://dx.doi.org/10.1016/j.lwt.2012.11.011]
[89]
Kfoury M, Auezova L, Ruellan S, Greige-Gerges H, Fourmentin S. Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr Polym 2015; 118: 156-64.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.073] [PMID: 25542121]
[90]
Rakmai J, Cheirsilp B, Mejuto JC, Torrado-Agrasar A, Simal-Gándara J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-β-cyclodextrin. Food Hydrocoll 2017; 65: 157-64.
[http://dx.doi.org/10.1016/j.foodhyd.2016.11.014]
[91]
Raza A, Sun H, Bano S, Zhao Y, Xu X, Tang J. Preparation, characterization, and in vitro anti-inflammatory evaluation of novel water soluble kamebakaurin/hydroxypropyl-β-cyclodextrin inclusion complex. J Mol Struct 2017; 1130: 319-26.
[http://dx.doi.org/10.1016/j.molstruc.2016.10.059]
[92]
Aiassa V, Zoppi A, Becerra MC, Albesa I, Longhi MR. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol: β-cyclodextrin: N-acetylcysteine complex. Carbohydr Polym 2016; 152: 672-8.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.013] [PMID: 27516318]
[93]
Chaudhary VB. Cyclodextrin inclusion complex to enhance solubility of poorly water-soluble drugs: A review. Int J Pharm Sci Res 2013; 4(1): 68-76.
[94]
Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm 2007; 329(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[95]
Minxuan TJX, Kuang GC, Xianling QD. Fisetin phospholipid complex, weight-losing medicine/health food and application thereof. CN113663083A, 2020.
[96]
Mohri T, Sarah MG, Hill C. Methods for forming inclusion complexes with hydrophilic beta-cyclodextrin derivatives and compositions thereof. US20200347153A1, 2020.
[97]
Priyantha DC. Cyclodextrin inclusion complexes of cannabis extracts. WO2020168421A1, 2019.
[98]
Andrew S. Fat-binding compositions. CN106036793B, 2019.
[99]
Szente L. Cellular hydration compositions. US10610524B2, 2019.
[100]
Tabuteau H. Pharmaceutical compositions comprising meloxicam. US10537642B1, 2019.
[101]
Thorsteinn L, Zoltan F. Preparation of solid cyclodextrin complexes for ophthalmic active pharmaceutical ingredient delivery. US20190343846, 2019.
[102]
Hsiu-Wen C, Jian-Chiao W. Gel composition, method for manufacturing the gel composition, and method for manufacturing an ophthalmic lens using the gel composition. US20190177493, 2019.
[103]
Vogelstein B, Kinzler KW, Zhou S, Sur S. Liposome compositions encapsulating modified cyclodextrin complexes and uses thereof. US20190328665, 2019.
[104]
Vogelstein B, Kinzler KW, Zhou S, Sur S. Liposome compositions encapsulating modified cyclodextrin complexes and uses thereof. US20180161274, 2018.
[105]
Scavone TA, Riedeman JS, Vega VN, et al. Absorbent article comprising cyclodextrin complexes. US20170368532, 2017.
[106]
Thorsteinn L, Zoltan F. Preparation of solid cyclodextrin complexes for ophthalmic active pharmaceutical ingredient delivery. US20180147297, 2018.
[107]
William ZW, Thottathil JK, Smith DS, Xiaodong D. Pharmaceutical compositions containing taxane-cyclodextrin complexes method of making and methods of use. US20180050116, 2018.
[108]
Limketkai BN, Botros YY. Method of preparing cyclodextrin complexes. US20170189551, 2017.
[109]
Bartlett M, Mastaloudis AS, Carsten P, Stephen J. Nanosized carotenoid cyclodextrin complexes. US20170021035, 2017.
[110]
Snabe TT, Wesley B, Mallory W, Steven L. Natamycincyclodextrin complexes for use in foodstuff, process for their manufacture and use thereof. US20150216189, 2015.
[111]
Snabe TT, Wesley B, Mallory W, Steven L. Nanosized carotenoid cyclodextrin complexes. US20120196003, 2012.
[112]
Bartlett M, Mastaloudis AS, Carsten P, Stephen J. Nanosized carotenoid cyclodextrin complexes. US20110129562, 2011.
[113]
Biosolutions. Available from : https://biosolutions.novo zymes.com/en/grain-starch/specialties(novozymes) [cited 25 October 2021].
[114]
Kaushik R, Budhwar V, Kaushik D. An overview of recent patents and patented technology platforms. Recent Pat Drug Deliv Formul 2020; 14: 63-74.
[http://dx.doi.org/10.2174/1872211314666200117094406] [PMID: 31951172]
[115]
Khalid SH, Bashir M, Asghar S, Mallhi TH, Khan IU. Effect of cyclodextrin derivatization on solubility and efficacy of drugs, colloid science in pharmaceutical nanotechnology In Karakuş K IntechOpen. 2019; 2019: p. 90364.
[http://dx.doi.org/10.5772/intechopen.90364]
[116]
Li J, Xiao H, Li J, Zhong Y. Drug carrier systems based on water-soluble cationic β-cyclodextrin polymers. Int J Pharm 2004; 278(2): 329-42.
[http://dx.doi.org/10.1016/j.ijpharm.2004.03.026] [PMID: 15196638]
[117]
Tongiani S, Ozeki T, Stella VJ. Sulfobutyl ether-alkyl ether mixed cyclodextrin derivatives with enhanced inclusion ability. J Pharm Sci 2009; 98(12): 4769-80.
[http://dx.doi.org/10.1002/jps.21791] [PMID: 19408308]
[118]
[119]
[120]
CAPTISOL. Available from : https://www.captisol.com/?utm_term=%2Bcaptisol&utm_campaign= [accessed on 25 November 2021].
[121]
NEXTERONE(AmiodaroneHCI) Available from : https://www. nexterone.com/#:~:text=NEXTERONE [accessed on 25 November 2021]
[122]
[124]
Cerenia. Available from : https://www.ema.europa.eu/en/medicines/veterinary/EPAR/cerenia#:~:text= [accessed on 25 November 2021].
[128]
Carnexiv Available from : https://www.rxlist.com/carnexiv-drug.htm

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy