Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

In vitro Function Study of Different Negative Charge Pullulan Nanoparticles for Sentinel Lymph Node Angiography

Author(s): Ren Feng Huang, Yan Guo, Chaoling Yao, Wanming Wu and Linyang Ou*

Volume 20, Issue 10, 2023

Published on: 07 March, 2023

Page: [1465 - 1473] Pages: 9

DOI: 10.2174/1567201820666230120123257

Price: $65

Abstract

Background: Many dyes or radioactive markers used for sentinel lymph node (SLN) have the shortcomings of false positive and radiation injury. Indocyanine green (ICG) seems to have a lower false positive rate and tissue damage, without a clear field of vision during the operation.

Methods: For the shortcomings, we successfully synthesized three anionic pullulan materials, changed the degree of hydrophobic for size controlling (< 50nm) to prepare CHP nanoparticles (NPs) and changed the succinyl degree to prepare CHPC NPs with different negative surface potential.

Results: The size of those NPs were less than 50nm under (transmission electron microscope) TEM, with hydrodynamic size of 90.67 ± 2.2 nm of CHP, 105.8 ± 1.7 nm of CHPC1 and 115.9 ± 2.3 nm of CHPC2. Moreover, the Zeta potential of CHP, CHPC1 and CHPC2 were -1.9 ± 0.2 mV, -9.6 ± 0.3 mV and -19.4 ± 0.7 mV. The size of ICG-loading CHP, CHPC1 and CHPC2 NPs increased to 109.4 ± 2.7 nm, 113.8 ± 1.2 nm and 30.6 ± 3.5 nm, as the zeta potential decreased to -2.7 ± 0.4 mV, -12.5 ± 1.6 mV and -23.1 ± 1.2 mV. With the increasing degree of succinyl, the size increased and the zeta potential decreased. At the same time, the higher degree of succinyl drug-loading NPs have lower release and have increased the stability of ICG. We found that the blank-NPs had no significant toxicity to normal cells (HSF), as the ICG@CHP group had larger toxicity than the CHPCs and control. Moreover, the cellular uptake was decreased with the increased degree of succinyl.

Conclusion: In this study, we successfully prepared CHPC2 carriers with the maximum negative surface charge, for follow-up research and providing new ideas for SLN.

Keywords: Radioactive, anionic pullulan materials, sentinel lymph node, CHPC1, Indocyanine green (ICG), nanoparticle (NPs).

Graphical Abstract
[1]
Cibula, D.; McCluggage, W.G. Sentinel lymph node (SLN) concept in cervical cancer: Current limitations and unanswered questions. Gynecol. Oncol., 2019, 152(1), 202-207.
[http://dx.doi.org/10.1016/j.ygyno.2018.10.007] [PMID: 30318103]
[2]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[3]
Rozenholc, A.; Samouelian, V.; Warkus, T.; Gauthier, P.; Provencher, D.; Sauthier, P.; Gauthier, F.; Drakopoulos, P.; Cormier, B. Green] versus blue: Randomized controlled trial comparing indocyanine green with methylene blue for sentinel lymph node detection in endometrial cancer. Gynecol. Oncol., 2019, 153(3), 500-504.
[http://dx.doi.org/10.1016/j.ygyno.2019.03.103] [PMID: 30902369]
[4]
Kargozaran, H.; Shah, M.; Li, Y.; Beckett, L.; Gandour-Edwards, R.; Schneider, P.D.; Khatri, V.P. Concordance of peritumoral technetium 99m colloid and subareolar blue dye injection in breast cancer sentinel lymph node biopsy. J. Surg. Res., 2007, 143(1), 126-129.
[http://dx.doi.org/10.1016/j.jss.2007.02.054] [PMID: 17950081]
[5]
Cao, J.; Zhu, B.; Zheng, K.; He, S.; Meng, L.; Song, J.; Yang, H. Recent progress in NIR-II contrast agent for biological imaging. Front. Bioeng. Biotechnol., 2020, 7, 487.
[http://dx.doi.org/10.3389/fbioe.2019.00487] [PMID: 32083067]
[6]
Peng, X.X.; Zhu, X.F.; Zhang, J.L. Near Infrared (NIR) imaging: Exploring biologically relevant chemical space for lanthanide complexes. J. Inorg. Biochem., 2020, 209, 111118.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111118] [PMID: 32502875]
[7]
Papadia, A.; Gasparri, M.L.; Radan, A.P.; Stämpfli, C.A.L.; Rau, T.T.; Mueller, M.D. Retrospective validation of the laparoscopic ICG SLN mapping in patients with grade 3 endometrial cancer. J. Cancer Res. Clin. Oncol., 2018, 144(7), 1385-1393.
[http://dx.doi.org/10.1007/s00432-018-2648-y] [PMID: 29691646]
[8]
Kim, J.H.; Ku, M.; Yang, J.; Byeon, H.K. Recent developments of ICG-guided sentinel lymph node mapping in oral cancer. Diagnostics, 2021, 11(5), 891.
[http://dx.doi.org/10.3390/diagnostics11050891] [PMID: 34067713]
[9]
Radenkovic, D.; Kobayashi, H.; Remsey-Semmelweis, E.; Seifalian, A.M. Quantum dot nanoparticle for optimization of breast cancer diagnostics and therapy in a clinical setting. Nanomedicine, 2016, 12(6), 1581-1592.
[http://dx.doi.org/10.1016/j.nano.2016.02.014] [PMID: 27013132]
[10]
Fang, M.; Chen, M.; Liu, L.; Li, Y. Applications of quantum dots in cancer detection and diagnosis: A review. J. Biomed. Nanotechnol., 2017, 13(1), 1-16.
[http://dx.doi.org/10.1166/jbn.2017.2334] [PMID: 29372982]
[11]
Hameed, S.; Chen, H.; Irfan, M.; Bajwa, S.Z.; Khan, W.S.; Baig, S.M.; Dai, Z. Fluorescence guided sentinel lymph node mapping: From current molecular probes to future multimodal nanoprobes. Bioconjug. Chem., 2019, 30(1), 13-28.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00812] [PMID: 30508381]
[12]
Buda, A.; Papadia, A.; Di Martino, G.; Imboden, S.; Bussi, B.; Guerra, L.; De Ponti, E.; Reato, C.; Gasparri, M.L.; Crivellaro, C.; Mueller, M. Real-time fluorescent sentinel lymph node mapping with indocyanine green in women with previous conization undergoing laparoscopic surgery for early invasive cervical cancer: Comparison with radiotracer ± blue dye. J. Minim. Invasive Gynecol., 2018, 25(3), 455-460.
[http://dx.doi.org/10.1016/j.jmig.2017.10.002] [PMID: 29032256]
[13]
Li, J.; Gu, Z.; Liao, M.; Lin, C.; Zhuang, Z. Surface charge of well-defined polymeric nano-stars regulates non-invasive fluorescence imaging of lymph node. Mater. Sci. Eng. C, 2019, 99, 740-751.
[http://dx.doi.org/10.1016/j.msec.2019.01.132] [PMID: 30889749]
[14]
Rossi, E.C. Current state of sentinel lymph nodes for women with endometrial cancer. Int. J. Gynecol. Cancer, 2019, 29(3), 613-621.
[http://dx.doi.org/10.1136/ijgc-2018-000075] [PMID: 30712017]
[15]
Niu, G.; Chen, X. Lymphatic imaging: Focus on imaging probes. Theranostics, 2015, 5(7), 686-697.
[http://dx.doi.org/10.7150/thno.11862] [PMID: 25897334]
[16]
de Carvalho, C.E.B.; Capuzzo, R.; Crovador, C.; Teixeira, R.J.; Laus, A.C.; Carvalho, A.L.; Vazquez, V.L. Near Infrared (NIR) fluorescence is not a substitute for lymphoscintigraphy and gamma probe for melanoma sentinel node detection: Results from a prospective trial. Ann. Surg. Oncol., 2020, 27(8), 2906-2912.
[http://dx.doi.org/10.1245/s10434-020-08409-6] [PMID: 32266572]
[17]
Kang, H.G.; Lee, H.Y.; Kim, K.M.; Song, S.H.; Hong, G.C.; Hong, S.J. A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping. Med. Phys., 2017, 44(1), 227-239.
[http://dx.doi.org/10.1002/mp.12029] [PMID: 28102947]
[18]
Digesu, C.S.; Hachey, K.J.; Gilmore, D.M.; Khullar, O.V.; Tsukada, H.; Whang, B.; Chirieac, L.R.; Padera, R.F.; Jaklitsch, M.T.; Colson, Y.L. Long-term outcomes after near-infrared sentinel lymph node mapping in non–small cell lung cancer. J. Thorac. Cardiovasc. Surg., 2018, 155(3), 1280-1291.
[http://dx.doi.org/10.1016/j.jtcvs.2017.09.150] [PMID: 29248292]
[19]
de Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[20]
Møller, P.; Lykkesfeldt, J. Positive charge, negative effect: the impact of cationic nanoparticles in the brain. Nanomedicine, 2014, 9(10), 1441-1443.
[http://dx.doi.org/10.2217/nnm.14.91] [PMID: 25253492]
[21]
Young, J.; Chen, C.; Chen, Y.; Cheng, K.; Yen, H.J.; Huang, Y.; Tsai, T.N. Positively and negatively surface-charged chondroitin sulfate-trimethylchitosan nanoparticles as protein carriers. Carbohydr. Polym., 2016, 137, 532-540.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.095] [PMID: 26686160]
[22]
Keil, T.W.M.; Merkel, O.M. Characterization of positively charged polyplexes by tunable resistive pulse sensing. Eur. J. Pharm. Biopharm., 2021, 158, 359-364.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.010] [PMID: 33338601]
[23]
Kim, I.; Viswanathan, K.; Kasi, G.; Sadeghi, K.; Thanakkasaranee, S.; Seo, J. Preparation and characterization of positively surface charged zinc oxide nanoparticles against bacterial pathogens. Microb. Pathog., 2020, 149, 104290.
[http://dx.doi.org/10.1016/j.micpath.2020.104290] [PMID: 32492458]
[24]
Patil, V.; Patel, A. Biodegradable nanoparticles: A recent approach and applications. Curr. Drug Targets, 2020, 21(16), 1722-1732.
[http://dx.doi.org/10.2174/1389450121666200916091659] [PMID: 32938346]
[25]
Bera, H.; Abosheasha, M.A.; Ito, Y.; Ueda, M. Hypoxia-responsive pullulan-based nanoparticles as erlotinib carriers. Int. J. Biol. Macromol., 2021, 191, 764-774.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.122] [PMID: 34600326]
[26]
Rizeq, B.R.; Younes, N.N.; Rasool, K.; Nasrallah, G.K. Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles. Int. J. Mol. Sci., 2019, 20(22), 5776.
[http://dx.doi.org/10.3390/ijms20225776] [PMID: 31744157]
[27]
Rashki, S.; Asgarpour, K.; Tarrahimofrad, H.; Hashemipour, M.; Ebrahimi, M.S.; Fathizadeh, H.; Khorshidi, A.; Khan, H.; Marzhoseyni, Z.; Salavati-Niasari, M.; Mirzaei, H. Chitosan-based nanoparticles against bacterial infections. Carbohydr. Polym., 2021, 251, 117108.
[http://dx.doi.org/10.1016/j.carbpol.2020.117108] [PMID: 33142645]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy