Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Meta-Analysis

The Non-hodgkin Lymphoma Treatment and Side Effects: A Systematic Review and Meta-analysis

Author(s): Alice Barros Câmara* and Igor Augusto Brandão

Volume 19, Issue 1, 2024

Published on: 08 February, 2023

Page: [93 - 120] Pages: 28

DOI: 10.2174/1574892818666230117151757

Price: $65

Open Access Journals Promotions 2
Abstract

Objectives: This paper aims to review studies regarding side effects found during Non- Hodgkin Lymphoma treatment, to suggest the drug class most associated with these effects, as well as the most prevalent side effect grade.

Methods: This review is registered in PROSPERO (IDCRD42022295774) and followed the PICOS strategy and PRISMA guidelines. The search was carried out in the databases PubMed/ MEDLINE, Scientific Electronic Library Online, and DOAJ. Medical Subject Headings Terms were used and quantitative studies with conclusive results regarding side effects during the non-Hodgkin lymphoma treatment were selected. Patent information was obtained from google patents.

Results: Monoclonal antibodies were the main drug class associated with side effects during NHL therapy. The combination of Rituximab (Rituxan®; patent EP1616572B) and iInotuzumab (Besponsa ®; patent EP1504035B3) was associated with a higher incidence of thrombocytopenia (p < 0.05), while the combination of Rituximab and Venetoclax (Venclexta®; patent CN107089981A) was associated with a higher incidence of neutropenia (p < 0.05) when compared to Bendamustine combinations (Treanda™; patent US20130253025A1). Meta-analysis revealed a high prevalence of grade 3-4 neutropenia and thrombocytopenia in men. Finally, Americans and Canadians experienced a higher prevalence of these side effects, when compared to others nationalities (p < 0.05).

Conclusion: Patents regarding the use of monoclonal antibodies in NHL treatment were published in the last year. Monoclonal antibodies associated with neutropenia (grade 3-4) and thrombocytopenia, especially in North American men treated for NHL, and with an average age of 62 years demonstrated importance in this study.

Keywords: Neutropenia, thrombocytopenia, monoclonal antibodies, side effect grade, nationality, gender.

[1]
Skibola CF, Curry JD, Nieters A. Genetic susceptibility to lymphoma. Haematologica 2007; 92(7): 960-9.
[http://dx.doi.org/10.3324/haematol.11011] [PMID: 17606447]
[2]
Bateman AC, Howell WM. Human leukocyte antigens and cancer: is it in our genes? J Pathol 1999; 188(3): 231-6.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199907)188:3<231:AID-PATH325>3.0.CO;2-A] [PMID: 10419588]
[3]
Rothman N, Skibola CF, Wang SS, et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium. Lancet Oncol 2006; 7(1): 27-38.
[http://dx.doi.org/10.1016/S1470-2045(05)70434-4] [PMID: 16389181]
[4]
Shankland KR, Armitage JO, Hancock BW. Non-Hodgkin lymphoma. Lancet 2012; 380(9844): 848-57.
[http://dx.doi.org/10.1016/S0140-6736(12)60605-9] [PMID: 22835603]
[5]
Clifford G, Franceschi S, Grulich AE, Van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 2007; 370(9581)
[PMID: 17617251]
[6]
Shiels MS, Engels EA, Linet MS, et al. The epidemic of non-Hodgkin lymphoma in the United States: disentangling the effect of HIV, 1992-2009. Cancer Epidemiol Biomarkers Prev 2013; 22(6): 1069-78.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-0040] [PMID: 23595542]
[7]
Palackdharry CS. The epidemiology of non-Hodgkin’s lymphoma: why the increased incidence? Oncology 1994; 8(8): 67-73.
[PMID: 7947004]
[8]
Chiu BCH, Hou N. Epidemiology and etiology of non-hodgkin lymphoma. Non-Hodgkin Lymphoma. Cham, Switzerland: Springer 2015; Vol. 165: pp. 1-25.
[http://dx.doi.org/10.1007/978-3-319-13150-4_1]
[9]
Hartge P. Non-hodgkin lymphoma. Cancer epidemiology and prevention. (3rd ed.). New York: Oxford University Press 2006; pp. 898-918.
[http://dx.doi.org/10.1093/acprof:oso/9780195149616.003.0046]
[10]
Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127(20): 2375-90.
[http://dx.doi.org/10.1182/blood-2016-01-643569] [PMID: 26980727]
[11]
Ansell SM, Armitage J. Non-Hodgkin lymphoma: Diagnosis and treatment. Mayo Clin Proc 2005; 80(8): 1087-97.
[http://dx.doi.org/10.4065/80.8.1087] [PMID: 16092591]
[12]
Miller TP, Dahlberg S, Cassady JR, et al. Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin’s lymphoma. N Engl J Med 1998; 339(1): 21-6.
[http://dx.doi.org/10.1056/NEJM199807023390104] [PMID: 9647875]
[13]
Pfreundschuh M, Ho AD, Cavallin-Stahl E, et al. Prognostic significance of maximum tumour (bulk) diameter in young patients with good-prognosis diffuse large-B-cell lymphoma treated with CHOP-like chemotherapy with or without rituximab: an exploratory analysis of the MabThera International Trial Group (MInT) study. Lancet Oncol 2008; 9(5): 435-44.
[http://dx.doi.org/10.1016/S1470-2045(08)70078-0] [PMID: 18400558]
[14]
Lamy T, Damaj G, Gyan E, et al. R-CHOP with or without radiotherapy in non-bulky limited-stage diffuse large B cell lymphoma (DLBCL): preliminary results of the prospective randomized phase III 02-03 trial from the lysa/goelams group. Blood 2014; 124(21): 393.
[http://dx.doi.org/10.1182/blood.V124.21.393.393]
[15]
Feugier P, Van Hoof A, Sebban C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 2005; 23(18): 4117-26.
[http://dx.doi.org/10.1200/JCO.2005.09.131] [PMID: 15867204]
[16]
Cunningham D, Hawkes EA, Jack A, et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet 2013; 381(9880): 1817-26.
[http://dx.doi.org/10.1016/S0140-6736(13)60313-X] [PMID: 23615461]
[17]
Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 2006; 24(19): 3121-7.
[http://dx.doi.org/10.1200/JCO.2005.05.1003] [PMID: 16754935]
[18]
Kahl BS, Hong F, Williams ME, et al. Rituximab extended schedule or re-treatment trial for low-tumor burden follicular lymphoma: eastern cooperative oncology group protocol e4402. J Clin Oncol 2014; 32(28): 3096-102.
[http://dx.doi.org/10.1200/JCO.2014.56.5853] [PMID: 25154829]
[19]
a) Flinn IW, Miller CB, Ardeshna KM, et al. DYNAMO: a phase II study of duvelisib (IPI-145) in patients with refractory indolent non-Hodgkin lymphoma. J Clin Oncol 2019; 37(11): 912-22.
[http://dx.doi.org/10.1200/JCO.18.00915] [PMID: 30742566];
b) Sehn LH, Chua N, Mayer J, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol 2016; 17(8): 1081-93.
[http://dx.doi.org/10.1016/S1470-2045(16)30097-3] [PMID: 27345636]
[20]
Palanca-Wessels MCA, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody–drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol 2015; 16(6): 704-15.
[http://dx.doi.org/10.1016/S1470-2045(15)70128-2] [PMID: 25925619]
[21]
Kuruvilla J, Savona M, Baz R, et al. Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood 2017; 129(24): 3175-83.
[http://dx.doi.org/10.1182/blood-2016-11-750174] [PMID: 28468797]
[22]
Goebeler ME, Knop S, Viardot A, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J Clin Oncol 2016; 34(10): 1104-11.
[http://dx.doi.org/10.1200/JCO.2014.59.1586] [PMID: 26884582]
[23]
Nastoupil LJ, Lunning MA, Vose JM, et al. Tolerability and activity of ublituximab, umbralisib, and ibrutinib in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: a phase 1 dose escalation and expansion trial. Lancet Haematol 2019; 6(2): e100-9.
[http://dx.doi.org/10.1016/S2352-3026(18)30216-3] [PMID: 30709431]
[24]
Gopal AK, Kahl BS, de Vos S, et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014; 370(11): 1008-18.
[http://dx.doi.org/10.1056/NEJMoa1314583] [PMID: 24450858]
[25]
Moreno V, Sepulveda JM, Vieito M, et al. Phase I study of CC-90010, a reversible, oral BET inhibitor in patients with advanced solid tumors and relapsed/refractory non-Hodgkin’s lymphoma. Ann Oncol 2020; 31(6): 780-8.
[http://dx.doi.org/10.1016/j.annonc.2020.03.294] [PMID: 32240793]
[26]
Patnaik A, Appleman LJ, Tolcher AW, et al. First-in-human phase I study of copanlisib (BAY 80-6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Ann Oncol 2016; 27(10): 1928-40.
[http://dx.doi.org/10.1093/annonc/mdw282] [PMID: 27672108]
[27]
Pettengell R, Coiffier B, Narayanan G, et al. Pixantrone dimaleate versus other chemotherapeutic agents as a single-agent salvage treatment in patients with relapsed or refractory aggressive non-Hodgkin lymphoma: a phase 3, multicentre, open-label, randomised trial. Lancet Oncol 2012; 13(7): 696-706.
[http://dx.doi.org/10.1016/S1470-2045(12)70212-7] [PMID: 22652183]
[28]
Dang NH, Ogura M, Castaigne S, et al. Randomized, phase 3 trial of inotuzumab ozogamicin plus rituximab versus chemotherapy plus rituximab for relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Br J Haematol 2018; 182(4): 583-6.
[http://dx.doi.org/10.1111/bjh.14820] [PMID: 28677896]
[29]
Fowler NH, Davis RE, Rawal S, et al. Safety and activity of lenalidomide and rituximab in untreated indolent lymphoma: an open-label, phase 2 trial. Lancet Oncol 2014; 15(12): 1311-8.
[http://dx.doi.org/10.1016/S1470-2045(14)70455-3] [PMID: 25439689]
[30]
Seymour JF, Kipps TJ, Eichhorst B, et al. Venetoclax–rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med 2018; 378(12): 1107-20.
[http://dx.doi.org/10.1056/NEJMoa1713976] [PMID: 29562156]
[31]
Salles GA, Morschhauser F, Solal-Céligny P, et al. Obinutuzumab (GA101) in patients with relapsed/refractory indolent non-Hodgkin lymphoma: results from the phase II GAUGUIN study. J Clin Oncol 2013; 31(23): 2920-6.
[http://dx.doi.org/10.1200/JCO.2012.46.9718] [PMID: 23835715]
[32]
Awan F, Gore L, Gao L, Lager J, Costa L. Phase Ib trial of the PI3K/mTOR inhibitor voxtalisib (SAR245409) in combination with chemoimmunotherapy in patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma, mantle cell lymphoma, or chronic lymphocytic leukemia. Leuk Lymphoma 2015; 56: 18-8.
[33]
Caimi PF, Ai W, Alderuccio JP, et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 2021; 22(6): 790-800.
[http://dx.doi.org/10.1016/S1470-2045(21)00139-X] [PMID: 33989558]
[34]
Zhang X, Wang B, Tao W, et al. Comparison of the efficacy and impact of GEMOX and GDP in the treatment of patients with non-Hodgkin’s lymphoma. J BUON 2021; 25: 1042-9.
[PMID: 32521904]
[35]
Hutchings M, Mous R, Clausen MR, et al. Dose escalation of subcutaneous epcoritamab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an open-label, phase 1/2 study. Lancet 2021; 398(10306): 1157-69.
[http://dx.doi.org/10.1016/S0140-6736(21)00889-8] [PMID: 34508654]
[36]
Jacobson CA, Chavez JC, Sehgal AR, et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol 2022; 23(1): 91-103.
[http://dx.doi.org/10.1016/S1470-2045(21)00591-X] [PMID: 34895487]
[37]
Lyons RM, Shtivelband M, Kingsley E, et al. Efficacy and safety of ofatumumab and bendamustine followed by ofatumumab maintenance in patients with relapsed indolent non-Hodgkin lymphoma after prior rituximab. Leuk Lymphoma 2021; 62(6): 1353-60.
[http://dx.doi.org/10.1080/10428194.2020.1869957] [PMID: 33448893]
[38]
Advani R, Flinn I, Popplewell L, et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med 2018; 379(18): 1711-21.
[http://dx.doi.org/10.1056/NEJMoa1807315] [PMID: 30380386]
[39]
Umakanthan JM, Iqbal J, Batlevi CL, et al. Phase I/II study of dasatinib and exploratory genomic analysis in relapsed or refractory non-Hodgkin lymphoma. Br J Haematol 2019; 184(5): 744-52.
[http://dx.doi.org/10.1111/bjh.15702] [PMID: 30520026]
[40]
Antonio J, Grillo LC. White Chimeric anti-CD20 antibody, rituxan, for use in the treatment of chronic lymphocytic leukemia Patent EP1616572B1, 2010.
[41]
Popplewell T. Antibodies specific for human cd22 and their therapeutic and diagnostic uses Patent EP1504035B3, 2006.
[42]
Andreas B, Padraig M, Anastasios S. Combination of inotuzumab ozogamicin and torisel for the treatment of cancer Patent WO2013088304A1, 2013.
[43]
Junming Z. A kind of inhibitor Venetoclax of BCL 2 synthetic method Patent CN107089981A, 2017.
[44]
Sundaram S. Formulations of bendamustine Patent US20130253025A1, 2017.
[45]
Bruenker P, Herting F, Herter S, et al. Obinutuzumab variants having altered cell death induction Patent WO2017148880A1, 2017.
[46]
Polatuzumab vedotin Patent NO2020020I1, 2020.
[47]
Marina NG, Pelaez CB. Medical use Patent WO2015181053A1, 2015.
[48]
Austad BC, Roe DG. Polymorphs of selinexor Patent US10519139B2, 2019.
[49]
Kon NG, Bhimarao D, Kreudenstein TPV. Bispecific cd3 and cd19 antigen binding constructs Patent WO2015006749A2, 2016.
[50]
Thennati R, Dwivedi SD, Jadav KJ, Patel VM. JoshiI KC Process for the preparation of idelalisib Patent WO2017221272A1, 2016.
[51]
Traverse Y, Ferretti A, Alite M, Ruda P. Philip Process for the preparation of bromodomain inhibitor Patent WO2020023438A2, 2020.
[52]
Dimaleate de P. LU92089I2, 2012.
[53]
Henteman W, Scott M. Campbell, Bullion R, Rowley, Redman Substituted 2,3-dihydroimidazol[1,2c]quinazoline derivatives useful for treating hyper-proliferative disorders and diseases associated with angiogenesis Patent WO2008070150A, 2008.
[54]
Weiss M. Sportelli Combination of an anti-cd20 antibody, pi3 kinase-delta inhibitor,and anti-pd-1 or anti-pd-l1 antibody for treating hematological cancers Patent WO2018049263A1, 2018.
[55]
Yao Amorphous umbralisib monotosylate Patent WO2021009509A, 2021.
[56]
Raneburger J, Schwarz FX. Pharmaceutical compositions of Ibrutinib Patent WO2015071432A1, 2015.
[57]
Zammarchi F, Bertoni F. Combination therapy comprising an anticd19 antibody drug conjugate and a pik3 inhibitor or a secondary agent Patent WO2020249528A1, 2020.
[58]
Ujagare A, Kochrekar D, Uzagare M. Process for preparation of gemcitabine hydrochloride Patent US8193354B2, 2012.
[59]
Zhang D, Tam SH, Cho M, Nichida M, Shi L, Fung MC. Bispecific antibodies to tnf-alpha and il-1 beta and uses thereof Patent US20210009674A1, 2021.
[60]
Wiezorek SJ. Methods of administering chimeric antigen receptor immunotherapy Patent US20190151361A1, 2019.
[61]
Austin DJ, Charlton PA, Freedman I, Lee JH. Novel dosing and uses of ofatumumab Patent WO2015162504A, 2015.
[62]
Weissman C, Majeti L, Volkmer JP. Methods for determining and achieving therapeutically effective doses of anti-cd47 agents in treatment of cancer Patent WO2017181033A1, 2017.
[63]
Pattihis N, Panagopoulos P, Lexaki K, Kathiotou G. Dasatinib formulation Patent WO2017144109A1, 2017.
[64]
Cheson BD, Chua N, Mayer J, et al. Overall survival benefit in patients with rituximab-refractory indolent non-Hodgkin lymphoma who received obinutuzumab plus bendamustine induction and obinutuzumab maintenance in the GADOLIN study. J Clin Oncol 2018; 36(22): 2259-66.
[http://dx.doi.org/10.1200/JCO.2017.76.3656] [PMID: 29584548]
[65]
Cartron G, Hourcade-Potelleret F, Morschhauser F, et al. Rationale for optimal obinutuzumab/GA101 dosing regimen in B-cell non-Hodgkin lymphoma. Haematologica 2016; 101(2): 226-34.
[http://dx.doi.org/10.3324/haematol.2015.133421] [PMID: 26659915]
[66]
Michot JM, Bouabdallah R, Vitolo U, et al. Avadomide plus obinutuzumab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma (CC-122-NHL-001): a multicentre, dose escalation and expansion phase 1 study. Lancet Haematol 2020; 7(9): e649-59.
[http://dx.doi.org/10.1016/S2352-3026(20)30208-8] [PMID: 32758434]
[67]
Fujimura T, Yamashita-Kashima Y, Kawasaki N, Yoshiura S, Harada N, Yoshimura Y. Obinutuzumab in combination with chemotherapy enhances direct cell death in CD20-positive obinutuzumab-resistant non-Hodgkin lymphoma cells. Mol Cancer Ther 2021; 20(6): 1133-41.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0864] [PMID: 33850006]
[68]
Morschhauser F, Carlo-Stella C, Offner F, et al. Dual CD20-targeted therapy with concurrent CD20-TCB and obinutuzumab shows highly promising clinical activity and manageable safety in relapsed or refractory B-cell non-Hodgkin lymphoma: preliminary results from a phase Ib trial. Blood 2019; 134 (Suppl. 1): 1584.
[http://dx.doi.org/10.1182/blood-2019-123949]
[69]
Lunning M, Vose J, Nastoupil L, et al. Ublituximab and umbralisib in relapsed/refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2019; 134(21): 1811-20.
[http://dx.doi.org/10.1182/blood.2019002118] [PMID: 31558467]
[70]
Ribeiro ML, Normant E, Garau DR, et al. PS1310 the novel bispecific CD47-CD19 antibody TG-1801 potentiates the activity of Ublituximab-Umbralisib (U2) drug combination in preclinical models of B-NHL. HemaSphere 2019; 3(S1): 598.
[http://dx.doi.org/10.1097/01.HS9.0000563520.84730.09]
[71]
Chavez JC, Goldschmidt N, Samaniego F, et al. The combination of umbralisib plus ublituximab is active in patients with relapsed or refractory marginal zone lymphoma (MZL): Results from the phase 2 global unity-NHL Trial. Blood 2021; 138 (Suppl. 1): 45.
[http://dx.doi.org/10.1182/blood-2021-147425]
[72]
Normant E, Ribeiro ML, Profitos-Peleja N, et al. The ublituximab-umbralisib (U2) drug regimen potentiates the activity of the novel CD47-CD19 bispecific antibody, TG-1801, through the activation of the G protein-coupled receptor EBI2/GPR183. Blood 2021; 138 (Suppl. 1): 1196.
[http://dx.doi.org/10.1182/blood-2021-150570]
[73]
Profitós-Pelejà N, Santos JC, Marín-Niebla A, Roué G, Ribeiro ML. Regulation of B-cell receptor signaling and its therapeutic relevance in aggressive B-cell lymphomas. Cancers 2022; 14(4): 860.
[http://dx.doi.org/10.3390/cancers14040860] [PMID: 35205606]
[74]
Garrett M, Ruiz-Garcia A, Parivar K, Hee B, Boni J. Population pharmacokinetics of inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin lymphoma. J Pharmacokinet Pharmacodyn 2019; 46(3): 211-22.
[http://dx.doi.org/10.1007/s10928-018-9614-9] [PMID: 30859374]
[75]
Sangha R, Davies A, Dang NH, et al. Phase 1 study of inotuzumab ozogamicin combined with R-GDP for the treatment of patients with relapsed/refractory CD22+ B-cell non-Hodgkin lymphoma. J Drug Assess 2017; 6(1): 10-7.
[http://dx.doi.org/10.1080/21556660.2017.1315336] [PMID: 28959500]
[76]
Goy A, Forero A, Wagner-Johnston N, et al. A phase 2 study of inotuzumab ozogamicin in patients with indolent B-cell non-Hodgkin lymphoma refractory to rituximab alone, rituximab and chemotherapy, or radioimmunotherapy. Br J Haematol 2016; 174(4): 571-81.
[http://dx.doi.org/10.1111/bjh.14094] [PMID: 27101934]
[77]
Pirosa MC, Zhang L, Hitz F, et al. A phase I trial of inotuzumab ozogamicin in combination with temsirolimus in patients with relapsed or refractory CD22-positive B-cell non-Hodgkin lymphomas. Leuk Lymphoma 2022; 63(1): 117-23.
[http://dx.doi.org/10.1080/10428194.2021.1966780] [PMID: 34407735]
[78]
Kambhampati S, Fakhri B, Ai WZ, et al. Carfilzomib in combination with bendamustine and rituximab in patients with relapsed or refractory non-hodgkin lymphoma: A phase I trial. Clin Lymphoma Myeloma Leuk 2021; 21(3): 139-46.
[http://dx.doi.org/10.1016/j.clml.2020.12.020] [PMID: 33478921]
[79]
Bertino EM, McMichael EL, Mo X, et al. A phase I trial to evaluate antibody-dependent cellular cytotoxicity of cetuximab and lenalidomide in advanced colorectal and head and neck cancer. Mol Cancer Ther 2016; 15(9): 2244-50.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0879] [PMID: 27458141]
[80]
Bartlett JB, Wu L, Adams M, Schafer P, Muller G, Stirling D. Lenalidomide and pomalidomide strongly enhance tumor cell killing in vitro during antibody-dependent cellular cytotoxicity (ADCC) mediated by trastuzumab, cetuximab and rituximab. J Clin Oncol 2007; 25(18) (Suppl.): 3023-.
[http://dx.doi.org/10.1200/jco.2007.25.18_suppl.3023]
[81]
Leonard JP, Trneny M, Izutsu K, et al. AUGMENT: a phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma. J Clin Oncol 2019; 37(14): 1188-99.
[http://dx.doi.org/10.1200/JCO.19.00010] [PMID: 30897038]
[82]
Thielen FW, Kersten MJ, Kuizenga P, et al. Cost-effectiveness of lenalidomide plus rituximab versus rituximab monotherapy in patients with previously treated follicular lymphoma: a societal view. Expert Rev Anticancer Ther 2021; 21(12): 1411-22.
[http://dx.doi.org/10.1080/14737140.2021.1971520] [PMID: 34428992]
[83]
Becnel MR, Nastoupil LJ, Samaniego F, et al. Lenalidomide plus rituximab (R 2) in previously untreated marginal zone lymphoma: subgroup analysis and long‐term follow‐up of an open‐label phase 2 trial. Br J Haematol 2019; 185(5): 874-82.
[http://dx.doi.org/10.1111/bjh.15843] [PMID: 30919940]
[84]
Herrera AF, Patel MR, Burke JM, et al. Anti-CD79b antibody-drug conjugate dcds0780a in patients with b-cell non-hodgkin lymphoma: Phase 1 dose-escalation study. Clin Cancer Res 2022; 28(7): 1294-301.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-3261] [PMID: 34980599]
[85]
Herrera AF, Patel MR, Burke JM, et al. A phase i study of the anti-CD79b THIOMABTM-drug conjugate DCDS0780A in patients (pts) with relapsed or refractory B-cell non-hodgkin’s lymphoma (B-NHL). Blood 2017; 130: 4129.
[86]
Bourbon E, Salles G. Polatuzumab vedotin: An investigational anti-CD79b antibody drug conjugate for the treatment of diffuse large B-cell lymphoma. Expert Opin Investig Drugs 2020; 29(10): 1079-88.
[http://dx.doi.org/10.1080/13543784.2020.1800638] [PMID: 32700972]
[87]
Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 2020; 38(2): 155-65.
[http://dx.doi.org/10.1200/JCO.19.00172] [PMID: 31693429]
[88]
Choi Y, Diefenbach CS. Polatuzumab vedotin: a new target for B cell malignancies. Curr Hematol Malig Rep 2020; 15(2): 125-9.
[http://dx.doi.org/10.1007/s11899-020-00572-7] [PMID: 32172360]
[89]
Lu D, Gillespie WR, Girish S, et al. Time‐to‐event analysis of polatuzumab vedotin‐induced peripheral neuropathy to assist in the comparison of clinical dosing regimens. CPT Pharmacometrics Syst Pharmacol 2017; 6(6): 401-8.
[http://dx.doi.org/10.1002/psp4.12192] [PMID: 28544534]
[90]
Tilly H, Morschhauser F, Sehn LH, et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma. N Engl J Med 2022; 386(4): 351-63.
[http://dx.doi.org/10.1056/NEJMoa2115304] [PMID: 34904799]
[91]
Lu T, Gibiansky L, Li X, et al. Exposure-safety and exposure-efficacy analyses of polatuzumab vedotin in patients with relapsed or refractory diffuse large B-cell lymphoma. Leuk Lymphoma 2020; 61(12): 2905-14.
[http://dx.doi.org/10.1080/10428194.2020.1795154] [PMID: 32705923]
[92]
Mariotto S, Tecchio C, Sorio M, et al. Clinical and neurophysiological serial assessments of brentuximab vedotin-associated peripheral neuropathy. Leuk Lymphoma 2019; 60(11): 2806-9.
[http://dx.doi.org/10.1080/10428194.2019.1605068] [PMID: 31057013]
[93]
Mariotto S, Ferrari S, Monaco S. Brentuximab vedotin-induced peripheral neuropathy: looking at microtubules. J Neurooncol 2018; 137(3): 665-6.
[http://dx.doi.org/10.1007/s11060-018-2743-6] [PMID: 29318508]
[94]
Kuruvilla J, Ramchandren R, Santoro A, et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): an interim analysis of a multicentre, randomised, open-label, phase 3 study. Lancet Oncol 2021; 22(4): 512-24.
[http://dx.doi.org/10.1016/S1470-2045(21)00005-X] [PMID: 33721562]
[95]
Kebriaei P, Cutler C, de Lima M, et al. Management of important adverse events associated with inotuzumab ozogamicin: expert panel review. Bone Marrow Transplant 2018; 53(4): 449-56.
[http://dx.doi.org/10.1038/s41409-017-0019-y] [PMID: 29330398]
[96]
Kantarjian HM, Stock W, Cassaday RD, et al. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia in the INO-VATE trial: CD22 pharmacodynamics, efficacy, and safety by baseline CD22. Clin Cancer Res 2021; 27(10): 2742-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2399] [PMID: 33602684]
[97]
O’Brien MM, Ji L, Shah NN, et al. A phase 2 trial of inotuzumab ozogamicin (InO) in children and young adults with relapsed or refractory (R/R) CD22+ B-acute lymphoblastic leukemia (B-ALL): results from Children’s Oncology Group Protocol AALL1621. Blood 2019; 134(S1): 741.
[http://dx.doi.org/10.1182/blood-2019-128977]
[98]
Lee SH, Yoon JH, Min GJ, et al. Response to blinatumomab or inotuzumab ozogamicin for isolated extramedullary relapse of adult acute lymphoblastic leukemia after allogeneic hematopoietic cell transplantation: a case study. Int J Hematol 2022; 115(1): 135-9.
[http://dx.doi.org/10.1007/s12185-021-03231-6] [PMID: 34617186]
[99]
Cartron G, Blasco H, Paintaud G, Watier H, Le Guellec C. Pharmacokinetics of rituximab and its clinical use: thought for the best use? Crit Rev Oncol Hematol 2007; 62(1): 43-52.
[http://dx.doi.org/10.1016/j.critrevonc.2006.09.004] [PMID: 17287129]
[100]
Wang X, Du W, Zhang X, Li P. The influence of different disease states on rituximab pharmacokinetics. Curr Drug Metab 2020; 21(12): 938-46.
[http://dx.doi.org/10.2174/1389200221666200719004035] [PMID: 32682367]
[101]
Iacona I, Lazzarino M, Avanzini MA, et al. Rituximab (IDEC-C2B8): validation of a sensitive enzyme-linked immunoassay applied to a clinical pharmacokinetic study. Ther Drug Monit 2000; 22(3): 295-301.
[http://dx.doi.org/10.1097/00007691-200006000-00010] [PMID: 10850396]
[102]
Truffot A, Jourdil JF, Seitz-Polski B, et al. Simultaneous quantification of rituximab and eculizumab in human plasma by liquid chromatography-tandem mass spectrometry and comparison with rituximab ELISA kits. Clin Biochem 2021; 87: 60-6.
[http://dx.doi.org/10.1016/j.clinbiochem.2020.10.007] [PMID: 33096054]
[103]
Millet A, Khoudour N, Lebert D, et al. Development, validation, and comparison of two mass spectrometry methods (lc-ms/hrms and lc-ms/ms) for the quantification of rituximab in human plasma. Molecules 2021; 26(5): 1383.
[http://dx.doi.org/10.3390/molecules26051383] [PMID: 33806585]
[104]
Di Marco F, Berger T, Esser-Skala W, Rapp E, Regl C, Huber CG. Simultaneous monitoring of monoclonal antibody variants by strong cation-exchange chromatography hyphenated to mass spectrometry to assess quality attributes of rituximab-based biotherapeutics. Int J Mol Sci 2021; 22(16): 9072.
[http://dx.doi.org/10.3390/ijms22169072] [PMID: 34445776]
[105]
Kang J, Kim SY, Vallejo D, et al. Multifaceted assessment of rituximab biosimilarity: The impact of glycan microheterogeneity on Fc function. Eur J Pharm Biopharm 2020; 146: 111-24.
[http://dx.doi.org/10.1016/j.ejpb.2019.12.003] [PMID: 31841688]
[106]
Cerutti ML, Pesce A, Bès C, Seigelchifer M. Physicochemical and biological characterization of RTXM83, a new rituximab biosimilar. BioDrugs 2019; 33(3): 307-19.
[http://dx.doi.org/10.1007/s40259-019-00349-2] [PMID: 30927214]
[107]
Davids MS, Kuss BJ, Hillmen P, et al. Efficacy and safety of duvelisib following disease progression on ofatumumab in patients with relapsed/refractory CLL or SLL in the DUO crossover extension study. Clin Cancer Res 2020; 26(9): 2096-103.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3061] [PMID: 31964785]
[108]
Zheng Z, Gao Y, Song Y, et al. Efficacy and safety of duvelisib, a phosphoinositide 3 kinase (PI3K) δ and γ inhibitor, in Chinese patients (pts) with relapsed/refractory follicular lymphoma (R/R FL): A single-arm, open-label, multicenter, phase Ⅱ clinical trial. J Clin Oncol 2021; 39(15) (Suppl.): e19532-2.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.e19532]
[109]
Horwitz SM, Foss FM, Porcu P, et al. Duvelisib, an oral dual PI3K-δγ inhibitor, efficacy and safety in patients with relapsed or refractory (RR) peripheral T-cell lymphoma: Rationale for the phase 2 PRIMO trial. Hematol Oncol 2019; 37: 65-6.
[http://dx.doi.org/10.1002/hon.33_2629]
[110]
Blair HA. Duvelisib: first global approval. Drugs 2018; 78(17): 1847-53.
[http://dx.doi.org/10.1007/s40265-018-1013-4] [PMID: 30430368]
[111]
Khan SI, Anwar MY, Rafae A, et al. Efficacy and safety of phosphoinositide 3-kinase (pi3k) inhibitors in non-hodgkin’s lymphoma: a systematic review and meta-analysis. Blood 2020; 136(S1): 12-3.
[http://dx.doi.org/10.1182/blood-2020-134986]
[112]
Zinzani PL, Flinn IW, Miller CB, et al. Prognostic and immune-related factors for response to duvelisib in the phase 2 dynamotm clinical trial in iNHL. Blood 2018; 132(S1): 4167.
[http://dx.doi.org/10.1182/blood-2018-99-117903]
[113]
Gharwan H, Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol 2016; 13(4): 209-27.
[http://dx.doi.org/10.1038/nrclinonc.2015.213] [PMID: 26718105]
[114]
Dufner V, Sayehli CM, Chatterjee M, et al. Long-term outcome of patients with relapsed/refractory b-cell non-hodgkin lymphoma treated with blinatumomab. Blood Adv 2019; 3(16): 2491-8.
[http://dx.doi.org/10.1182/bloodadvances.2019000025] [PMID: 31451445]
[115]
Sanders S, Stewart DA. Targeting non-Hodgkin lymphoma with blinatumomab. Expert Opin Biol Ther 2017; 17(8): 1013-7.
[http://dx.doi.org/10.1080/14712598.2017.1334053] [PMID: 28532177]
[116]
Hijazi Y, Klinger M, Kratzer A, et al. Pharmacokinetic and pharmacodynamic relationship of blinatumomab in patients with non-Hodgkin lymphoma. Curr Clin Pharmacol 2018; 13(1): 55-64.
[http://dx.doi.org/10.2174/1574884713666180518102514] [PMID: 29773068]
[117]
Bukhari A, Lee ST. Blinatumomab: a novel therapy for the treatment of non-Hodgkin’s lymphoma. Expert Rev Hematol 2019; 12(11): 909-18.
[http://dx.doi.org/10.1080/17474086.2019.1676717] [PMID: 31583919]
[118]
Shin N, Li YL, Mei S, et al. INCB040093 is a novel PI3Kδ inhibitor for the treatment of B cell lymphoid malignancies. J Pharmacol Exp Ther 2018; 364(1): 120-30.
[http://dx.doi.org/10.1124/jpet.117.244947] [PMID: 29127109]
[119]
Lampson BL, Brown JR. PI3Kδ-selective and PI3Kα/δ-combinatorial inhibitors in clinical development for B-cell non-Hodgkin lymphoma. Expert Opin Investig Drugs 2017; 26(11): 1267-79.
[http://dx.doi.org/10.1080/13543784.2017.1384815] [PMID: 28945111]
[120]
Hanna BS, Roessner PM, Scheffold A, et al. PI3Kδ inhibition modulates regulatory and effector T-cell differentiation and function in chronic lymphocytic leukemia. Leukemia 2019; 33(6): 1427-38.
[http://dx.doi.org/10.1038/s41375-018-0318-3] [PMID: 30573773]
[121]
Pongas G, Cheson BD. PI3K signaling pathway in normal B cells and indolent B-cell malignancies. Semin Oncol 2016; 43(6): 647-54.
[http://dx.doi.org/10.1053/j.seminoncol.2016.11.011] [PMID: 28061982]
[122]
Cooney JD, Lin AP, Jiang D, et al. Synergistic targeting of the regulatory and catalytic subunits of PI3Kδ in mature B-cell malignancies. Clin Cancer Res 2018; 24(5): 1103-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2218] [PMID: 29246942]
[123]
Krause G, Hassenrück F, Hallek M. Copanlisib for treatment of B-cell malignancies: the development of a PI3K inhibitor with considerable differences to idelalisib. Drug Des Devel Ther 2018; 12: 2577-90.
[http://dx.doi.org/10.2147/DDDT.S142406] [PMID: 30174412]
[124]
Mensah F, Blaize JP, Bryan L. Spotlight on copanlisib and its potential in the treatment of relapsed/refractory follicular lymphoma: evidence to date. OncoTargets Ther 2018; 11: 4817-27.
[http://dx.doi.org/10.2147/OTT.S142264] [PMID: 30147333]
[125]
Narkhede M, Cheson BD. Copanlisib in the treatment of non-Hodgkin lymphoma. Future Oncol 2020; 16(26): 1947-55.
[http://dx.doi.org/10.2217/fon-2020-0195] [PMID: 32658557]
[126]
Dreyling M, Santoro A, Mollica L, et al. Long‐term safety and efficacy of the PI3K inhibitor copanlisib in patients with relapsed or refractory indolent lymphoma: 2‐year follow‐up of the CHRONOS‐1 study. Am J Hematol 2020; 95(4): 362-71.
[http://dx.doi.org/10.1002/ajh.25711] [PMID: 31868245]
[127]
Eltantawy A, Vallejos X, Sebea E, Evans K. Copanlisib: an intravenous phosphatidylinositol 3-kinase (PI3K) inhibitor for the treatment of relapsed follicular lymphoma. Ann Pharmacother 2019; 53(9): 954-8.
[http://dx.doi.org/10.1177/1060028019833992] [PMID: 30813760]
[128]
Cheson BD, O’Brien S, Ewer MS, et al. Optimal management of adverse events from copanlisib in the treatment of patients with non-Hodgkin lymphomas. Clin Lymphoma Myeloma Leuk 2019; 19(3): 135-41.
[http://dx.doi.org/10.1016/j.clml.2018.11.021] [PMID: 30584024]
[129]
Morgensztern D, McLeod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 2005; 16(8): 797-803.
[http://dx.doi.org/10.1097/01.cad.0000173476.67239.3b] [PMID: 16096426]
[130]
Lu JM, Zhang ZZ, Ma X, Fang SF, Qin XH. Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy. Exp Eye Res 2020; 190107886.
[http://dx.doi.org/10.1016/j.exer.2019.107886] [PMID: 31759996]
[131]
Camara AB, Brandao IA. The role of vitamin D and sunlight incidence in cancer. Anticancer Agents Med Chem 2019; 19(11): 1418-36.
[http://dx.doi.org/10.2174/1389557519666190312123212] [PMID: 30864510]
[132]
Hałka J. Pixantrone - anticancer drug in the monotherapy of aggressive lymphomas. OncoReview 2020; 10(2): 48-51.
[http://dx.doi.org/10.24292/01.OR.220300620.2]
[133]
Jezeršek Novaković B, Boltežar L, Novaković A. Current opinion on pixantrone in the treatment of Non-Hodgkin B-Cell Lymphoma. Ther Clin Risk Manag 2021; 17: 183-92.
[http://dx.doi.org/10.2147/TCRM.S269324] [PMID: 33688197]
[134]
Salvatorelli E, Menna P, Paz OG, et al. The novel anthracenedione, pixantrone, lacks redox activity and inhibits doxorubicinol formation in human myocardium: insight to explain the cardiac safety of pixantrone in doxorubicin-treated patients. J Pharmacol Exp Ther 2013; 344(2): 467-78.
[http://dx.doi.org/10.1124/jpet.112.200568] [PMID: 23192654]
[135]
Waldmann TA. Monoclonal antibodies in diagnosis and therapy. Science 1991; 252(5013): 1657-62.
[http://dx.doi.org/10.1126/science.2047874] [PMID: 2047874]
[136]
Cai HH. Therapeutic monoclonal antibodies approved by FDA in 2020. Clinical Research of Immunology 2021; 4: 1-2.
[137]
Lanzavecchia A, Corti D, Sallusto F. Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol 2007; 18(6): 523-8.
[http://dx.doi.org/10.1016/j.copbio.2007.10.011] [PMID: 18063358]
[138]
Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol 2005; 23(9): 1073-8.
[http://dx.doi.org/10.1038/nbt0905-1073] [PMID: 16151394]
[139]
Chan L, Karimi N, Morovati S, et al. The roles of neutrophils in cytokine storms. Viruses 2021; 13(11): 2318.
[http://dx.doi.org/10.3390/v13112318] [PMID: 34835125]
[140]
Intragumtornchai T, Sutheesophon J, Sutcharitchan P, Swasdikul D. A predictive model for life-threatening neutropenia and febrile neutropenia after the first course of CHOP chemotherapy in patients with aggressive non-Hodgkin’s lymphoma. Leuk Lymphoma 2000; 37(3-4): 351-60.
[http://dx.doi.org/10.3109/10428190009089435] [PMID: 10752986]
[141]
Zhang M, Gao F, Peng L, et al. Distinct clinical features and prognostic factors of hepatitis C virus-associated non-Hodgkin’s lymphoma: a systematic review and meta-analysis. Cancer Cell Int 2021; 21(1): 524.
[http://dx.doi.org/10.1186/s12935-021-02230-1] [PMID: 34627251]
[142]
Melenotte C, Mezouar S, Mège JL, Gorvel JP, Kroemer G, Raoult D. Bacterial infection and non-Hodgkin’s lymphoma. Crit Rev Microbiol 2020; 46(3): 270-87.
[http://dx.doi.org/10.1080/1040841X.2020.1760786] [PMID: 32412856]
[143]
Phillips AA, Smith DA. Health disparities and the global landscape of lymphoma care today. Am Soc Clin Oncol Educ Book 2017; 37(37): 526-34.
[http://dx.doi.org/10.1200/EDBK_175444] [PMID: 28561692]
[144]
Hooper WC, Holman RC, Clarke MJ, Chorba TL. Trends in non-hodgkin lymphoma (NHL) and HIV-associated NHL deaths in the United States. Am J Hematol 2001; 66(3): 159-66.
[http://dx.doi.org/10.1002/1096-8652(200103)66:3<159:AID-AJH1039>3.0.CO;2-2] [PMID: 11279621]
[145]
Andrews CN, Gill MJ, Urbanski SJ, Stewart D, Perini R, Beck P. The non‐Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer 2008; 120(S12): 1-39.
[146]
Alexander DD, Mink PJ, Adami HO, et al. The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer 2007; 120(S12): 1-39.
[http://dx.doi.org/10.1002/ijc.22719] [PMID: 17405121]
[147]
Howlader N, Shiels MS, Mariotto AB, Engels EA. Contributions of HIV to non-Hodgkin lymphoma mortality trends in the United States. Cancer Epidemiol Biomarkers Prev 2016; 25(9): 1289-96.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0273] [PMID: 27418269]
[148]
Tong Q, Liu R, Zhang K, Gao Y, Cui G, Shen W. Can acupuncture therapy reduce preoperative anxiety? A systematic review and meta-analysis. J Integr Med 2021; 19(1): 20-8.
[http://dx.doi.org/10.1016/j.joim.2020.10.007 ] [PMID: 33288487]
[149]
Dreger P. Allogeneic stem cell transplant in non?Hodgkin lymphomas: Still an indication? Hematol Oncol 2021; 39: 100-3.
[http://dx.doi.org/10.1002/hon.2845 ] [PMID: 34105814]
[150]
Hunter BD, Rogalski M, Jacobson CA. Chimeric antigen receptor T-cell therapy for the treatment of aggressive B-cell non-Hodgkin lymphomas: efficacy, toxicity, and comparative chimeric antigen receptor products. Expert Opin Biol Ther 2019; 19(11): 1157-64.
[http://dx.doi.org/10.1080/14712598.2019.1644316 ] [PMID: 31342797]
[151]
Younes A, Brody J, Carpio C, et al. Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study. The Lancet Haematology 2019; 6(2): e67-78.
[http://dx.doi.org/10.1016/S2352-3026(18)30217-5 ] [PMID: 30642819]
[152]
Tavarozzi R, Manzato E. The Role of Bispecific Antibodies in Non-Hodgkin’s Lymphoma: From Structure to Prospective Clinical Use. Antibodies 2022; 11(1): 16.
[http://dx.doi.org/10.3390/antib11010016] [PMID: 35225874]
[153]
Bock AM, Nowakowski GS, Wang Y. Bispecific antibodies for non-Hodgkin lymphoma treatment. Curr Treat Options Oncol 2022; 23(2): 155-70.
[http://dx.doi.org/10.1007/s11864-021-00925-1 ] [PMID: 35182296]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy