Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Image Processing Pitfalls in Vendor Adaptive Radiotherapy Software with Tomotherapy-like Systems: Feedback from Clinical Case Reports

Author(s): Claudine Niederst, Nicolas Dehaynin, Alex Lallement and Philippe Meyer*

Volume 19, Issue 10, 2023

Published on: 27 January, 2023

Article ID: e110123212583 Pages: 11

DOI: 10.2174/1573405619666230111114244

Price: $65

conference banner
Abstract

Background: Adaptive radiotherapy (ART) has the potential to reduce the toxicities of radiotherapy and improve overall survival by considering variations in the patient's anatomy during the course of treatment. ART's first commercial solutions are now implemented in clinical radiotherapy departments. However, before they can be used safely with real patients, these solutions must be rigorously evaluated to precisely determine the limits of their use.

Methods: In this paper, we evaluated an offline ART vendor system in 50 patients treated on tomotherapy- like systems for six months. Illustrated by numerous examples of head and neck, thoracic and abdominopelvic localizations, two limitations of image processing used in the ART workflow have been highlighted: deformable image registration (DIR) accuracy and the way the limited field of view (FOV) is compensated. This feedback from clinical experience makes it possible to identify topics of image processing research with strong clinical interest.

Results: Current DIR method accuracy may be too weak for some clinical ART applications, and their improvement remains highly important, especially for multimodality registration. Improvements in contour propagation methods also remain crucial today. We showed that there is a need for the development of automatic DIR accuracy quantification methods to help streamline the ART process. Finally, the limited FOV of the onboard images may induce dose calculation errors, highlighting the need to develop new FOV extension methods.

Conclusion: We have evaluated a vendor ART system, but some image processing pitfalls, such as DIR accuracy and the limited FOV of the onboard images, make its implementation into clinical practice difficult for the moment.

Keywords: Adaptive radiotherapy, Field of view extension, Deformable image registration, Contour propagation, TomoTherapy machines image processing.

[1]
Sonke JJ, Aznar M, Rasch C. Adaptive radiotherapy for anatomical changes. Semin Radiat Oncol 2019; 29(3): 245-57.
[http://dx.doi.org/10.1016/j.semradonc.2019.02.007] [PMID: 31027642]
[2]
Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Phys Med Biol 1997; 42(1): 123-32.
[http://dx.doi.org/10.1088/0031-9155/42/1/008] [PMID: 9015813]
[3]
Lim-Reinders S, Keller BM, Al-Ward S, Sahgal A, Kim A. Online adaptive radiation therapy. Int J Radiat Oncol Biol Phys 2017; 99(4): 994-1003.
[http://dx.doi.org/10.1016/j.ijrobp.2017.04.023] [PMID: 28916139]
[4]
Brock KK. Adaptive radiotherapy: Moving into the future. Semin Radiat Oncol 2019; 29(3): 181-4.
[http://dx.doi.org/10.1016/j.semradonc.2019.02.011] [PMID: 31027635]
[5]
Glide-Hurst CK, Lee P, Yock AD, et al. Adaptive Radiation Therapy (ART) strategies and technical considerations: A state of the art review from NRG oncology. Int J Radiat Oncol Biol Phys 2021; 109(4): 1054-75.
[http://dx.doi.org/10.1016/j.ijrobp.2020.10.021] [PMID: 33470210]
[6]
Kainz K. Accuray precise ARTTM adaptive radiation therapy software 2017; 18
[7]
Keller H, Glass M, Hinderer R, et al. Monte Carlo study of a highly efficient gas ionization detector for megavoltage imaging and image-guided radiotherapy. Med Phys 2002; 29(2): 165-75.
[http://dx.doi.org/10.1118/1.1445414] [PMID: 11865988]
[8]
Meeks SL, Harmon JF Jr, Langen KM, Willoughby TR, Wagner TH, Kupelian PA. Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit. Med Phys 2005; 32(8): 2673-81.
[http://dx.doi.org/10.1118/1.1990289] [PMID: 16193798]
[9]
Ruchala KJ, Olivera GH, Kapatoes JM, Schloesser EA, Reckwerdt PJ, Mackie TR. Megavoltage CT image reconstruction during tomotherapy treatments. Phys Med Biol 2000; 45(12): 3545-62.
[http://dx.doi.org/10.1088/0031-9155/45/12/303] [PMID: 11131183]
[10]
Ruchala KJ, Olivera GH, Schloesser EA, Mackie TR. Megavoltage CT on a tomotherapy system. Phys Med Biol 1999; 44(10): 2597-621.
[http://dx.doi.org/10.1088/0031-9155/44/10/316] [PMID: 10533931]
[11]
Jung JH, Cho KH, Kim YH, et al. Effect of jaw size in megavoltage CT on image quality and dose. Med Phys 2012; 39(8): 4976-83.
[http://dx.doi.org/10.1118/1.4736951] [PMID: 22894422]
[12]
Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993; 20(6): 1709-19.
[http://dx.doi.org/10.1118/1.596958] [PMID: 8309444]
[13]
Gupta V, Wang Y, Romero A, et al. SU-E-J-208: Fast and accurate auto-segmentation of abdominal organs at risk for online adaptive radiotherapy. Med Phys 2014; 41(6Part9): 205-5.
[http://dx.doi.org/10.1118/1.4888261]
[14]
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017; 44(7): e43-76.
[http://dx.doi.org/10.1002/mp.12256] [PMID: 28376237]
[15]
Latifi K, Caudell J, Zhang G, Hunt D, Moros EG, Feygelman V. Practical quantification of image registration accuracy following the AAPM TG-132 report framework. J Appl Clin Med Phys 2018; 19(4): 125-33.
[http://dx.doi.org/10.1002/acm2.12348] [PMID: 29882231]
[16]
Jenkins C, Xing L, Yu A. Using a handheld stereo depth camera to overcome limited field-of-view in simulation imaging for radiation therapy treatment planning. Med Phys 2017; 44(5): 1857-64.
[http://dx.doi.org/10.1002/mp.12207] [PMID: 28295413]
[17]
Fournié É, Baer-Beck M, Stierstorfer K. CT field of view extension using combined channels extension and deep learning methods. ArXiv 2019; 2019: 190809529.
[18]
Huang Y, Gao L, Preuhs A, Maier A. Field of view extension in computed tomography using deep learning prior Bildverarb Für Med. Wiesbaden: Springer Fachmedien 2020; pp. 186-91.
[http://dx.doi.org/10.1007/978-3-658-29267-6_40]
[19]
Wu X, Li RL, Zhang FL, et al. Deep portrait image completion and extrapolation. IEEE Trans Image Process 2020; 29: 2344-55.
[http://dx.doi.org/10.1109/TIP.2019.2945866] [PMID: 31613764]
[20]
Yang Z, Dong J, Liu P, Yang Y, Yan S. Very long natural scenery image prediction by outpainting. 2019 IEEECVF Int Conf Comput Vis ICCV, Seoul Korea (South). 2019
[http://dx.doi.org/10.1109/ICCV.2019.01066]
[21]
Vinas L, Scholey J, Descovich M, Kearney V, Sudhyadhom A. Improved contrast and noise of megavoltage computed tomography (MVCT) through cycle-consistent generative machine learning. Med Phys 2020; 48(2): 676-90.
[http://dx.doi.org/10.1002/mp.14616] [PMID: 33232526]
[22]
Loi G, Fusella M, Lanzi E, et al. Performance of commercially available deformable image registration platforms for contour propagation using patient-based computational phantoms: A multi-institutional study. Med Phys 2018; 45(2): 748-57.
[http://dx.doi.org/10.1002/mp.12737] [PMID: 29266262]
[23]
Pereira GC, Traughber M, Muzic RF Jr. The role of imaging in radiation therapy planning: past, present, and future. BioMed Res Int 2014; 2014: 231090.
[http://dx.doi.org/10.1155/2014/231090] [PMID: 24812609]
[24]
Wang T, Lei Y, Fu Y, et al. A review on medical imaging synthesis using deep learning and its clinical applications. J Appl Clin Med Phys 2021; 22(1): 11-36.
[http://dx.doi.org/10.1002/acm2.13121] [PMID: 33305538]
[25]
Archambault Y, Boylan C, Bullock D, et al. Medical physics international. Med Phys Int J 2020; 8: 77-86.
[26]
Sibolt P, Andersson LM, Calmels L, et al. Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region. Phys Imaging Radiat Oncol 2021; 17: 1-7.
[http://dx.doi.org/10.1016/j.phro.2020.12.004] [PMID: 33898770]
[27]
Yoon SW, Lin H, Alonso-Basanta M, et al. Initial evaluation of a novel cone-beam CT-based semi-automated online adaptive radiotherapy system for head and neck cancer treatment - A timing and automation quality study. Cureus 2020; 12(8): e9660.
[http://dx.doi.org/10.7759/cureus.9660] [PMID: 32923257]
[28]
Ward A, Martinou M, Kidane G, Graham S. Daily adaptive radiotherapy using the varian ETHOS system to improve dose distribution during treatment to the upper abdomen. Clin Oncol (R Coll Radiol) 2022; 34: e10.
[http://dx.doi.org/10.1016/j.clon.2022.01.036]
[29]
Byrne M, Archibald-Heeren B, Hu Y, et al. Varian ethos online adaptive radiotherapy for prostate cancer: Early results of contouring accuracy, treatment plan quality, and treatment time. J Appl Clin Med Phys 2022; 23(1): e13479.
[http://dx.doi.org/10.1002/acm2.13479] [PMID: 34846098]
[30]
Paganelli C, Meschini G, Molinelli S, Riboldi M, Baroni G. “Patient-specific validation of deformable image registration in radiation therapy: Overview and caveats”. Med Phys 2018; 45(10): e908-22.
[http://dx.doi.org/10.1002/mp.13162] [PMID: 30168155]
[31]
Eppenhof KAJ, Pluim JPW. Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks. J Med Imaging (Bellingham) 2018; 5(2): 1.
[http://dx.doi.org/10.1117/1.JMI.5.2.024003] [PMID: 29750177]
[32]
Jaffray DA. Image-guided radiotherapy: From current concept to future perspectives. Nat Rev Clin Oncol 2012; 9(12): 688-99.
[http://dx.doi.org/10.1038/nrclinonc.2012.194] [PMID: 23165124]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy