Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Mini-Review Article

Nanoformulations of Anti-cancer Agents: Present Status & Future Directions

Author(s): Urvashi Garg, Anurag Chaudhary* and Shobhit Kumar

Volume 12, Issue 3, 2022

Published on: 11 January, 2023

Page: [179 - 190] Pages: 12

DOI: 10.2174/2468187313666230106104528

Price: $65

Abstract

Nanoformulations are a novel method of administration of the drug, approved by the USFDA. These formulations are able to deliver the drug molecules to the target site more effectively and efficiently. So, this technology has found a vital role in cancer therapy. The nanoformulations can be of many types: Liposomes, Micelles, Nano-emulsions, Dendrimers, etc. Many studies have been done on nanoformulations and it is revealed that a number of natural products like curcumin, thymoquinone and papaverine, which contain anti-cancer activity, are more effective in nanoformulation form. This review discusses the nanoformulations, their applications, uses and advantages in cancer therapy along with the anti-cancer drugs that are administered as nanoformulations.

Keywords: Nanoformulations, drug delivery systems, anti-cancer agents, cancer therapy, anti-cancer drugs, liposomes.

[1]
Module 3: Characteristics of particles particle size categories.
[2]
Vert M, Doi Y, Hellwich KH, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 2012; 84(2): 377-410.
[http://dx.doi.org/10.1351/PAC-REC-10-12-04]
[3]
MacNaught AD, Wilkinson AR. Compendium of chemical terminology: IUPAC recommendations. Blackwell Science 1997.
[4]
Alemán JV, Chadwick AV, He J, et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem 2007; 79(10): 1801-29.
[http://dx.doi.org/10.1351/pac200779101801]
[5]
Pacardo DB, Ligler FS, Gu Z. Programmable nanomedicine: Synergistic and sequential drug delivery systems. Nanoscale 2015; 7(8): 3381-91.
[http://dx.doi.org/10.1039/C4NR07677J] [PMID: 25631684]
[6]
Kreuter J. Nanoparticles as drug delivery system Encyclopedia of nanoscience and nanotechnology New York: American Scientific Publishers . 2004; 8: pp. 161-80.
[7]
Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281(5385): 2013-6.
[http://dx.doi.org/10.1126/science.281.5385.2013] [PMID: 9748157]
[8]
Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281(5385): 2016-8.
[http://dx.doi.org/10.1126/science.281.5385.2016] [PMID: 9748158]
[9]
Wang S, Mamedova N, Kotov NA, Chen W, Studer J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett 2002; 2(8): 817-22.
[http://dx.doi.org/10.1021/nl0255193]
[10]
Mah C, Zolotukhin I, Fraites TJ, Dobson J, Batich C, Byrne BJ. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol Ther 2000; 1: S239.
[11]
Pantarotto D, Partidos CD, Hoebeke J, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 2003; 10(10): 961-6.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.011] [PMID: 14583262]
[12]
Edelstein R, Tamanaha CR, Sheehan PE, et al. The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron 2000; 14(10-11): 805-13.
[http://dx.doi.org/10.1016/S0956-5663(99)00054-8] [PMID: 10945455]
[13]
Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003; 301(5641): 1884-6.
[http://dx.doi.org/10.1126/science.1088755] [PMID: 14512622]
[14]
Mahtab R, Rogers JP, Murphy CJ. Protein-sized quantum dot luminescence can distinguish between “straight”, “bent”, and “kinked” oligonucleotides. J Am Chem Soc 1995; 117(35): 9099-100.
[http://dx.doi.org/10.1021/ja00140a040]
[15]
Ma J, Wong H, Kong LB, Peng KW. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 2003; 14(6): 619-23.
[http://dx.doi.org/10.1088/0957-4484/14/6/310]
[16]
de la Isla A, Brostow W, Bujard B, et al. Nanohybrid scratch resistant coatings for teeth and bone viscoelasticity manifested in tribology. Mater Res Innov 2003; 7(2): 110-4.
[http://dx.doi.org/10.1080/14328917.2003.11784770]
[17]
Shinkai M, Yanase M, Suzuki M, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 1999; 194(1-3): 176-84.
[http://dx.doi.org/10.1016/S0304-8853(98)00586-1]
[18]
Molday RS, Mackenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 1982; 52(3): 353-67.
[http://dx.doi.org/10.1016/0022-1759(82)90007-2] [PMID: 7130710]
[19]
Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 1990; 175(2): 489-93.
[http://dx.doi.org/10.1148/radiology.175.2.2326474] [PMID: 2326474]
[20]
Parak WJ, Boudreau R, Le Gros M, et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 2002; 14(12): 882-5.
[http://dx.doi.org/10.1002/1521-4095(20020618)14:12<882:AID-ADMA882>3.0.CO;2-Y]
[21]
Bala I, Hariharan S, Kumar MNVR. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 2004; 21(5): 387-422.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20] [PMID: 15719481]
[22]
Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 2003; 55(4): 519-48.
[http://dx.doi.org/10.1016/S0169-409X(03)00041-3] [PMID: 12706049]
[23]
Couvreur P, Barratt G, Fattal E, Vauthier C, Vauthier C. Nanocapsule technology: A review. Crit Rev Ther Drug Carrier Syst 2002; 19(2): 99-134.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i2.10] [PMID: 12197610]
[24]
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70(1-2): 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[25]
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56(9): 1257-72.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[26]
Schmidt C, Bodmeier R. Incorporation of polymeric nanoparticles into solid dosage forms. J Control Release 1999; 57(2): 115-25.
[http://dx.doi.org/10.1016/S0168-3659(98)00108-4] [PMID: 9971890]
[27]
Sham JOH, Zhang Y, Finlay WH, Roa WH, Löbenberg R. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int J Pharm 2004; 269(2): 457-67.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.041] [PMID: 14706257]
[28]
Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: Large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci 2002; 99(19): 12001-5.
[http://dx.doi.org/10.1073/pnas.182233999] [PMID: 12200546]
[29]
Saminathan M, Rai RB, Dhama K, et al. Systematic review on anticancer potential and other health beneficial pharmacological activities of novel medicinal plant Morinda citrifolia (noni). Int J Pharmacol 2013; 9(8): 462-92.
[http://dx.doi.org/10.3923/ijp.2013.462.492]
[30]
Nualsanit T, Rojanapanthu P, Gritsanapan W, Lee SH, Lawson D, Baek SJ. Damnacanthal, a noni component, exhibits antitumorigenic activity in human colorectal cancer cells. J Nutr Biochem 2012; 23(8): 915-23.
[http://dx.doi.org/10.1016/j.jnutbio.2011.04.017] [PMID: 21852088]
[31]
Faltynek CR, Schroeder J, Mauvais P, et al. Damnacanthal is a highly potent, selective inhibitor of p56lck tyrosine kinase activity. Biochemistry 1995; 34(38): 12404-10.
[http://dx.doi.org/10.1021/bi00038a038] [PMID: 7547985]
[32]
Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11(8): 558-72.
[http://dx.doi.org/10.1038/nrc3090] [PMID: 21734724]
[33]
Cao AL, Tang QF, Zhou WC, Qiu YY, Hu SJ, Yin PH. Ras/ERK signaling pathway is involved in curcumin-induced cell cycle arrest and apoptosis in human gastric carcinoma AGS cells. J Asian Nat Prod Res 2015; 17(1): 56-63.
[http://dx.doi.org/10.1080/10286020.2014.951923] [PMID: 25492214]
[34]
Kato A, Naiki-Ito A, Nakazawa T, et al. Chemopreventive effect of resveratrol and apocynin on pancreatic carcinogenesis via modulation of nuclear phosphorylated GSK3β and ERK1/2. Oncotarget 2015; 6(40): 42963-75.
[http://dx.doi.org/10.18632/oncotarget.5981] [PMID: 26556864]
[35]
Lee SH, Cekanova M, Baek SJ. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog 2008; 47(3): 197-208.
[http://dx.doi.org/10.1002/mc.20374] [PMID: 18058799]
[36]
Zhang X, Min KW, Wimalasena J, Baek SJ. Cyclin D1 degradation and p21 induction contribute to growth inhibition of colorectal cancer cells induced by epigallocatechin-3-gallate. J Cancer Res Clin Oncol 2012; 138(12): 2051-60.
[http://dx.doi.org/10.1007/s00432-012-1276-1] [PMID: 22814742]
[37]
Kowol CR, Heffeter P, Miklos W, et al. Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper (II) compounds. J Biol Inorg Chem 2012; 17(3): 409-23.
[http://dx.doi.org/10.1007/s00775-011-0864-x] [PMID: 22189939]
[38]
Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004; 61(19-20): 2549-59.
[http://dx.doi.org/10.1007/s00018-004-4153-5] [PMID: 15526161]
[39]
Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 2011; 16(7-8): 354-60.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[40]
Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999; 57(7): 727-41.
[http://dx.doi.org/10.1016/S0006-2952(98)00307-4] [PMID: 10075079]
[41]
Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature 2012; 481(7381): 287-94.
[http://dx.doi.org/10.1038/nature10760] [PMID: 22258607]
[42]
Lu T, Finkel T. Free radicals and senescence. Exp Cell Res 2008; 314(9): 1918-22.
[http://dx.doi.org/10.1016/j.yexcr.2008.01.011] [PMID: 18282568]
[43]
Carvalho C, Santos R, Cardoso S, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 2009; 16(25): 3267-85.
[http://dx.doi.org/10.2174/092986709788803312] [PMID: 19548866]
[44]
Toldo S, Goehe RW, Lotrionte M, et al. Comparative cardiac toxicity of anthracyclines in vitro and in vivo in the mouse. PLoS One 2013; 8(3): e58421.
[http://dx.doi.org/10.1371/journal.pone.0058421] [PMID: 23516478]
[45]
El-Far AH, Oyinloye BE, Sepehrimanesh M, et al. Date palm (phoenix dactylifera): Novel findings and future directions for food and drug discovery. Curr Drug Discov Technol 2019; 16(1): 2-10.
[http://dx.doi.org/10.2174/1570163815666180320111937] [PMID: 29557751]
[46]
Khan F, Ahmed F, Pushparaj PN, et al. Ajwa date (Phoenix dactylifera L.) extract inhibits human breast adenocarcinoma (mcf7) cells in vitro by inducing apoptosis and cell cycle arrest. PLoS One 2016; 11(7): e0158963.
[http://dx.doi.org/10.1371/journal.pone.0158963] [PMID: 27441372]
[47]
Siddiqui S, Ahmad R, Khan MA, Upadhyay S, Husain I, Srivastava AN. Cytostatic and anti-tumor potential of ajwa date pulp against human hepatocellular carcinoma hepg2 cells. Sci Rep 2019; 9(1): 245.
[http://dx.doi.org/10.1038/s41598-018-36475-0] [PMID: 30664656]
[48]
Lin T-H, Izumi K, Lee SO, Lin W-J, Yeh S, Chang C. Anti-androgen receptor ASC-J9 versus anti-androgens MDV3100 (Enzalutamide) or Casodex (Bicalutamide) leads to opposite effects on prostate cancer metastasis via differential modulation of macrophage infiltration and STAT3-CCL2 signaling. Cell Death Dis 2013; 4(8): e764.
[http://dx.doi.org/10.1038/cddis.2013.270] [PMID: 23928703]
[49]
Liu H, Xu H, Jiang Y, et al. Preparation, characterization, in vivo pharmacokinetics, and biodistribution of polymeric micellar dimethoxycurcumin for tumor targeting. Int J Nanomedicine 2015; 10: 6395-410.
[PMID: 26504386]
[50]
Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev 2017; 33: 55-63.
[http://dx.doi.org/10.1016/j.cytogfr.2016.10.001] [PMID: 27743775]
[51]
Ramkumar M, Rajasankar S, Gobi VV, et al. Neuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y Neuroblastoma cells. BMC Complement Altern Med 2017; 17(1): 217.
[http://dx.doi.org/10.1186/s12906-017-1720-5] [PMID: 28420370]
[52]
Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Ramezani M, Sahebkar A. Demethoxycurcumin: A naturally occurring curcumin analogue with antitumor properties. J Cell Physiol 2018; 233(12): 9247-60.
[http://dx.doi.org/10.1002/jcp.27029] [PMID: 30076727]
[53]
Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Sahebkar A. Demethoxycurcumin: A naturally occurring curcumin analogue for treating non‐cancerous diseases. J Cell Physiol 2019; 234(11): 19320-30.
[http://dx.doi.org/10.1002/jcp.28626] [PMID: 31344992]
[54]
Munigunti R, Gathiaka S, Acevedo O, Sahu R, Tekwani B, Calderón AI. Determination of antiplasmodial activity and binding affinity of curcumin and demethoxycurcumin towards Pf TrxR. Nat Prod Res 2014; 28(6): 359-64.
[http://dx.doi.org/10.1080/14786419.2013.866112] [PMID: 24443991]
[55]
Yoon MJ, Kang YJ, Lee JA, et al. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin. Cell Death Dis 2014; 5(3): e1112.
[http://dx.doi.org/10.1038/cddis.2014.85] [PMID: 24625971]
[56]
Xu Y, Zhou Q, Feng X, et al. Disulfiram/copper markedly induced myeloma cell apoptosis through activation of JNK and intrinsic and extrinsic apoptosis pathways. Biomed Pharmacother 2020; 126: 110048.
[http://dx.doi.org/10.1016/j.biopha.2020.110048] [PMID: 32145587]
[57]
Meraz-Torres F, Plöger S, Garbe C, Niessner H, Sinnberg T. Disulfiram as a therapeutic agent for metastatic malignant melanoma-Old myth or new logos? Cancers 2020; 12(12): 3538.
[http://dx.doi.org/10.3390/cancers12123538] [PMID: 33260923]
[58]
Almond JB, Cohen GM. The proteasome: A novel target for cancer chemotherapy. Leukemia 2002; 16(4): 433-43.
[http://dx.doi.org/10.1038/sj.leu.2402417] [PMID: 11960320]
[59]
Schneider-Stock R, Fakhoury IH, Zaki AM, El-Baba CO, Gali-Muhtasib HU. Thymoquinone: Fifty years of success in the battle against cancer models. Drug Discov Today 2014; 19(1): 18-30.
[http://dx.doi.org/10.1016/j.drudis.2013.08.021] [PMID: 24001594]
[60]
Goyal SN, Prajapati CP, Gore PR, et al. Therapeutic potential and pharmaceutical development of thymoquinone: A multitargeted molecule of natural origin. Front Pharmacol 2017; 8: 656.
[http://dx.doi.org/10.3389/fphar.2017.00656] [PMID: 28983249]
[61]
Asaduzzaman Khan M, Tania M, Fu S, Fu J. Thymoquinone, as an anticancer molecule: From basic research to clinical investigation. Oncotarget 2017; 8(31): 51907-19.
[http://dx.doi.org/10.18632/oncotarget.17206] [PMID: 28881699]
[62]
Gurung RL, Lim SN, Khaw AK, et al. Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS One 2010; 5(8): e12124.
[http://dx.doi.org/10.1371/journal.pone.0012124] [PMID: 20711342]
[63]
Kolli-Bouhafs K, Boukhari A, Abusnina A, et al. Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Invest New Drugs 2012; 30(6): 2121-31.
[http://dx.doi.org/10.1007/s10637-011-9777-3] [PMID: 22170088]
[64]
Racoma IO, Meisen WH, Wang QE, Kaur B, Wani AA. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS One 2013; 8(9): e72882.
[http://dx.doi.org/10.1371/journal.pone.0072882] [PMID: 24039814]
[65]
Pazhouhi M, Sariri R, Rabzia A, Khazaei M. Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line. Iran J Basic Med Sci 2016; 19(8): 890-8.
[PMID: 27746872]
[66]
Elmaci I, Altinoz MA. Thymoquinone: An edible redox-active quinone for the pharmacotherapy of neurodegenerative conditions and glial brain tumors. A short review. Biomed Pharmacother 2016; 83: 635-40.
[http://dx.doi.org/10.1016/j.biopha.2016.07.018] [PMID: 27459120]
[67]
Kumar S, Mehndiratta S, Nepali K, et al. Novel indole-bearing combretastatin analogues as tubulin polymerization inhibitors. Org Med Chem Lett 2013; 3(1): 3.
[http://dx.doi.org/10.1186/2191-2858-3-3] [PMID: 23452433]
[68]
Huang SM, Hsu PC, Chen MY, et al. The novel indole compound SK228 induces apoptosis and FAK/Paxillin disruption in tumor cell lines and inhibits growth of tumor graft in the nude mouse. Int J Cancer 2012; 131(3): 722-32.
[http://dx.doi.org/10.1002/ijc.26401] [PMID: 22015944]
[69]
Huang CY, Ju DT, Chang CF, Muralidhar Reddy P, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine 2017; 7(4): 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[70]
Campos A, Souza CB, Lhullier C, et al. Anti-tumour effects of elatol, a marine derivative compound obtained from red algae Laurencia microcladia. J Pharm Pharmacol 2012; 64(8): 1146-54.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01493.x] [PMID: 22775218]
[71]
Farooqi AA, Butt G, Razzaq Z. Algae extracts and methyl jasmonate anti-cancer activities in prostate cancer: Choreographers of ‘the dance macabre’. Cancer Cell Int 2012; 12(1): 50.
[http://dx.doi.org/10.1186/1475-2867-12-50] [PMID: 23181808]
[72]
Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V. Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar Drugs 2015; 13(10): 6152-209.
[http://dx.doi.org/10.3390/md13106152] [PMID: 26437418]
[73]
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 2014; 53(46): 12320-64.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[74]
Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol Pharm 2010; 7(2): 307-49.
[http://dx.doi.org/10.1021/mp900243b] [PMID: 20108971]
[75]
Zhang YS, Zhang YN, Zhang W. Cancer-on-a-chip systems at the frontier of nanomedicine. Drug Discov Today 2017; 22(9): 1392-9.
[http://dx.doi.org/10.1016/j.drudis.2017.03.011] [PMID: 28390929]
[76]
Wang JL, Liu D, Zhang ZJ, et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci 2000; 97(13): 7124-9.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[77]
Zaki MEA, Soliman HA, Hiekal OA, Rashad AE. Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z Naturforsch C J Biosci 2006; 61(1-2): 1-5.
[http://dx.doi.org/10.1515/znc-2006-1-201] [PMID: 16610208]
[78]
Prajapati P, Patel P, Patel S. Synthesis, Characterization and Antimicrobial activity of 6-amino-4-(substitutedphenyl)-1-(2,4-dinitrophenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives. J Chem Pharm Res 2012; 4: 2652-5.
[79]
Abdelrazek FM, Metz P, Metwally NH, El-Mahrouky SF. Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3-c]pyrazole derivatives. Arch Pharm 2006; 339(8): 456-60.
[http://dx.doi.org/10.1002/ardp.200600057] [PMID: 16795107]
[80]
Kuo SC, Huang LJ, Nakamura H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J Med Chem 1984; 27(4): 539-44.
[http://dx.doi.org/10.1021/jm00370a020] [PMID: 6708056]
[81]
Junek H, Aigner H. Synthesen mit Nitrilen, XXXV. Reaktionen von Tetracyanäthylen mit Heterocyclen. Eur J Org Chem 1973; 106: 914-21.
[http://dx.doi.org/10.1002/cber.19731060323]
[82]
Zachos G, Rainey MD, Gillespie DAF. Chk1-dependent S-M checkpoint delay in vertebrate cells is linked to maintenance of viable replication structures. Mol Cell Biol 2005; 25(2): 563-74.
[http://dx.doi.org/10.1128/MCB.25.2.563-574.2005] [PMID: 15632059]
[83]
Mandha SR, Siliveri S, Alla M, Bommena VR, Bommineni MR, Balasubramanian S. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorg Med Chem Lett 2012; 22(16): 5272-8.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.055] [PMID: 22818081]
[84]
Adibi H, Hosseinzadeh L, Farhadi S, Ahmadi FJ. Synthesis and cytotoxic evaluation of 6-amino-4-aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-carbonitrile derivatives using borax with potential anticancer effects. J Rep Pharm Sci 2013; 2: 116-24.
[85]
Gupta M, Mazumder UK, Kumar RS, Sivakumar T, Vamsi MLM. Antitumor activity and antioxidant status of Caesalpinia bonducella against Ehrlich ascites carcinoma in Swiss albino mice. J Pharmacol Sci 2004; 94(2): 177-84.
[http://dx.doi.org/10.1254/jphs.94.177] [PMID: 14978356]
[86]
Taneja S, Qazi G. Bioactive molecues in medicinal plants: A perspective in their therapeutic actionDrug Discovery and Development New Jersey, USA John Wiley and Sons, Inc. 2007; pp. 1-50.
[http://dx.doi.org/10.1002/9780470085226.ch17]
[87]
El-Far M, Salah N, Essam A, Abd El-Azim AO, El-Sherbiny IM. Silymarin nanoformulation as potential anticancer agent in experimental EAC-bearing animals. Nanomedicine 2018; 13(15): 1865-58.
[http://dx.doi.org/10.2217/nnm-2017-0394] [PMID: 30136915]
[88]
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41(1): 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[89]
Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011; 10(1): 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[90]
Shanmugam M, Rane G, Kanchi M, et al. The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20(2): 2728-69.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[91]
Ammon H, Wahl M. Pharmacology of Curcuma longa. Planta Med 1991; 57(1): 1-7.
[http://dx.doi.org/10.1055/s-2006-960004] [PMID: 2062949]
[92]
Srinivasan M. Effect of curcumin on blood sugar as seen in a diabetic subject. Indian J Med Sci 1972; 26(4): 269-70.
[PMID: 4637293]
[93]
Zhang D, Fu M, Gao SH, Liu JL. Curcumin and diabetes: A systematic review. Evid Based Complement Alternat Med 2013; 2013: 1-16.
[http://dx.doi.org/10.1155/2013/636053] [PMID: 24348712]
[94]
Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 2006; 25(2): 278-87.
[http://dx.doi.org/10.1038/sj.onc.1209019] [PMID: 16170359]
[95]
Chen J, Tang XQ, Zhi JL, et al. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 2006; 11(6): 943-53.
[http://dx.doi.org/10.1007/s10495-006-6715-5] [PMID: 16547587]
[96]
Divya CS, Pillai MR. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol Carcinog 2006; 45(5): 320-32.
[http://dx.doi.org/10.1002/mc.20170] [PMID: 16526022]
[97]
Bar-Sela G, Epelbaum R, Schaffer M. Curcumin as an anti-cancer agent: Review of the gap between basic and clinical applications. Curr Med Chem 2010; 17(3): 190-7.
[http://dx.doi.org/10.2174/092986710790149738] [PMID: 20214562]
[98]
Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 2008; 76(11): 1340-51.
[http://dx.doi.org/10.1016/j.bcp.2008.07.031] [PMID: 18755156]
[99]
Basnet P, Skalko-Basnet N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011; 16(6): 4567-98.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[100]
Yusufi M, Banerjee S, Mohammad M, et al. Synthesis, characterization and anti-tumor activity of novel thymoquinone analogs against pancreatic cancer. Bioorg Med Chem Lett 2013; 23(10): 3101-4.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.003] [PMID: 23562242]
[101]
Su J, Zhou X, Yin X, et al. The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer. Biochem Pharmacol 2017; 140: 28-40.
[http://dx.doi.org/10.1016/j.bcp.2017.05.014] [PMID: 28535906]
[102]
El-Far A, Munesue S, Harashima A, et al. In vitro anticancer effects of a RAGE inhibitor discovered using a structure-based drug design system. Oncol Lett 2018; 15(4): 4627-34.
[http://dx.doi.org/10.3892/ol.2018.7902] [PMID: 29541234]
[103]
Wang TTY, Schoene NW, Milner JA, Kim YS. Broccoli-derived phytochemicals indole-3-carbinol and 3,3′-diindolylmethane exerts concentration-dependent pleiotropic effects on prostate cancer cells: Comparison with other cancer preventive phytochemicals. Mol Carcinog 2012; 51(3): 244-56.
[http://dx.doi.org/10.1002/mc.20774] [PMID: 21520295]
[104]
Houghton CA, Fassett RG, Coombes JS. Sulforaphane: Translational research from laboratory bench to clinic. Nutr Rev 2013; 71(11): 709-26.
[http://dx.doi.org/10.1111/nure.12060] [PMID: 24147970]
[105]
Bharali DJ, Sahoo SK, Mozumdar S, Maitra A. Cross-linked polyvinylpyrrolidone nanoparticles: A potential carrier for hydrophilic drugs. J Colloid Interface Sci 2003; 258(2): 415-23.
[http://dx.doi.org/10.1016/S0021-9797(02)00099-1] [PMID: 12618113]
[106]
Mallick S, Choi JS. Liposomes: Versatile and biocompatible nanovesicles for efficient biomolecules delivery. J Nanosci Nanotechnol 2014; 14(1): 755-65.
[http://dx.doi.org/10.1166/jnn.2014.9080] [PMID: 24730295]
[107]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[108]
Rasouli H, Farzaei M, Mansouri K, Mohammadzadeh S, Khodarahmi R. Plant cell cancer: May natural phenolic compounds prevent onset and development of plant cell malignancy? A literature review. Molecules 2016; 21(9): 1104.
[http://dx.doi.org/10.3390/molecules21091104] [PMID: 27563858]
[109]
Hosein Farzaei M, Bahramsoltani R, Rahimi R. Phytochemicals as adjunctive with conventional anticancer therapies. Curr Pharm Des 2016; 22(27): 4201-18.
[http://dx.doi.org/10.2174/1381612822666160601100823] [PMID: 27262332]
[110]
Elison JR, Cobrinik D, Claros N, Abramson DH, Lee TC. Small molecule inhibition of HDM2 leads to p53-mediated cell death in retinoblastoma cells. Arch Ophthalmol 2006; 124(9): 1269-75.
[http://dx.doi.org/10.1001/archopht.124.9.1269] [PMID: 16966622]
[111]
Gu L, Zhu N, Findley HW, Zhou M. MDM2 antagonist nutlin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2. Leukemia 2008; 22(4): 730-9.
[http://dx.doi.org/10.1038/leu.2008.11] [PMID: 18273046]
[112]
Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303(5659): 844-8.
[http://dx.doi.org/10.1126/science.1092472] [PMID: 14704432]
[113]
Tan H, Mo HY, Lau A, Xu YM. Selenium species: Current status and potentials in cancer prevention and therapy. Int J Mol Sci 2018; 20(1): 75.
[http://dx.doi.org/10.3390/ijms20010075] [PMID: 30585189]
[114]
Dougan M, Dougan SK. Programmable bacteria as cancer therapy. Nat Med 2019; 25(7): 1030-1.
[http://dx.doi.org/10.1038/s41591-019-0513-4] [PMID: 31270505]
[115]
Vermorken JB, Remenar E, van Herpen C, et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med 2007; 357(17): 1695-704.
[http://dx.doi.org/10.1056/NEJMoa071028] [PMID: 17960012]
[116]
Waalkes MP, Ward JM, Liu J, Diwan BA. Transplacental carcinogenicity of inorganic arsenic in the drinking water: Induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol Appl Pharmacol 2003; 186(1): 7-17.
[http://dx.doi.org/10.1016/S0041-008X(02)00022-4] [PMID: 12583988]
[117]
Dasari S, Bernard TP. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol 2014; 740: 364-78.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[118]
Zhang X, Li L, Li C, et al. Cisplatin-crosslinked glutathione-sensitive micelles loaded with doxorubicin for combination and targeted therapy of tumors. Carbohydr Polym 2017; 155: 407-15.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.072] [PMID: 27702529]
[119]
Li J, Lyv Z, Li Y, et al. A theranostic prodrug delivery system based on Pt(IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug. Biomaterials 2015; 51: 12-21.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.074] [PMID: 25770993]
[120]
Jiang Z, Feng X, Zou H, Xu W, Zhuang X. Poly(l-glutamic acid)-cisplatin nanoformulations with detachable PEGylation for prolonged circulation half-life and enhanced cell internalization. Bioact Mater 2021; 6(9): 2688-97.
[http://dx.doi.org/10.1016/j.bioactmat.2021.01.034] [PMID: 33665501]
[121]
Gu Q, Xing JZ, Huang M, Zhang X, Chen J. Nanoformulation of paclitaxel to enhance cancer therapy. J Biomater Appl 2013; 28(2): 298-307.
[http://dx.doi.org/10.1177/0885328212446822] [PMID: 22561979]
[122]
Song XR, Cai Z, Zheng Y, et al. Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 2009; 37(3-4): 300-5.
[http://dx.doi.org/10.1016/j.ejps.2009.02.018] [PMID: 19491019]
[123]
Mishra GP, Nguyen D, Alani AWG. Inhibitory effect of paclitaxel and rapamycin individual and dual drug-loaded polymeric micelles in the angiogenic cascade. Mol Pharm 2013; 10(5): 2071-8.
[http://dx.doi.org/10.1021/mp400122m] [PMID: 23590802]
[124]
Xiao B, Si X, Han MK, Viennois E, Zhang M, Merlin D. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J Mater Chem B Mater Biol Med 2015; 3(39): 7724-33.
[http://dx.doi.org/10.1039/C5TB01245G] [PMID: 26617985]
[125]
Nishiyama N, Yokoyama M, Aoyagi T, Okano T, Sakurai Y, Kataoka K. Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiammineplatinum (II) and poly (ethylene glycol)-poly ( α, β-aspartic acid) block copolymer in an aqueous medium. Langmuir 1999; 15(2): 377-83.
[http://dx.doi.org/10.1021/la980572l]
[126]
Song W, Li M, Tang Z, et al. Methoxypoly(ethylene glycol)-block-poly(L-glutamic acid)-loaded cisplatin and a combination with iRGD for the treatment of non-small-cell lung cancers. Macromol Biosci 2012; 12(11): 1514-23.
[http://dx.doi.org/10.1002/mabi.201200145] [PMID: 23070837]
[127]
Zhao Y, Chen F, Pan Y, et al. Nanodrug formed by coassembly of dual anticancer drugs to inhibit cancer cell drug resistance. ACS Appl Mater Interfaces 2015; 7(34): 19295-305.
[http://dx.doi.org/10.1021/acsami.5b05347] [PMID: 26270258]
[128]
Dai W, Jin W, Zhang J, et al. Spatiotemporally controlled co-delivery of anti-vasculature agent and cytotoxic drug by octreotide-modified stealth liposomes. Pharm Res 2012; 29(10): 2902-11.
[http://dx.doi.org/10.1007/s11095-012-0797-2] [PMID: 22723122]
[129]
Pisani MJ, Wheate NJ, Keene FR, Aldrich-Wright JR, Collins JG. Anionic PAMAM dendrimers as drug delivery vehicles for transition metal-based anticancer drugs. J Inorg Biochem 2009; 103(3): 373-80.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.11.014] [PMID: 19121543]
[130]
Yellepeddi VK, Kumar A, Maher DM, Chauhan SC, Vangara KK, Palakurthi S. Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: Role of SMVT. Anticancer Res 2011; 31(3): 897-906.
[PMID: 21498711]
[131]
Bellis E, Hajba L, Kovács B, Sándor K, Kollár L, Kokotos G. Three generations of α,γ-diaminobutyric acid modified poly(propyleneimine) dendrimers and their cisplatin-type platinum complexes. J Biochem Biophys Methods 2006; 69(1-2): 151-61.
[http://dx.doi.org/10.1016/j.jbbm.2006.02.006] [PMID: 16624417]
[132]
Burger KNJ, Staffhorst RWHM, de Vijlder HC, et al. Nanocapsules: Lipid-coated aggregates of cisplatin with high cytotoxicity. Nat Med 2002; 8(1): 81-4.
[http://dx.doi.org/10.1038/nm0102-81] [PMID: 11786911]
[133]
Hamelers IHL, de Kroon AIPM. Nanocapsules: A novel lipid formulation platform for platinum-based anti-cancer drugs. J Liposome Res 2007; 17(3-4): 183-9.
[http://dx.doi.org/10.1080/08982100701530290] [PMID: 18027238]
[134]
Kettering M, Zorn H, Bremer-Streck S, et al. Characterization of iron oxide nanoparticles adsorbed with cisplatin for biomedical applications. Phys Med Biol 2009; 54(17): 5109-21.
[http://dx.doi.org/10.1088/0031-9155/54/17/003] [PMID: 19661569]
[135]
Ren L, Huang XL, Zhang B, et al. Cisplatin-loaded Au–Au2S nanoparticles for potential cancer therapy: Cytotoxicity, in vitro carcinogenicity, and cellular uptake. J Biomed Mater Res A 2008; 85A(3): 787-96.
[http://dx.doi.org/10.1002/jbm.a.31608] [PMID: 17896762]
[136]
Comenge J, Romero FM, Sotelo C, Domínguez F, Puntes V. Exploring the binding of Pt drugs to gold nanoparticles for controlled passive release of cisplatin. J Control Release 2010; 148(1): e31-2.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.041] [PMID: 21529607]
[137]
Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 2012; 41(9): 3679-98.
[http://dx.doi.org/10.1039/c2cs15308d] [PMID: 22441299]
[138]
Bhirde AA, Patel S, Sousa AA, et al. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine 2010; 5(10): 1535-46.
[http://dx.doi.org/10.2217/nnm.10.90] [PMID: 21143032]
[139]
Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 2011; 44(10): 957-68.
[http://dx.doi.org/10.1021/ar200028a] [PMID: 21648429]
[140]
Vivero-Escoto JL, Rieter WJ, Lau H, Huxford-Phillips RC, Lin W. Biodegradable polysilsesquioxane nanoparticles as efficient contrast agents for magnetic resonance imaging. Small 2013; 9(20): 3523-31.
[http://dx.doi.org/10.1002/smll.201300198] [PMID: 23613450]
[141]
Rocca JD, Werner ME, Kramer SA, et al. Polysilsesquioxane nanoparticles for triggered release of cisplatin and effective cancer chemoradiotherapy. Nanomedicine 2015; 11(1): 31-8.
[http://dx.doi.org/10.1016/j.nano.2014.07.004] [PMID: 25038495]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy