Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Palladium-Catalyzed C-N Coupling in the Synthesis of 1,4-Benzodiazepines Fused with 5-Membered Carbo- and Heterocycles

Author(s): Pranshu Bhardwaj and Navjeet Kaur*

Volume 26, Issue 20, 2022

Published on: 06 January, 2023

Page: [1827 - 1847] Pages: 21

DOI: 10.2174/1385272827666221229104724

Price: $65

Abstract

In this review, we have focused our attention on Pd-catalyzed amination and arylation reactions for the construction of various benzodiazepine scaffolds. It includes numerous types of synthetic strategies like C-H arylation, Pd-catalyzed carbonylation, and Buchwald Hartwig coupling. To synthesize different functionalized benzodiazepines, the domino processes as intra- or intermolecular reactions are developed as an eco-friendly and effective tool. Benzodiazepines exhibit several biological activities and play a valuable role in medicinal and pharmaceutical chemistry. This review article mainly focuses on synthesizing a 1,4- benzodiazepine nucleus fused with 5-membered carbo- and heterocycles in the presence of palladium catalysts.

Keywords: 1, 4-Benzodiazepines, palladium, C-N coupling, pyrrole, pyrazole, triazole.

Graphical Abstract
[1]
(a) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Metal and organo-complex promoted synthesis of fused five-membered O -heterocycles. Synth. Commun., 2020, 50(4), 457-505.
[http://dx.doi.org/10.1080/00397911.2019.1700522];
(b) Kaur, N. Metal catalysts: applications in higher-membered N-heterocycles synthesis. J. Indian Chem. Soc., 2015, 12(1), 9-45.
[http://dx.doi.org/10.1007/s13738-014-0451-5];
(c) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev., Sci. Eng., 2015, 57(4), 478-564.
[http://dx.doi.org/10.1080/01614940.2015.1082824];
(d) Kaur, N. Copper catalysts in the synthesis of five-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15(7), 940-971.
[http://dx.doi.org/10.2174/1570179415666180815144442];
(e) Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 48(19), 2457-2474.
[http://dx.doi.org/10.1080/00397911.2018.1487070];
(f) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of titanium catalysts for the syntheses of heterocycles. Synth. Commun., 2019, 49(15), 1847-1894.
[http://dx.doi.org/10.1080/00397911.2019.1606922];
(g) Devi, M.; Jaiswal, S.; Jain, S.; Kaur, N.; Dwivedi, J. Synthetic and biological attributes of pyrimidine derivatives: a recent update. Curr. Org. Synth., 2021, 18(8), 790-825.
[http://dx.doi.org/10.2174/1570179418666210706152515] [PMID: 34886770];
(h) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N.K. Photochemical C–N bond forming reactions for the synthesis of five-membered fused N- heterocycles. Synth. Commun., 2020, 50(9), 1286-1334.
[http://dx.doi.org/10.1080/00397911.2020.1713378]
[2]
(a) Kaur, N.; Bhardwaj, P.; Gupta, M. Recent developments in the synthesis of five- and six-membered N-heterocycles from dicarbonyl compounds. Curr. Org. Chem., 2021, 25(22), 2765-2790.
[http://dx.doi.org/10.2174/1385272825666210812102416];
(b) Kaur, N. Ionic liquid: An efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synth. Commun., 2019, 49(13), 1679-1707.
[http://dx.doi.org/10.1080/00397911.2019.1568149];
(c) Kaur, N. Multiple nitrogen-containing heterocycles: Metal and non-metal assisted synthesis. Synth. Commun., 2019, 49(13), 1633-1658.
[http://dx.doi.org/10.1080/00397911.2018.1542497];
(d) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-catalyzed synthesis of five-membered heterocycles. Synth. Commun., 2019, 49(12), 1543-1577.
[http://dx.doi.org/10.1080/00397911.2019.1594306];
(e) Kaur, N. Gold and silver assisted synthesis of five-membered oxygen and nitrogen containing heterocycles. Synth. Commun., 2019, 49(12), 1459-1485.
[http://dx.doi.org/10.1080/00397911.2019.1575423];
(f) Kaur, N. Synthesis of six- and seven-membered and larger heterocylces using Au and Ag catalysts. Inorg. Nano-Metal Chem., 2018, 48(11), 541-568.
[http://dx.doi.org/10.1080/24701556.2019.1567544];
(g) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical reactions in five and six-membered polyheterocycles synthesis. Synth. Commun., 2019, 49(18), 2281-2318.
[http://dx.doi.org/10.1080/00397911.2019.1622732];
(h) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Crown ethers for the synthesis of heterocycles. Curr. Org. Chem., 2021, 25(11), 1270-1297.
[http://dx.doi.org/10.2174/1385272825666210521121820]
[3]
(a) Kaur, N.; Grewal, P.; Poonia, K. Dicarbonyl compounds in O- heterocycle synthesis. Synth. Commun., 2021, 51(16), 2423-2444.
[http://dx.doi.org/10.1080/00397911.2021.1941114];
(b) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14(4), 531-556.
[http://dx.doi.org/10.2174/1570179413666161021104941];
(c) Kaur, N. Photochemical reactions: synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14(7), 972-998.
[http://dx.doi.org/10.2174/1570179414666170201150701];
(d) Kaur, N. Ionic liquids: promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14(1), 3-23.
[http://dx.doi.org/10.2174/1570193X13666161019120050];
(e) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46(7), 983-1020.
[http://dx.doi.org/10.1080/15533174.2014.989620];
(f) Kaur, N. Applications of gold catalysts for the synthesis of five-membered O -heterocycles. Inorg. Nano-Metal Chem., 2017, 47(2), 163-187.
[http://dx.doi.org/10.1080/15533174.2015.1068809];
(g) Kaur, N. Photochemical irradiation: Seven and higher membered O -heterocycles. Synth. Commun., 2018, 48(23), 2935-2964.
[http://dx.doi.org/10.1080/00397911.2018.1514051]
[4]
(a) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: solid-phase synthesis. Synth. Commun., 2014, 44(9), 1173-1211.
[http://dx.doi.org/10.1080/00397911.2012.760129];
(b) Kaur, N. Synthesis of three-membered and four-membered heterocycles with the assistance of photochemical reactions. J. Heterocycl. Chem., 2019, 56(4), 1141-1167.
[http://dx.doi.org/10.1002/jhet.3491];
(c) Kaur, N.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Verma, Y. Organo or metal complex catalyzed synthesis of five-membered oxygen heterocycles. Curr. Org. Chem., 2020, 23(25), 2822-2847.
[http://dx.doi.org/10.2174/1385272823666191122111351];
(d) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Ahlawat, N.; Verma, Y. Synthesis of five-membered N -heterocycles using silver metal. Synth. Commun., 2019, 49(22), 3058-3100.
[http://dx.doi.org/10.1080/00397911.2019.1655767];
(e) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N.K. Palladium acetate assisted synthesis of five-membered N- polyheterocycles. Synth. Commun., 2020, 50(11), 1567-1621.
[http://dx.doi.org/10.1080/00397911.2020.1723640];
(f) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Cu-assisted C–N bond formations in six-membered N -heterocycle synthesis. Synth. Commun., 2020, 50(8), 1075-1132.
[http://dx.doi.org/10.1080/00397911.2019.1695278];
(g) Kaur, N. Ruthenium catalysis in six-membered O -heterocycles synthesis. Synth. Commun., 2018, 48(13), 1551-1587.
[http://dx.doi.org/10.1080/00397911.2018.1457698];
(h) Kaur, N. Green synthesis of three- to five-membered O -heterocycles using ionic liquids. Synth. Commun., 2018, 48(13), 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243];
(i) Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and Sheterocycles. Synth. Commun., 2018, 48(14), 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671];
(j) Kaur, N. Photochemical mediated reactions in five-membered O- heterocycles synthesis. Synth. Commun., 2018, 48(17), 2119-2149.
[http://dx.doi.org/10.1080/00397911.2018.1485165];
(k) Kaur, N. Mercury-catalyzed synthesis of heterocycles. Synth. Commun., 2018, 48(21), 2715-2749.
[http://dx.doi.org/10.1080/00397911.2018.1497657];
(l) Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
[http://dx.doi.org/10.1016/j.inoche.2014.09.024]
[5]
(a) Mohammed, I.A.; Mustapha, A. Synthesis of new azo compounds based on N-(4-hydroxypheneyl)maleimide and N-(4-methylpheneyl)maleimide. Molecules, 2010, 15(10), 7498-7508.
[http://dx.doi.org/10.3390/molecules15107498] [PMID: 20975631];
(b) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N.K. Ag-mediated synthesis of six-membered N -heterocycles. Synth. Commun., 2020, 50(6), 753-795.
[http://dx.doi.org/10.1080/00397911.2019.1703196];
(c) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Silver-assisted syntheses of fused five-membered N-heterocycles. Curr. Org. Chem., 2021, 25(19), 2232-2257.
[http://dx.doi.org/10.2174/1385272825666210716144555];
(d) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44(10), 1375-1413.
[http://dx.doi.org/10.1080/00397911.2013.772202];
(e) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45(2), 173-201.
[http://dx.doi.org/10.1080/00397911.2013.816734];
(f) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N.K. Synthesis of five-membered N -heterocycles using Rh based metal catalysts. Synth. Commun., 2020, 50(2), 137-160.
[http://dx.doi.org/10.1080/00397911.2019.1689271];
(g) Kaur, N.; Ahlawat, N.; Verma, Y.; Bhardwaj, P.; Grewal, P.; Jangid, N.K. Rhodium catalysis in the synthesis of fused five-membered N- heterocycles. Inorg. Nano-Metal Chem., 2020, 50(12), 1260-1289.
[http://dx.doi.org/10.1080/24701556.2020.1745838]
[6]
(a) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45(5), 539-568.
[http://dx.doi.org/10.1080/00397911.2013.824983];
(b) Kaur, N. Synthesis of six- and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894];
(c) Kaur, N. Photochemical reactions as key steps in five-membered N- heterocycle synthesis. Synth. Commun., 2018, 48(11), 1259-1284.
[http://dx.doi.org/10.1080/00397911.2018.1443218];
(d) Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39(5), 544-577.
[http://dx.doi.org/10.1080/17415993.2018.1457673];
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44(18), 2615-2644.
[http://dx.doi.org/10.1080/00397911.2013.792354];
(f) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: applications of microwaves. Synth. Commun., 2015, 45(15), 1711-1742.
[http://dx.doi.org/10.1080/00397911.2013.828756];
(g) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45(4), 403-431.
[http://dx.doi.org/10.1080/00397911.2013.824981];
(h) Kaur, N.; Verma, Y.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Copper-assisted synthesis of five-membered O- heterocycles. Inorganic and Nano-Metal Chemistry, 2020, 50(8), 705-740.
[http://dx.doi.org/10.1080/24701556.2020.1724144];
(i) Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic aspects of condensed pyrimidine derivatives. Curr. Org. Chem., 2021, 25(21), 2625-2649.
[http://dx.doi.org/10.2174/1385272825666210706123734];
(j) Kaur, N. Microwave-assisted synthesis: Fused five membered N-heterocycles. Synth. Commun., 2015, 45(7), 789-823.
[http://dx.doi.org/10.1080/00397911.2013.824984]
[7]
(a) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44(8), 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131];
(b) Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4(2), 122-154.
[http://dx.doi.org/10.2174/2213337204666171103142349];
(c) Kaur, N. Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered N -heterocycles. Synth. Commun., 2019, 49(10), 1205-1230.
[http://dx.doi.org/10.1080/00397911.2018.1540048];
(d) Kaur, N. Copper catalyzed synthesis of seven and higher membered heterocycles. Synth. Commun., 2019, 49(7), 879-916.
[http://dx.doi.org/10.1080/00397911.2018.1543780];
(e) Kaur, N. Ionic liquid assisted synthesis of S -heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 165-185.
[http://dx.doi.org/10.1080/10426507.2018.1539492];
(f) Kaur, N. Nickel catalysis: six membered heterocycle syntheses. Synth. Commun., 2019, 49(9), 1103-1133.
[http://dx.doi.org/10.1080/00397911.2019.1568499];
(g) Kaur, N. Seven-membered N -heterocycles: metal and nonmetal assisted synthesis. Synth. Commun., 2019, 49(8), 987-1030.
[http://dx.doi.org/10.1080/00397911.2019.1574351];
(h) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P. A review of ruthenium catalyzed C-N bond formation reactions for the synthesis of five-membered N-heterocycles. Curr. Org. Chem., 2019, 23(18), 1901-1944.
[http://dx.doi.org/10.2174/1385272823666191021104118];
(i) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Gold-catalyzed C–O bond forming reactions for the synthesis of six-membered O-heterocycles. SN Applied Sciences, 2019, 1(8), 903.
[http://dx.doi.org/10.1007/s42452-019-0920-7];
(j) Kaur, N. Ionic liquid assisted synthesis of six-membered oxygen heterocycles. SN Applied Sciences, 2019, 1(8), 932.
[http://dx.doi.org/10.1007/s42452-019-0861-1]
[8]
(a) Kaur, N. Ultrasound assisted synthesis of six-membered N-heterocycles. Mini Rev. Org. Chem., 2018, 15(6), 520-536.
[http://dx.doi.org/10.2174/1570193x15666180221152535];
(b) Kaur, N. Synthetic routes to seven and higher membered S -heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 186-209.
[http://dx.doi.org/10.1080/10426507.2018.1539493];
(c) Kaur, N. Synthesis of six-membered N-heterocycles using ruthenium catalysts. Catal. Lett., 2019, 149(6), 1513-1559.
[http://dx.doi.org/10.1007/s10562-019-02746-2];
(d) Kaur, N. Microwave-assisted synthesis of fused polycyclic six membered N-heterocycles. Synth. Commun., 2015, 45(3), 273-299.
[http://dx.doi.org/10.1080/00397911.2013.816735];
(e) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,N-heterocycles. Synth. Commun., 2015, 45(3), 300-330.
[http://dx.doi.org/10.1080/00397911.2013.816736];
(f) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44(18), 2577-2614.
[http://dx.doi.org/10.1080/00397911.2013.783922];
(g) Kaur, N. Applications of microwaves in the synthesis of polycyclic six membered N,N-heterocycles. Synth. Commun., 2015, 45(14), 1599-1631.
[http://dx.doi.org/10.1080/00397911.2013.828755];
(h) Kaur, N. Palladium catalysts: synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., Sci. Eng., 2015, 57(1), 1-78.
[http://dx.doi.org/10.1080/01614940.2014.976118];
(i) Kaur, N. Review on the synthesis of six membered N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(10), 1145-1182.
[http://dx.doi.org/10.1080/00397911.2013.827208];
(j) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(13), 1493-1519.
[http://dx.doi.org/10.1080/00397911.2013.828236];
(k) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of five-membered O, N -heterocycles using metal and nonmetal. Synth. Commun., 2019, 49(11), 1345-1384.
[http://dx.doi.org/10.1080/00397911.2019.1594308]
[9]
(a) Gupta, R. Biological significance of nitrogen containing heterocyclic compounds-A mini review. ICAET, 2015, 7(8), 18-23.;
(b) Kaur, N. Synthesis of five-membered heterocycles containing nitrogen heteroatom under ultrasonic irradiation. Mini Rev. Org. Chem., 2019, 16(5), 481-503.
[http://dx.doi.org/10.2174/1570193X15666180709144028];
(c) Kaur, N. Ionic liquid promoted eco-friendly and efficient synthesis of six-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15(8), 1124-1146.
[http://dx.doi.org/10.2174/1570179415666180903102542];
(d) Kaur, N. Metal and non-metal catalysts in the synthesis of five-membered S-heterocycles. Curr. Org. Synth., 2019, 16(2), 258-275.
[http://dx.doi.org/10.2174/1570179416666181207144430] [PMID: 31975675];
(e) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Ahlawat, N.; Grewal, P. Ionic liquids in the synthesis of five-membered N,N-, N,N,N- and N,N,N,N-heterocycles. Curr. Org. Chem., 2019, 23(11), 1214-1238.
[http://dx.doi.org/10.2174/1385272823666190717101741];
(f) Kaur, N. Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synth. Commun., 2019, 49(5), 617-661.
[http://dx.doi.org/10.1080/00397911.2018.1555711];
(g) Kaur, N. Palladium acetate and phosphine assisted synthesis of five-membered N -heterocycles. Synth. Commun., 2019, 49(4), 483-514.
[http://dx.doi.org/10.1080/00397911.2018.1536213];
(h) Kaur, N. Application of silver-promoted reactions in the synthesis of five-membered O -heterocycles. Synth. Commun., 2019, 49(6), 743-789.
[http://dx.doi.org/10.1080/00397911.2019.1570525];
(i) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(8), 909-943.
[http://dx.doi.org/10.1080/00397911.2013.825808];
(j) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45(2), 151-172.
[http://dx.doi.org/10.1080/00397911.2013.813550];
(k) Kaur, N. Advances in microwave-assisted synthesis for five membered N-heterocycles synthesis. Synth. Commun., 2015, 45(4), 432-457.
[http://dx.doi.org/10.1080/00397911.2013.824982];
(l) Kaur, N. Microwave-assisted synthesis of five-membered S-heterocycles. J. Indian Chem. Soc., 2014, 11(2), 523-564.
[http://dx.doi.org/10.1007/s13738-013-0325-2]
[10]
Herpin, T.F.; Van Kirk, K.G.; Salvino, J.M.; Yu, S.T.; Labaudinière, R.F. Synthesis of a 10,000 member 1,5-benzodiazepine-2-one library by the directed sorting method. J. Comb. Chem., 2000, 2(5), 513-521.
[http://dx.doi.org/10.1021/cc000025u] [PMID: 11029177]
[11]
Thurston, D.E. In molecular aspects of anticancer drug-DNA interactions;; Neidle, S.; Waring, M.J., Eds.; The Macmillan Press Ltd.: London, 1993, 1, 54, .
[12]
Leimgruber, W.; Batcho, A.D.; Czajkowski, R.C. Total synthesis of anthramycin. J. Am. Chem. Soc., 1968, 90(20), 5641-5643.
[http://dx.doi.org/10.1021/ja01022a078] [PMID: 5679171]
[13]
Thurston, D.E.; Bose, D.S. Synthesis of DNA-Interactive Pyrrolo[2,1-c][1,4]benzodiazepines. Chem. Rev., 1994, 94(2), 433-465.
[http://dx.doi.org/10.1021/cr00026a006]
[14]
(a) Hurley, L.H. Elucidation and formulation of novel biosynthetic pathways leading to the pyrrolo[1,4]benzodiazepine antibiotics anthramycin, tomaymycin, and sibiromycin. Acc. Chem. Res., 1980, 13(8), 263-269.
[http://dx.doi.org/10.1021/ar50152a003];
(b) Hurley, L.H.; Speedie, M.K. Pyrrolo(1,4)benzodiazepine antibiotics: anthramycin, tomaymycin, and sibiromycin. Biosynth, 1981, 4, 262-294.
[http://dx.doi.org/10.1007/978-3-642-67724-3_12]
[15]
(a) Hurley, L.H.; Petrusek, R. Proposed structure of the anthramycin–DNA adduct. Nature, 1979, 282(5738), 529-531.
[http://dx.doi.org/10.1038/282529a0] [PMID: 503235];
(b) Petrusek, R.L.; Anderson, G.L.; Garner, T.F.; Fannin, Q.L.; Kaplan, D.J.; Zimmer, S.G.; Hurley, L.H. Pyrrolo[1,4]benzodiazepine antibiotics. Proposed structures and characteristics of the in vitro deoxyribonucleic acid adducts of anthramycin, tomaymycin, sibiromycin, and neothramycins A and B. Biochemistry, 1981, 20(5), 1111-1119.
[http://dx.doi.org/10.1021/bi00508a011] [PMID: 6261786]
[16]
Graves, D.E.; Pattaroni, C.; Krishnan, B.S.; Ostrander, J.M.; Hurley, L.H.; Krugh, T.R. The reaction of anthramycin with DNA. Proton and carbon nuclear magnetic resonance studies on the structure of the anthramycin-DNA adduct. J. Biol. Chem., 1984, 259(13), 8202-8209.
[http://dx.doi.org/10.1016/S0021-9258(17)39714-4] [PMID: 6736032]
[17]
(a) El Bouakher, A.; Prié, G.; Aadil, M.; Lazar, S.; El Hakmaoui, A.; Akssira, M.; Viaud-Massuard, M.C. An efficient and convenient method for synthesizing new derivatives of pyrido[2,3-e]pyrrolo[1,2-a][1,4]diazepine-5,10-dione via Sonogashira, Suzuki–Miyaura, and Stille cross-coupling reactions. Tetrahedron Lett., 2012, 53(47), 6401-6405.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.041];
(b) Belhassan, A.; Zaki, H.; Benlyas, M.; Lakhlifi, T.; Bouachrine, M. Study of novel triazolo-benzodiazepine analogues as antidepressants targeting by molecular docking and ADMET properties prediction. Heliyon, 2019, 5(9), e02446-e02452.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02446] [PMID: 31528753]
[18]
(a) Forero-Cortés, P.A.; Haydl, A.M. The 25th anniversary of the Buchwald-Hartwig amination: development, applications, and outlook. Org. Process Res. Dev., 2019, 23(8), 1478-1483.
[http://dx.doi.org/10.1021/acs.oprd.9b00161];
(b) Fortman, G.C.; Nolan, S.P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. Chem. Soc. Rev., 2011, 40(10), 5151-5169.
[http://dx.doi.org/10.1039/c1cs15088j] [PMID: 21731956];
(c) Ghorbani-Vaghei, R.; Hemmati, S.; Hamelian, M.; Veisi, H. An efficient, mild and selective Ullmann-type N -arylation of indoles catalysed by Pd immobilized on amidoxime-functionalized mesoporous SBA-15 as heterogeneous and recyclable nanocatalyst. Appl. Organomet. Chem., 2015, 29(4), 195-199.
[http://dx.doi.org/10.1002/aoc.3264];
(d) Veisi, H.; Poor Heravi, M.R.; Hamelian, M. SBA-15-functionalized melamine-pyridine group-supported palladium(0) as an efficient heterogeneous and recyclable nanocatalyst for N -arylation of indoles through Ullmann-type coupling reactions. Appl. Organomet. Chem., 2015, 29(5), 334-337.
[http://dx.doi.org/10.1002/aoc.3296];
(e) Arnt, J.; Skarsfeldt, T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology, 1998, 18(2), 63-101.
[http://dx.doi.org/10.1016/S0893-133X(97)00112-7] [PMID: 9430133];
(f) Wolf, C.; Boswell, M.; Yeung, F. Copper-catalyzed C-N bond formation with N-heterocycles and aryl halides. Synlett, 2012, 23(8), 1240-1244.
[http://dx.doi.org/10.1055/s-0031-1290827];
(g) Djakovitch, L.; Felpin, F.X. Direct C sp2H and C sp3H arylation enabled by heterogeneous palladium catalysts. ChemCatChem, 2014, 6(8), 2175-2187.
[http://dx.doi.org/10.1002/cctc.201402288];
(h) Yin, L.; Liebscher, J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev., 2007, 107(1), 133-173.
[http://dx.doi.org/10.1021/cr0505674] [PMID: 17212474];
(i) Hartwig, J. Discovery and understanding of transition-metal-catalyzed aromatic substitution reactions. Synlett, 2006, 2006(9), 1283-1294.
[http://dx.doi.org/10.1055/s-2006-939728];
(j) Correa, A.; García Mancheño, O.; Bolm, C. Iron-catalysed carbon–heteroatom and heteroatom–heteroatom bond forming processes. Chem. Soc. Rev., 2008, 37(6), 1108-1117.
[http://dx.doi.org/10.1039/b801794h] [PMID: 18497924];
(k) Bauer, I.; Knölker, H.J. Iron catalysis in organic synthesis. Chem. Rev., 2015, 115(9), 3170-3387.
[http://dx.doi.org/10.1021/cr500425u] [PMID: 25751710];
(l) Kim, M.; Chang, S. Rhodium(NHC)-catalyzed amination of aryl bromides. Org. Lett., 2010, 12(7), 1640-1643.
[http://dx.doi.org/10.1021/ol100437j] [PMID: 20205466]
[19]
(a) Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.
[http://dx.doi.org/10.1021/cr8002505] [PMID: 18698737];
(b) Monnier, F.; Taillefer, M. Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions. Angew. Chem. Int. Ed., 2009, 48(38), 6954-6971.
[http://dx.doi.org/10.1002/anie.200804497] [PMID: 19681081];
(c) Marín, M.; Rama, R.J.; Nicasio, M.C. Rama. R.J.; Nicasio, M.C. Ni-catalyzed amination reactions: an overview. Chem. Rec., 2016, 16(4), 1819-1832.
[http://dx.doi.org/10.1002/tcr.201500305] [PMID: 27265724];
(d) Teo, Y.C.; Chua, G.L. Cobalt-catalyzed N-arylation of nitrogen nucleophiles in water. Chemistry, 2009, 15(13), 3072-3075.
[http://dx.doi.org/10.1002/chem.200802483] [PMID: 19219864];
(e) Toma, G.; Fujita, K.; Yamaguchi, R. Cobalt-catalyzed C-N bond-forming reaction between N-aromatic 2-chlorides and secondary amines. Eur. J. Org. Chem., 2009, 2009(27), 4586-4588.
[http://dx.doi.org/10.1002/ejoc.200900597];
(f) Yamamoto, K.; Suemasa, D.; Masuda, K.; Aita, K.; Endo, T. Hyperbranched triphenylamine polymer for ultrafast battery cathode. ACS Appl. Mater. Interfaces, 2018, 10(7), 6346-6353.
[http://dx.doi.org/10.1021/acsami.7b17943] [PMID: 29381051];
(g) Suzuki, K.; Kubo, S.; Shizu, K.; Fukushima, T.; Wakamiya, A.; Murata, Y.; Adachi, C.; Kaji, H. Triarylboron-based fluorescent organic light-emitting diodes with external quantum efficiencies exceeding 20%. Angew. Chem. Int. Ed., 2015, 54(50), 15231-15235.
[http://dx.doi.org/10.1002/anie.201508270] [PMID: 26563845];
(h) Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Duvenaud, D.; Maclaurin, D.; Blood-Forsythe, M.A.; Chae, H.S.; Einzinger, M.; Ha, D.G.; Wu, T.; Markopoulos, G.; Jeon, S.; Kang, H.; Miyazaki, H.; Numata, M.; Kim, S.; Huang, W.; Hong, S.I.; Baldo, M.; Adams, R.P.; Aspuru-Guzik, A. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater., 2016, 15(10), 1120-1127.
[http://dx.doi.org/10.1038/nmat4717] [PMID: 27500805];
(i) Yamamoto, T.; Nishiyama, M.; Koie, Y. Palladium-catalyzed synthesis of triarylamines from aryl halides and diarylamines. Tetrahedron Lett., 1998, 39(16), 2367-2370.
[http://dx.doi.org/10.1016/S0040-4039(98)00202-0];
(j) Dorel, R.; Grugel, C.P.; Haydl, A.M. The Buchwald-Hartwig amination after 25 years. Angew. Chem. Int. Ed., 2019, 58(48), 17118-17129.
[http://dx.doi.org/10.1002/anie.201904795] [PMID: 31166642];
(k) Heravi, M.M.; Kheilkordi, Z.; Zadsirjan, V.; Heydari, M.; Malmir, M. Buchwald-Hartwig reaction: An overview. J. Organomet. Chem., 2018, 861, 17-104.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.023];
(l) Heravi, M.M.; Talaei, B. Ketenes as privileged synthons in the synthesis of heterocyclic compounds part 3. Adv. Heterocycl. Chem., 2016, 118, 195-291.
[http://dx.doi.org/10.1016/bs.aihch.2015.10.007];
(m) Heravi, M.M.; Khaghaninejad, S.; Nazari, N. Bischler-Napieralski reaction in the syntheses of isoquinolines. Adv. Heterocycl. Chem., 2014, 112, 183-234.
[http://dx.doi.org/10.1016/B978-0-12-800171-4.00005-6]
[20]
Hartwig, J.F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res., 2008, 41(11), 1534-1544.
[http://dx.doi.org/10.1021/ar800098p] [PMID: 18681463]
[21]
Surry, D.S.; Buchwald, S.L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. (Camb.), 2011, 2(1), 27-50.
[http://dx.doi.org/10.1039/C0SC00331J] [PMID: 22432049]
[22]
Ley, S.V.; Thomas, A.W. Modern synthetic methods for copper-mediated C(aryl)[bond]O, C(aryl)[bond]N, and C(aryl)[bond]S bond formation. Angew. Chem. Int. Ed., 2003, 42(44), 5400-5449.
[http://dx.doi.org/10.1002/anie.200300594] [PMID: 14618572]
[23]
Beletskaya, I.P.; Cheprakov, A.V. Copper in cross-coupling reactions. Coord. Chem. Rev., 2004, 248(21-24), 2337-2364.
[http://dx.doi.org/10.1016/j.ccr.2004.09.014]
[24]
Ma, D.; Cai, Q. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Acc. Chem. Res., 2008, 41(11), 1450-1460.
[http://dx.doi.org/10.1021/ar8000298] [PMID: 18698852]
[25]
Bariwal, J.; Van der Eycken, E. C–N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2013, 42(24), 9283-9303.
[http://dx.doi.org/10.1039/c3cs60228a] [PMID: 24077333]
[26]
Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A critical review. Chem. Rev., 2018, 118(4), 2249-2295.
[http://dx.doi.org/10.1021/acs.chemrev.7b00443] [PMID: 29460627]
[27]
Brown, D.G.; Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem., 2016, 59(10), 4443-4458.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01409] [PMID: 26571338]
[28]
Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C-N cross-coupling reactions. Chem. Rev., 2016, 116(19), 12564-12649.
[http://dx.doi.org/10.1021/acs.chemrev.6b00512] [PMID: 27689804]
[29]
(a) Pennington, L.D.; Moustakas, D.T. The necessary nitrogen atom: a versatile high-impact design element for multiparameter optimization. J. Med. Chem., 2017, 60(9), 3552-3579.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01807] [PMID: 28177632];
(b) Buskes, M.J.; Blanco, M.J. Impact of cross-coupling reactions in drug discovery and development. Molecules, 2020, 25(15), 3493.
[http://dx.doi.org/10.3390/molecules25153493] [PMID: 32751973]
[30]
(a) Dennis, J.M.; White, N.A.; Liu, R.Y.; Buchwald, S.L. Breaking the base barrier: an electron-deficient palladium catalyst enables the use of a common soluble base in C-N coupling. J. Am. Chem. Soc., 2018, 140(13), 4721-4725.
[http://dx.doi.org/10.1021/jacs.8b01696] [PMID: 29529363];
(b) Peacock, D.M.; Roos, C.B.; Hartwig, J.F. Palladium-catalyzed cross coupling of secondary and tertiary alkyl bromides with a nitrogen nucleophile. ACS Cent. Sci., 2016, 2(9), 647-652.
[http://dx.doi.org/10.1021/acscentsci.6b00187] [PMID: 27725963];
(c) Green, R.A.; Hartwig, J.F. Nickel-catalyzed amination of aryl chlorides with ammonia or ammonium salts. Angew. Chem. Int. Ed., 2015, 54(12), 3768-3772.
[http://dx.doi.org/10.1002/anie.201500404] [PMID: 25711163];
(d) Lavoie, C.M.; McDonald, R.; Johnson, E.R.; Stradiotto, M. Bisphosphine-ligated nickel pre-catalysts in C(sp2)-N cross-couplings of aryl chlorides: a comparison of nickel(I) and nickel(II). Adv. Synth. Catal., 2017, 359(17), 2972-2980.
[http://dx.doi.org/10.1002/adsc.201700672];
(e) Ruch, A.A.; Handa, S.; Kong, F.; Nesterov, V.N.; Pahls, D.R.; Cundari, T.R.; Slaughter, L.M. Competing amination and C–H arylation pathways in Pd/xantphos-catalyzed transformations of binaphthyl triflates: switchable routes to chiral amines and helicene derivatives. Org. Biomol. Chem., 2016, 14(34), 8123-8140.
[http://dx.doi.org/10.1039/C6OB01102K] [PMID: 27507596];
(f) Monguchi, Y.; Marumoto, T.; Takamatsu, H.; Sawama, Y.; Sajiki, H. Palladium on carbon-catalyzed one-pot N-arylindole synthesis: intramolecular aromatic amination, aromatization, and intermolecular aromatic amination. Adv. Synth. Catal., 2014, 356(8), 1866-1872.
[http://dx.doi.org/10.1002/adsc.201301168];
(g) Hanley, P.S.; Clark, T.P.; Krasovskiy, A.L.; Ober, M.S.; O’Brien, J.P.; Staton, T.S. Palladium- and nickel-catalyzed amination of aryl fluorosulfonates. ACS Catal., 2016, 6(6), 3515-3519.
[http://dx.doi.org/10.1021/acscatal.6b00865];
(h) van Leeuwen, P.W.N.M.; Kamer, P.C.J. Featuring Xantphos. Catal. Sci. Technol., 2018, 8(1), 26-113.
[http://dx.doi.org/10.1039/C7CY01629H];
(i) Kamer, P.C.J.; van Leeuwen, P.W.N.M.; Reek, J.N.H. Wide bite angle diphosphines: xantphos ligands in transition metal complexes and catalysis. Acc. Chem. Res., 2001, 34(11), 895-904.
[http://dx.doi.org/10.1021/ar000060+] [PMID: 11714261];
(j) Kanazawa, Y.; Yokota, T.; Ogasa, H.; Watanabe, H.; Hanakawa, T.; Soga, S.; Kawatsura, M. Chemoselective amination of bromoiodobenzenes with diarylamines by palladium/Xantphos or ligand-free copper catalysts. Tetrahedron, 2015, 71(9), 1395-1402.
[http://dx.doi.org/10.1016/j.tet.2015.01.028];
(k) Lorion, M.M.; Gasperini, D.; Oble, J.; Poli, G. Palladium-catalyzed arylic/allylic aminations: permutable domino sequences for the synthesis of dihydroquinolines from Morita-Baylis-Hillman adducts. Org. Lett., 2013, 15(12), 3050-3053.
[http://dx.doi.org/10.1021/ol401234v] [PMID: 23734985];
(l) Abdul Khader, K.K.; Sajith, A.M.; Syed Ali Padusha, M.; Nagaswarupa, H.P.; Muralidharan, A. Cycloalkenyl nonaflates as electrophilic cross-coupling substrates for palladium catalyzed C–N bond forming reactions with enolizable heterocycles under microwave enhanced conditions. New J. Chem., 2014, 38(3), 1294-1305.
[http://dx.doi.org/10.1039/c3nj01355c];
(m) Knölker, H-J.; Börger, C.; Schmidt, A. First total synthesis of murrastifoline B and an improved route to murrastifoline F. Synlett, 2014, 25(10), 1381-1384.
[http://dx.doi.org/10.1055/s-0033-1338621];
(n) Falcone, D.; Osimboni, E.; Guerin, D.J. N-arylation of carbamate-protected glycine derivatives via palladium catalysis. Tetrahedron Lett., 2014, 55(16), 2646-2648.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.016];
(o) Goldberg, F.W.; Kettle, J.G.; Xiong, J.; Lin, D. General synthetic strategies towards N-alkyl sulfoximine building blocks for medicinal chemistry and the use of dimethylsulfoximine as a versatile precursor. Tetrahedron, 2014, 70(37), 6613-6622.
[http://dx.doi.org/10.1016/j.tet.2014.06.120];
(p) Ge, S.; Green, R.A.; Hartwig, J.F. Controlling first-row catalysts: amination of aryl and heteroaryl chlorides and bromides with primary aliphatic amines catalyzed by a BINAP-ligated single-component Ni(0) complex. J. Am. Chem. Soc., 2014, 136(4), 1617-1627.
[http://dx.doi.org/10.1021/ja411911s] [PMID: 24397570];
(q) Mao, J.; Zhang, J.; Zhang, S.; Walsh, P.J. NIXANTPHOS: a highly active ligand for palladium catalyzed Buchwald–Hartwig amination of unactivated aryl chlorides. Dalton Trans., 2018, 47(26), 8690-8696.
[http://dx.doi.org/10.1039/C8DT01852A] [PMID: 29878002];
(r) Heravi, M.M.; Zadsirjan, V.; Malmir, M.; Mohammadi, L. Buchwald–Hartwig reaction: an update. Monatsh. Chem., 2021, 152(10), 1127-1171.
[http://dx.doi.org/10.1007/s00706-021-02834-3]
[31]
(a) Hemming, K.; Loukou, C. The synthesis of bicyclic 1,2,3,4-tetrahydro-1,4-benzodiazepin-5-ones from 2-(o-nitrobenzoyl)-1,2-thiazine-1-oxide precursors. Tetrahedron, 2004, 60(15), 3349-3357.
[http://dx.doi.org/10.1016/j.tet.2004.02.058];
(b) Kaneko, T.; Wong, H.; Doyle, T.W.; Rose, W.C.; Bradner, W.T. Bicyclic and tricyclic analogs of anthramycin. J. Med. Chem., 1985, 28(3), 388-392.
[http://dx.doi.org/10.1021/jm00381a020] [PMID: 3973905];
(c) Weber, K.H. Synthese und Eigenschaften von 4-Alkyl-2-phenyl-3,4-dihydro-5H-1,4-benzodiazepin-5-onen. Arch. Pharm. (Weinheim), 1969, 302(8), 584-590.
[http://dx.doi.org/10.1002/ardp.19693020804] [PMID: 5267024]
[32]
(a) Kamal, A.; Tekumalla, V.; Raju, P.; Naidu, V.G.M.; Diwan, P.V.; Sistla, R. Pyrrolo[2,1-c][1,4]benzodiazepine-β-glucuronide prodrugs with a potential for selective therapy of solid tumors by PMT and ADEPT strategies. Bioorg. Med. Chem. Lett., 2008, 18(13), 3769-3773.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.038] [PMID: 18538566];
(b) Kamal, A.; Praveen Kumar, P.; Sreekanth, K.; Seshadri, B.N.; Ramulu, P. Synthesis of new benzimidazole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates with efficient DNA-binding affinity and potent cytotoxicity. Bioorg. Med. Chem. Lett., 2008, 18(8), 2594-2598.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.039] [PMID: 18378445];
(c) Lee, S.C.; Park, S.B. Novel application of Leuckart–Wallach reaction for synthesis of tetrahydro-1,4-benzodiazepin-5-ones library. Chem. Commun. (Camb.), 2007, 36(36), 3714-3716.
[http://dx.doi.org/10.1039/b709768a] [PMID: 17851604];
(d) Kothakonda, K.K.; Bose, D.S. Synthesis of a novel tetrahydroisoquinolino[2,1-c][1,4]benzodiazepine ring system with DNA recognition potential. Bioorg. Med. Chem. Lett., 2004, 14(17), 4371-4373.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.001] [PMID: 15357955];
(e) Zhou, Q.; Duan, W.; Simmons, D.; Shayo, Y.; Raymond, M.A.; Dorr, R.T.; Hurley, L.H. Design and synthesis of a novel DNA-DNA interstrand adenine-guanine cross-linking agent. J. Am. Chem. Soc., 2001, 123(20), 4865-4866.
[http://dx.doi.org/10.1021/ja005658r] [PMID: 11457309];
(f) Shioiri, T.; Matsunaga, N.; Harada, H.; Aoyama, T. Synthesis of 2-Indolyl-1,4-benzodiazepin-5-ones utilizing a mannich type cyclization*,1. Heterocycles, 1992, 33(1), 235-255.
[http://dx.doi.org/10.3987/COM-91-S23];
(g) Thurston, D.E.; Jones, G.B.; Davis, M.E. Synthesis and reactivity of a novel oxazolo[2, 3-c][1,4]benzodiazepine ring system with DNA recognition potential: a new class of anthramycins. J. Chem. Soc. Chem. Commun., 1990, 12(12), 874-876.
[http://dx.doi.org/10.1039/c39900000874]
[33]
(a) Tiberghien, A.C.; Evans, D.A.; Kiakos, K.; Martin, C.R.H.; Hartley, J.A.; Thurston, D.E.; Howard, P.W. An asymmetric C8/C8′-tripyrrole-linked sequence-selective pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimer DNA interstrand cross-linking agent spanning 11 DNA base pairs. Bioorg. Med. Chem. Lett., 2008, 18(6), 2073-2077.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.096] [PMID: 18272367];
(b) Kamal, A.; Devaiah, V.; Reddy, K.L.; Shankaraiah, N. Conversion of amines to imines employing polymer-supported sulfoxide (PSS) and polymer-supported perruthenate (PSP): synthesis of pyrrolo[2,1-c][1,4]benzodiazepines. Adv. Synth. Catal., 2006, 348(1-2), 249-254.
[http://dx.doi.org/10.1002/adsc.200505261];
(c) Philipova, I.; Linden, A.; Heimgartner, H. Application of the ‘direct amide cyclization’ to peptides containing an anthranilic acid residue. Helv. Chim. Acta, 2005, 88(7), 1711-1733.
[http://dx.doi.org/10.1002/hlca.200590135];
(d) Chen, Z.; Gregson, S.J.; Howard, P.W.; Thurston, D.E. A novel approach to the synthesis of cytotoxic C2–C3 unsaturated pyrrolo[2,1-c]benzodiazepines (PBDs) with conjugated acrylyl C2-substituents. Bioorg. Med. Chem. Lett., 2004, 14(6), 1547-1549.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.094] [PMID: 15006400];
(e) Masterson, L.A.; Croker, S.J.; Jenkins, T.C.; Howard, P.W.; Thurston, D.E. Synthesis and biological evaluation of pyrrolo[2,1- c][1,4]benzodiazepine (PBD) C8 cyclic amine conjugates. Bioorg. Med. Chem. Lett., 2004, 14(4), 901-904.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.017] [PMID: 15012990];
(f) Kang, G.D.; Howard, P.W.; Thurston, D.E. Synthesis of a novel C2-aryl substituted 1,2-unsaturated pyrrolobenzodiazepine. Chem. Commun. (Camb.), 2003, (14), 1688-1689.
[http://dx.doi.org/10.1039/b303274d] [PMID: 12877504];
(g) Gregson, S.J.; Howard, P.W.; Thurston, D.E. Synthesis of the first examples of A-C8/C-C2 amide-Linked pyrrolo[2,1-c][1,4]benzodiazepine dimers. Bioorg. Med. Chem. Lett., 2003, 13(14), 2277-2280.
[http://dx.doi.org/10.1016/S0960-894X(03)00436-0] [PMID: 12824017];
(h) Abrous, L.; Hynes, J., Jr; Friedrich, S.R.; Smith, A.B., III; Hirschmann, R. Design and synthesis of novel scaffolds for drug discovery: hybrids of β-D-glucose with 1,2,3,4-tetrahydrobenzo[e][1,4]diazepin-5-one, the corresponding 1-oxazepine, and 2- and 4-pyridyldiazepines. Org. Lett., 2001, 3(7), 1089-1092.
[http://dx.doi.org/10.1021/ol015698f] [PMID: 11277802];
(i) Bose, D.S.; Srinivas, P.; Gurjar, M.K. Stereospecific synthesis of a novel azetido[2,1-c][1,4]-benzodiazepine (ABD) ring system with DNA recognition potential. Tetrahedron Lett., 1997, 38(33), 5839-5842.
[http://dx.doi.org/10.1016/S0040-4039(97)01297-5];
(j) Langley, D.R.; Thurston, D.E. A versatile and efficient synthesis of carbinolamine-containing pyrrolo[1,4]benzodiazepines via the cyclization of N-(2-aminobenzoyl)pyrrolidine-2-carboxaldehyde diethyl thioacetals: total synthesis of prothracarcin. J. Org. Chem., 1987, 52(1), 91-97.
[http://dx.doi.org/10.1021/jo00377a016];
(k) Santilli, A.A.; Osdene, T.S. A re-examination of ring closure reactions of substituted 2-aminobenzamides and related compounds. J. Org. Chem., 1965, 30(6), 2100-2102.
[http://dx.doi.org/10.1021/jo01017a538]
[34]
(a) Molteni, G.; Broggini, G.; Pilati, T. Diastereoselective nitrilimine cycloaddition to the C=N bond of enantiopure 1,4-benzodiazepinones. Tetrahedron Asymmetry, 2002, 13(22), 2491-2495.
[http://dx.doi.org/10.1016/S0957-4166(02)00663-8];
(b) Broggini, G.; Garanti, L.; Molteni, G.; Pilati, T.; Ponti, A.; Zecchi, G. Stereoselective intramolecular cycloadditions of homochiral nitrile imines: synthesis of enantiomerically pure 3,3a-dihydro-pyrazolo[1,5-a][1,4]benzodiazepine-6(4H)-ones. Tetrahedron Asymmetry, 1999, 10(11), 2203-2212.
[http://dx.doi.org/10.1016/S0957-4166(99)00227-X];
(c) Broggini, G.; De Marchi, I.; Martinelli, M.; Paladino, G.; Pilati, T.; Terraneo, A. Effective synthesis of enantiopure [1,2,3]triazolo[1,5-a]- and pyrazolo[1,5-a]-pyrrolo[2,1-c][1,4]benzodiazepines by diastereoselective intramolecular azide and nitrilimine cycloadditions. Synthesis, 2005, 2005(13), 2246-2252.
[http://dx.doi.org/10.1055/s-2005-869991]
[35]
(a) Broggini, G.; Molteni, G.; Zecchi, G. The intramolecular azide cycloaddition route to triazolam analogues. Synthesis, 1995, 1995(6), 647-648.
[http://dx.doi.org/10.1055/s-1995-3967];
(b) Akritopoulou-Zanze, I.; Gracias, V.; Djuric, S.W. A versatile synthesis of fused triazolo derivatives by sequential Ugi/alkyne-azide cycloaddition reactions. Tetrahedron Lett., 2004, 45(46), 8439-8441.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.117];
(c) Thomas, A.W. A concise route to triazolobenzodiazepine derivatives via a one-Pot alkyne-Azide cycloaddition reaction. Bioorg. Med. Chem. Lett., 2002, 12(14), 1881-1884.
[http://dx.doi.org/10.1016/S0960-894X(02)00262-7] [PMID: 12086839];
(d) Santagada, V.; Perissutti, E.; Fiorino, F.; Vivenzio, B.; Caliendo, G. Microwave enhanced solution synthesis of 1,4-benzodiazepin-5-ones. Tetrahedron Lett., 2001, 42(12), 2397-2400.
[http://dx.doi.org/10.1016/S0040-4039(01)00155-1]
[36]
Stroganova, T.A.; Butin, A.V.; Vasilin, V.K.; Nevolina, T.A.; Krapivin, G.D. A new strategy for pyrrolo[1,2-a][1,4]diazepine structure formation. Synlett, 2007, 7, 1106-1109.
[37]
(a) Anwar, B.; Grimsey, P.; Hemming, K.; Krajniewski, M.; Loukou, C. A thiazine-S-oxide, Staudinger/aza-Wittig based synthesis of benzodiazepines and benzothiadiazepines. Tetrahedron Lett., 2000, 41(51), 10107-10110.
[http://dx.doi.org/10.1016/S0040-4039(00)01797-4];
(b) Sugimori, T.; Okawa, T.; Eguchi, S.; Kakehi, A.; Yashima, E.; Okamoto, Y. The first total synthesis of (−)-benzomalvin A and benzomalvin B via the intramolecular aza-Wittig reactions. Tetrahedron, 1998, 54(28), 7997-8008.
[http://dx.doi.org/10.1016/S0040-4020(98)00437-2];
(c) Eguchi, S.; Yamashita, K.; Matsushita, Y. Facile synthesis of 1,4-benzodiazepin-5-ones via intramolecular aza-Wittig reaction. Synlett, 1992, 1992(4), 295-296.
[http://dx.doi.org/10.1055/s-1992-21344]
[38]
(a) Banfi, L.; Basso, A.; Guanti, G.; Kielland, N.; Repetto, C.; Riva, R. Ugi multicomponent reaction followed by an intramolecular nucleophilic substitution: convergent multicomponent synthesis of 1-sulfonyl 1,4-diazepan-5-ones and of their benzo-fused derivatives. J. Org. Chem., 2007, 72(6), 2151-2160.
[http://dx.doi.org/10.1021/jo062626z] [PMID: 17309311];
(b) Kraus, G.A.; Liu, P. A direct route to the pyrrolo[2,1-c][1,4]benzodiazepine ring system using aryl triflates. Tetrahedron Lett., 1995, 36(42), 7595-7598.
[http://dx.doi.org/10.1016/0040-4039(95)01592-6]
[39]
Julia, M.; Hurion, N.; Huynh, D.T. Synthese von 2-amino-1,4-benzodiazepinonen-(5). Chim. Ther., 1970, 5, 343-346.
[40]
(a) Venkata Ratnam, C.; Mohiuddin, G.; Satyanarayana Reddy, P.; Ahmed, K. Recent advances in the synthesis of annelated 1,4-benzodiazepines. Heterocycles, 1986, 24(12), 3489-3530.
[http://dx.doi.org/10.3987/R-1986-12-3489];
(b) White, J.D.; Haefliger, W.E.; Dimsdale, M.J. Stereospecific synthesis of dl-cyclopenin and dl-cyclopenol. Tetrahedron, 1970, 26(1), 233-242.
[http://dx.doi.org/10.1016/0040-4020(70)85023-2] [PMID: 5415399]
[41]
Auxiliadora, P. Synthesis of N-heterocycles via intramolecular Pd-catalyzed C-N Buchwald-Hartwig reaction; Chapter 8, Wiley online library, 2022.
[42]
(a) Beccalli, E.M.; Broggini, G.; Paladino, G.; Penoni, A.; Zoni, C. Regioselective formation of six- and seven-membered ring by intramolecular Pd-catalyzed amination of N-allyl-anthranilamides. J. Org. Chem., 2004, 69(17), 5627-5630.
[http://dx.doi.org/10.1021/jo0495135] [PMID: 15307732];
(b) Beccalli, E.M.; Broggini, G.; Paladino, G.; Zoni, C. Palladium-mediated approach to dibenzo[b,e][1,4]diazepines and benzopyrido-analogues. An efficient synthesis of tarpane. Tetrahedron, 2005, 61(1), 61-68.
[http://dx.doi.org/10.1016/j.tet.2004.10.061]
[43]
Basolo, L.; Beccalli, E.M.; Borsini, E.; Broggini, G.; Khansaa, M.; Rigamonti, M. Access to a novel class of tetracyclic 1,4-benzodiazepin-5-ones starting from α-amino acids by Pd-catalyzed amination/1,3-dipolar cycloaddition as the key steps. Eur. J. Org. Chem., 2010, 2010(9), 1694-1703.
[http://dx.doi.org/10.1002/ejoc.200901290]
[44]
Surman, M.D.; Mulvihill, M.J.; Miller, M.J. Novel 1,4-benzodiazepines from acylnitroso-derived hetero-Diels-Alder cycloadducts. Org. Lett., 2002, 4(1), 139-141.
[http://dx.doi.org/10.1021/ol017036w] [PMID: 11772110]
[45]
Tardibono, L.P., Jr; Miller, M.J. Synthesis and anticancer activity of new hydroxamic acid containing 1,4-benzodiazepines. Org. Lett., 2009, 11(7), 1575-1578.
[http://dx.doi.org/10.1021/ol900210h] [PMID: 19320504]
[46]
Christodoulou, M.S.; Beccalli, E.M.; Giofrè, S. Palladium-catalyzed benzodiazepines synthesis. Catalysts, 2020, 10(6), 634.
[http://dx.doi.org/10.3390/catal10060634]
[47]
Dirat, O.; Kouklovsky, C.; Langlois, Y. Oxazoline N-oxide-mediated [2+3] cycloadditions. Application to a synthesis of (-)-tetrahydrolipstatin. Org. Lett., 1999, 1(5), 753-755.
[http://dx.doi.org/10.1021/ol990734k] [PMID: 16118878]
[48]
Hunt, J.T.; Ding, C.Z.; Batorsky, R.; Bednarz, M.; Bhide, R.; Cho, Y.; Chong, S.; Chao, S.; Gullo-Brown, J.; Guo, P.; Kim, S.H.; Lee, F.Y.F.; Leftheris, K.; Miller, A.; Mitt, T.; Patel, M.; Penhallow, B.A.; Ricca, C.; Rose, W.C.; Schmidt, R.; Slusarchyk, W.A.; Vite, G.; Manne, V. Discovery of (R)-7-cyano-2,3,4, 5-tetrahydro-1-(1H-imidazol-4-ylmethyl)-3- (phenylmethyl)-4-(2-thienylsulfonyl)-1H-1,4-benzodiazepine (BMS-214662), a farnesyltransferase inhibitor with potent preclinical antitumor activity. J. Med. Chem., 2000, 43(20), 3587-3595.
[http://dx.doi.org/10.1021/jm000248z] [PMID: 11020273]
[49]
(a) Santilli, A.A.; Osdene, T.S. 5H-1,4-Benzodiazepin-5-ones. Ring-closure reactions of substituted 2-aminobenzamides. J. Org. Chem., 1964, 29(7), 1998-2003.
[http://dx.doi.org/10.1021/jo01030a086];
(b) Iacobelli, J.; Uskokovic, M.; Wenner, W. 1-Phenyl-2-(α-hydroxyalkyl)-4(1H)-quinazolinones. J. Heterocycl. Chem., 1965, 2(3), 323-325.
[http://dx.doi.org/10.1002/jhet.5570020327];
(c) Artico, M.; De Martino, G.; Giuliano, R.; Massa, S.; Porretta, G.C. Synthesis of 5H-pyrrolo[2,1-c][1,4]benzodiazepine and some of its derivatives related to anthramycin. J. Chem. Soc. D, 1969, 12(12), 671a-671a.
[http://dx.doi.org/10.1039/c2969000671a];
(d) Stevens, R.V.; Cory, R.M.; Rossen, S. Synthesis of the 5,11-dioxo-1H-pyrrolo[2,1-c][1,4]benzodiazepine nucleus of anthramycin and related natural products. J. Chem. Soc. Chem. Commun., 1975, 18(18), 742-742.
[http://dx.doi.org/10.1039/c39750000742];
(e) Miyamoto, M.; Kondo, S.; Naganawa, H.; Maeda, K.; Ohno, M.; Umezawa, H. Structure and synthesis of neothramycin. J. Antibiot. (Tokyo), 1977, 30(4), 340-343.
[http://dx.doi.org/10.7164/antibiotics.30.340] [PMID: 863795]
[50]
Hurley, L.H. Pyrrolo(1,4)benzodiazepine antitumor antibiotics. Comparative aspects of anthramycin, tomaymycin and sibiromycin. J. Antibiot. (Tokyo), 1977, 30(5), 349-370.
[http://dx.doi.org/10.7164/antibiotics.30.349] [PMID: 328469]
[51]
Tendler, M.D.; Korman, S. ‘Refuin’: a non-cytotoxic carcinostatic compound proliferated by a thermophilic actinomycete. Nature, 1963, 199(4892), 501-501.
[http://dx.doi.org/10.1038/199501a0] [PMID: 14058616]
[52]
Arima, K.; Kohsaka, M.; Tamura, G.; Imanaka, H.; Sakai, H. Studies on tomaymycin, a new antibiotic. I. Isolation and properties of tomaymycin. J. Antibiot. (Tokyo), 1972, 25(8), 437-444.
[http://dx.doi.org/10.7164/antibiotics.25.437] [PMID: 4648485]
[53]
Mesentsev, A.S.; Kuljaeva, V.V.; Rubasheva, L.M. Structure of sibiromycin. J. Antibiot. (Tokyo), 1974, 27(11), 866-873.
[http://dx.doi.org/10.7164/antibiotics.27.866] [PMID: 4452659]
[54]
Matsumura, S.; Ozaki, M.; Ezure, Y.; Okubo, T.; Yamane, K. An Antibiotic SEN-34. Heterocycles, 1978, 11(1), 191-195.
[http://dx.doi.org/10.3987/S(N)-1978-01-0191]
[55]
Mori, M.; Chiba, K.; Ban, Y. Reactions and syntheses with organometallic compounds. 7. Synthesis of benzolactams by palladium-catalyzed amidation. J. Org. Chem., 1978, 43(9), 1684-1687.
[http://dx.doi.org/10.1021/jo00403a013]
[56]
Ban, Y.; Mori, M.; Ishikura, M.; Ikeda, T. New synthesis of diazepinone skeleton using palladium catalyzed carbonylation. Heterocycles, 1981, 16(9), 1491-1494.
[http://dx.doi.org/10.3987/R-1981-09-1491]
[57]
Ishikura, M.; Mori, M.; Ikeda, T.; Terashima, M.; Ban, Y. New synthesis of diazepam and the related 1,4-benzodiazepines by means of palladium-catalyzed carbonylation. J. Org. Chem., 1982, 47(12), 2456-2461.
[http://dx.doi.org/10.1021/jo00133a042]
[58]
Mori, M.; Purvaneckas, G.; Ishikura, M.; Ban, Y. New synthesis of pyrrolo-1,4-benzodiazepines by utilizing palladium-catalyzed carbonylation. Chem. Pharm. Bull. (Tokyo), 1984, 32(10), 3840-3847.
[http://dx.doi.org/10.1248/cpb.32.3840] [PMID: 6529791]
[59]
Mori, M.; Chiba, K.; Purvaneckas, G.E.; Ikeda, T.; Ban, Y. 70th Meeting of Hokkaido branch, the Pharmaceutical Society of Japan, Sapporo1978.
[60]
Mori, M.; Chiba, K.; Ohta, N.; Ban, Y. A novel synthesis of cyclic imides and quinolone by use of palladium catalyzed carbonylation. Heterocycles, 1980, 13, 329-332.
[61]
Umino, N.; Iwakuma, T.; Itoh, N. Sodium acyloxyborohydride as new reducing agents. II. Reduction of nitriles to the corresponding amines. Tetrahedron Lett., 1976, 17(33), 2875-2876.
[http://dx.doi.org/10.1016/S0040-4039(01)85525-8]
[62]
Mori, M.; Ishikura, M.; Terashima, M.; Kimura, M.; Ban, Y. New synthesis of 1,4-benzodiazepine derivatives via palladium catalyzed carbonylation. Heterocycles, 1984, 21(2), 411-411.
[http://dx.doi.org/10.3987/S-1984-02-0411]
[63]
Gao, Y.; Li, C.; Xu, B.; Liu, H. Rapid access to difluoroalkylated pyrrolobenzodiazepines via a Pd-catalyzed C–H difluoroalkylation/cyclization cascade reaction. Org. Chem. Front., 2019, 6(3), 410-414.
[http://dx.doi.org/10.1039/C8QO01154K]
[64]
Mori, M.; Uozumi, Y.; Kimura, M.; Ban, Y. Total syntheses of prothracarcin and tomaymycin by use of palladium catalyzed carbonylation. Tetrahedron, 1986, 42(14), 3793-3806.
[http://dx.doi.org/10.1016/S0040-4020(01)87534-7]
[65]
Mori, M.; Uozumi, Y.; Ban, Y. Total synthesis of neothramycin. J. Chem. Soc. Chem. Commun., 1986, 11(11), 841-842.
[http://dx.doi.org/10.1039/c39860000841]
[66]
Mori, M.; Kimura, M.; Uozumi, Y.; Ban, Y. A one step synthesis of 1,4-benzodiazepines: synthetic studies on neothramycin. Tetrahedron Lett., 1985, 26(48), 5947-5950.
[http://dx.doi.org/10.1016/S0040-4039(00)98268-6]
[67]
Wells, G.; Martin, C.R.H.; Howard, P.W.; Sands, Z.A.; Laughton, C.A.; Tiberghien, A.; Woo, C.K.; Masterson, L.A.; Stephenson, M.J.; Hartley, J.A.; Jenkins, T.C.; Shnyder, S.D.; Loadman, P.M.; Waring, M.J.; Thurston, D.E. Design, synthesis, and biophysical and biological evaluation of a series of pyrrolobenzodiazepine-poly(N-methylpyrrole) conjugates. J. Med. Chem., 2006, 49(18), 5442-5461.
[http://dx.doi.org/10.1021/jm051199z] [PMID: 16942018]
[68]
Kotecha, M.; Kluza, J.; Wells, G.; O’Hare, C.C.; Forni, C.; Mantovani, R.; Howard, P.W.; Morris, P.; Thurston, D.E.; Hartley, J.A.; Hochhauser, D. Inhibition of DNA binding of the NF-Y transcription factor by the pyrrolobenzodiazepine-polyamide conjugate GWL-78. Mol. Cancer Ther., 2008, 7(5), 1319-1328.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0475] [PMID: 18483319]
[69]
Brucoli, F.; Hawkins, R.M.; James, C.H.; Wells, G.; Jenkins, T.C.; Ellis, T.; Hartley, J.A.; Howard, P.W.; Thurston, D.E. Novel C8-linked pyrrolobenzodiazepine (PBD)–heterocycle conjugates that recognize DNA sequences containing an inverted CCAAT box. Bioorg. Med. Chem. Lett., 2011, 21(12), 3780-3783.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.054] [PMID: 21570842]
[70]
Varvounis, G. An update on the synthesis of pyrrolo[1,4]benzodiazepines. Molecules, 2016, 21(2), 154.
[http://dx.doi.org/10.3390/molecules21020154] [PMID: 26828475]
[71]
Kolakowski, R.V.; Young, T.D.; Howard, P.W.; Jeffrey, S.C.; Senter, P.D. Synthesis of a C2-aryl-pyrrolo[2,1-c][1,4]benzodiazepine monomer enabling the convergent construction of symmetrical and non-symmetrical dimeric analogs. Tetrahedron Lett., 2015, 56(30), 4512-4515.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.116]
[72]
Rahman, K.M.; Jackson, P.J.M.; James, C.H.; Basu, B.P.; Hartley, J.A.; de la Fuente, M.; Schatzlein, A.; Robson, M.; Pedley, R.B.; Pepper, C.; Fox, K.R.; Howard, P.W.; Thurston, D.E. GC-targeted C8-linked pyrrolobenzodiazepine-biaryl conjugates with femtomolar in vitro cytotoxicity and in vivo antitumor activity in mouse models. J. Med. Chem., 2013, 56(7), 2911-2935.
[http://dx.doi.org/10.1021/jm301882a] [PMID: 23514599]
[73]
Brucoli, F.; Hawkins, R.M.; James, C.H.; Jackson, P.J.M.; Wells, G.; Jenkins, T.C.; Ellis, T.; Kotecha, M.; Hochhauser, D.; Hartley, J.A.; Howard, P.W.; Thurston, D.E. An extended pyrrolobenzodiazepine-polyamide conjugate with selectivity for a DNA sequence containing the ICB2 transcription factor binding site. J. Med. Chem., 2013, 56(16), 6339-6351.
[http://dx.doi.org/10.1021/jm4001852] [PMID: 23889553]
[74]
Pardo, L.M.; Tellitu, I.; Domínguez, E. A versatile PIFA-mediated approach to structurally diverse pyrrolo(benzo)diazepines from linear alkynylamides. Tetrahedron, 2010, 66(31), 5811-5818.
[http://dx.doi.org/10.1016/j.tet.2010.05.080]
[75]
Korakas, D.; Varvounis, G. A convenient synthesis of 2-aminomethyl-1-arylpyrroles. Synthesis, 1994, 1994(2), 164-166.
[http://dx.doi.org/10.1055/s-1994-25429]
[76]
Korakas, D.; Varvounis, G. Synthesis of 5,6-dihydro-4 H -pyrrolo[1,2- a][1,4]benzodiazepine and 10,11-dihydro-5 H, 12 H -pyrrolo[2,1- c][1,4]benzodiazocine derivatives via cyclization of 2-aminomethylpyrroles. J. Heterocycl. Chem., 1994, 31(6), 1317-1320.
[http://dx.doi.org/10.1002/jhet.5570310603]
[77]
Aiello, E.; Dattolo, G.; Cirrincione, G.; Plescia, S.E.; Daidone, G. Polycondensed nitrogen heterocycles. VII. 5,6-Dihydro-7-h-pyrrolo[1,2- D]-[1,4] benzodiazepin-6-ones. A novel series of annelatcd 1,4-benzodiazepines. J. Heterocycl. Chem., 1979, 16(2), 209-211.
[http://dx.doi.org/10.1002/jhet.5570160201]
[78]
Dattolo, G.; Cirrincione, G.; Aiello, E. Polycondensed nitrogen heterocycles. IX. 5,6-dihydro-7 H -pyrrolo[1,2- d][1,4]benzodiazepin-6-one. J. Heterocycl. Chem., 1980, 17(4), 701-703.
[http://dx.doi.org/10.1002/jhet.5570170415]
[79]
Dörr, A.A.; Lubell, W.D. Turn mimicry with benzodiazepinones and pyrrolobenzodiazepinones synthesized from a common amino ketone intermediate. Org. Lett., 2015, 17(14), 3592-3595.
[http://dx.doi.org/10.1021/acs.orglett.5b01679] [PMID: 26125453]
[80]
Ishikura, M.; Mori, M.; Terashima, M. A new synthesis of anthramycin via palladium-catalyzed carbonylation. J. Chem. Soc., 1982, 13, 741-742.
[81]
Neukom, J.D.; Aquino, A.S.; Wolfe, J.P. Synthesis of saturated 1,4-benzodiazepines via Pd-catalyzed carboamination reactions. Org. Lett., 2011, 13(9), 2196-2199.
[http://dx.doi.org/10.1021/ol200429a] [PMID: 21446677]
[82]
Ross, W. Academic Press Inc.: San Diego, 1990, 39, pp. 63-97.
[83]
(a) Ellman, J.A. Design, synthesis, and evaluation of small-molecule libraries. Acc. Chem. Res., 1996, 29(3), 132-143.
[http://dx.doi.org/10.1021/ar950190w];
(b) Bräse, S.; Gil, C.; Knepper, K. The recent impact of solid-phase synthesis on medicinally relevant benzoannelated nitrogen heterocycles. Bioorg. Med. Chem., 2002, 10(8), 2415-2437.
[http://dx.doi.org/10.1016/S0968-0896(02)00025-1] [PMID: 12057632];
(c) Hulme, C.; Gore, V. “Multi-component reactions: emerging chemistry in drug discovery” ‘from xylocain to crixivan’. Curr. Med. Chem., 2003, 10(1), 51-80.
[http://dx.doi.org/10.2174/0929867033368600] [PMID: 12570721];
(d) Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855]
[84]
(a) Rogers-Evans, M.; Spurr, P.; Hennig, M. The isolation and use of a benzodiazepine iminochloride for the efficient construction of flumazenil. Tetrahedron Lett., 2003, 44(11), 2425-2428.
[http://dx.doi.org/10.1016/S0040-4039(03)00078-9];
(b) Li, X.; Cao, H.; Zhang, C.; Furtmueller, R.; Fuchs, K.; Huck, S.; Sieghart, W.; Deschamps, J.; Cook, J.M. Synthesis, in vitro affinity, and efficacy of a bis 8-ethynyl-4H-imidazo[1,5a]- [1,4]benzodiazepine analogue, the first bivalent α5 subtype selective BzR/GABA(A) antagonist. J. Med. Chem., 2003, 46(26), 5567-5570.
[http://dx.doi.org/10.1021/jm034164c] [PMID: 14667209]
[85]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.L.; Lotti, V.J.; Cerino, D.J.; Chen, T.B.; Kling, P.J.; Kunkel, K.A.; Springer, J.P.; Hirshfield, J. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124]
[86]
(a) Cory, M.; McKee, D.D.; Kagan, J.; Miller, J.A.; Miller, J.A.; Henry, D.W. Design, synthesis, and DNA binding properties of bifunctional intercalators. Comparison of polymethylene and diphenyl ether chains connecting phenanthridine. J. Am. Chem. Soc., 1985, 107(8), 2528-2536.
[http://dx.doi.org/10.1021/ja00294a054];
(b) Hajduk, P.J.; Bures, M.; Praestgaard, J.; Fesik, S.W. Privileged molecules for protein binding identified from NMR-based screening. J. Med. Chem., 2000, 43(18), 3443-3447.
[http://dx.doi.org/10.1021/jm000164q] [PMID: 10978192]
[87]
Cuny, G.; Bois-Choussy, M.; Zhu, J. Palladium- and copper-catalyzed synthesis of medium- and large-sized ring-fused dihydroazaphenanthrenes and 1,4-benzodiazepine-2,5-diones. control of reaction pathway by metal-switching. J. Am. Chem. Soc., 2004, 126(44), 14475-14484.
[http://dx.doi.org/10.1021/ja047472o] [PMID: 15521768]
[88]
Legerén, L.; Domínguez, D. Intramolecular N-arylation in heterocyclization: synthesis of new pyrido-fused pyrrolo[1,2-a][1,4]diazepinones. Tetrahedron Lett., 2010, 51(31), 4053-4057.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.121]
[89]
Kagechika, H.; Ohta, K.; Kawachi, E.; Shudo, K. Design and synthesis of novel retinoid synergists having a dibenzodiazepine skeleton. Heterocycles, 2010, 81(11), 2465-2470.
[http://dx.doi.org/10.3987/COM-10-12046]
[90]
Lu, X.; Shi, L.; Zhang, H.; Jiang, Y.; Ma, D. Assembly of N-substituted pyrrolo[2,1-c][1,4]benzodiazepine-5,11-diones via copper catalyzed aryl amination. Tetrahedron, 2010, 66(30), 5714-5718.
[http://dx.doi.org/10.1016/j.tet.2010.04.127]
[91]
Kshirsagar, U.A.; Argade, N.P. Copper-catalyzed intramolecular N-arylation of quinazolinones: facile convergent approach to (-)-circumdatins H and J. Org. Lett., 2010, 12(16), 3716-3719.
[http://dx.doi.org/10.1021/ol101597p] [PMID: 20669978]
[92]
Ryan, J.H.; Green, J.L.; Hyland, C.; Smith, J.A.; Williams, C.C. Seven-membered rings. Progress Heterocycl. Chem, 2011, 23, 465-504.
[93]
Thireau, J.; Schneider, C.; Baudequin, C.; Gaurrand, S.; Angibaud, P.; Meerpoel, L.; Levacher, V.; Querolle, O.; Hoarau, C. Chemoselective palladium-catalyzed direct C-H arylation of 5-carboxyimidazoles: Unparalleled access to fused imidazole-based tricycles containing six-, seven- or eight-membered rings. Eur. J. Org. Chem., 2017, 2017(17), 2491-2494.
[http://dx.doi.org/10.1002/ejoc.201700297]
[94]
Mitra, S.; Darira, H.; Chattopadhyay, P. Efficient synthesis of imidazole-fused benzodiazepines using palladium-catalyzed intramolecular C-N bond formation reaction. Synthesis, 2013, 45, 85-92.
[95]
Thikekar, T.U.; Sun, C.M. Palladium-catalyzed regioselective synthesis of 1,2-fused indole-diazepines via [5+2] annulation of o-indoloanilines with alkynes. Adv. Synth. Catal., 2017, 359(19), 3388-3396.
[http://dx.doi.org/10.1002/adsc.201700741]
[96]
Sachdeva, A.; Choudhary, M.; Chandra, M. Alcohol withdrawal syndrome: benzodiazepines and beyond. J. Clin. Diagn. Res., 2015, 9(9), VE01-VE07.
[PMID: 26500991]
[97]
Chaidos, A.; Caputo, V.; Karadimitris, A. Inhibition of bromodomain and extra-terminal proteins (BET) as a potential therapeutic approach in haematological malignancies: emerging preclinical and clinical evidence. Ther. Adv. Hematol., 2015, 6(3), 128-141.
[http://dx.doi.org/10.1177/2040620715576662] [PMID: 26137204]
[98]
Sharp, P.P.; Garnier, J.M.; Hatfaludi, T.; Xu, Z.; Segal, D.; Jarman, K.E.; Jousset, H.; Garnham, A.; Feutrill, J.T.; Cuzzupe, A.; Hall, P.; Taylor, S.; Walkley, C.R.; Tyler, D.; Dawson, M.A.; Czabotar, P.; Wilks, A.F.; Glaser, S.; Huang, D.C.S.; Burns, C.J. Design, synthesis, and biological activity of 1,2,3-triazolobenzodiazepine BET bromodomain inhibitors. ACS Med. Chem. Lett., 2017, 8(12), 1298-1303.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00389] [PMID: 29259751]
[99]
Batlle, E.; Lizano, E.; Viñas, M.; Pujol, M.D. 1,4-Benzodiazepines and new derivatives: description, analysis, and organic synthesis. J. Med. Chem., 2019, 5, 63-90.
[100]
Arora, N.; Dhiman, P.; Kumar, S.; Singh, G.; Monga, V. Recent advances in synthesis and medicinal chemistry of benzodiazepines. Bioorg. Chem., 2020, 97, 103668.
[http://dx.doi.org/10.1016/j.bioorg.2020.103668] [PMID: 32106040]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy