Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Genetic Testing is Superior Over Endogenous Pharmacometabolomic Markers to Predict Safety of Haloperidol in Patients with Alcohol-induced Psychotic Disorder

Author(s): Valentin Skryabin*, Mikhail Zastrozhin, Alexandra Parkhomenko, Volker M. Lauschke, Valery Smirnov, Aleksey Petukhov, Elena Pankratenko, Sergei Pozdnyakov, Sergei Koporov, Natalia Denisenko, Kristina Akmalova, Evgeny Bryun and Dmitry Sychev

Volume 23, Issue 13, 2022

Published on: 09 January, 2023

Page: [1067 - 1071] Pages: 5

DOI: 10.2174/1389200224666221228112643

Price: $65

Abstract

Background: Previous studies have shown that haloperidol biotransformation is mainly metabolized by CYP2D6. The CYP2D6 gene is highly polymorphic, contributing to inter-individual differences in enzymatic activity, and may impact haloperidol biotransformation rates, resulting in variable drug efficacy and safety profiles.

Objective: The study aimed to investigate the correlation of the CYPD6 activity with haloperidol's efficacy and safety rates in patients with alcohol-induced psychotic disorders.

Methods: One hundred male patients received 5-10 mg/day haloperidol by injections for 5 days. The efficacy and safety assessments were performed using PANSS, UKU, and SAS-validated psychometric scales.

Results: No relationship between haloperidol efficacy or safety and the experimental endogenous pharmacometabolomic marker for CYP2D6 activity, urinary 6-НО-ТНВС/pinoline ratio was identified. In contrast, we found a statistically significant association between haloperidol adverse events and the most common CYP2D6 loss-of-function allele CYP2D6*4 (p<0.001).

Conclusion: Evaluation of the single polymorphism rs3892097 that defines CYP2D6*4 can predict the safety profile of haloperidol in patients with AIPD, whereas metabolic evaluation using an endogenous marker was not a suitable predictor. Furthermore, our results suggest haloperidol dose reductions could be considered in AIPD patients with at least one inactive CYP2D6 allele.

Keywords: CYP2D6, pharmacogenetics, personalized medicine, alcohol-induced psychotic disorder, alcoholic hallucinosis, haloperidol.

Graphical Abstract
[1]
Perme, B.; Vijaysagar, K.J.; Chandrasekharan, R. Follow-up study of alcoholic hallucinosis. Indian J. Psychiatry, 2003, 45(4), 244-246.
[PMID: 21206866]
[2]
Bhat, P.; Ryali, V.S.S.R.; Srivastava, K.; Kumar, S.; Prakash, J.; Singal, A. Alcoholic hallucinosis. Ind. Psychiatry J., 2012, 21(2), 155-157.
[http://dx.doi.org/10.4103/0972-6748.119646] [PMID: 24250051]
[3]
Jordaan, G.P.; Emsley, R. Alcohol-induced psychotic disorder: a review. Metab. Brain Dis., 2014, 29(2), 231-243.
[http://dx.doi.org/10.1007/s11011-013-9457-4] [PMID: 24307180]
[4]
Narasimha, V.L.; Patley, R.; Shukla, L.; Benegal, V.; Kandasamy, A. Phenomenology and course of alcoholic hallucinosis. J. Dual Diagn., 2019, 15(3), 172-176.
[http://dx.doi.org/10.1080/15504263.2019.1619008] [PMID: 31161915]
[5]
Surawicz, F.G. Alcoholic hallucinosis: a missed diagnosis. Differential diagnosis and management. Can. J. Psychiatry, 1980, 25(1), 57-63.
[http://dx.doi.org/10.1177/070674378002500111] [PMID: 6102889]
[6]
de Millas, W.; Haasen, C. Treatment of alcohol hallucinosis with risperidone. Am. J. Addict., 2007, 16(3), 249-250.
[http://dx.doi.org/10.1080/10550490701375269] [PMID: 17612834]
[7]
Jordaan, G.P.; Warwick, J.M. Nel, D.G.; Hewlett, R.; Emsley, R. Alcohol-induced psychotic disorder: brain perfusion and psychopathology—before and after anti-psychotic treatment. Metab. Brain Dis., 2012, 27(1), 67-77.
[http://dx.doi.org/10.1007/s11011-011-9273-7] [PMID: 22147223]
[8]
Dold, M.; Samara, M.T.; Li, C.; Tardy, M.; Leucht, S. Haloperidol versus first-generation antipsychotics for the treatment of schizophrenia and other psychotic disorders. Cochrane Libr., 2015, 1, CD009831.
[http://dx.doi.org/10.1002/14651858.CD009831.pub2] [PMID: 25592299]
[9]
Seeman, P.; Kapur, S. Schizophrenia: More dopamine, more D 2 receptors. Proc. Natl. Acad. Sci. USA, 2000, 97(14), 7673-7675.
[http://dx.doi.org/10.1073/pnas.97.14.7673] [PMID: 10884398]
[10]
Ohno, Y.; Kunisawa, N.; Shimizu, S. Antipsychotic treatment of behavioral and psychological symptoms of dementia (BPSD): Management of extrapyramidal side effects. Front. Pharmacol., 2019, 10, 1045.
[http://dx.doi.org/10.3389/fphar.2019.01045] [PMID: 31607910]
[11]
Rahman, S.; Marwaha, R. Haloperidol. - StatPearls; StatPearls Publishing: Treasure Island, FL , 2021. Available from: https://europepmc.org/article/med/32809727/nbk430685
[12]
Kudo, S.; Ishizaki, T. Pharmacokinetics of haloperidol. Clin. Pharmacokinet., 1999, 37(6), 435-456.
[http://dx.doi.org/10.2165/00003088-199937060-00001] [PMID: 10628896]
[13]
Kozyra, M.; Ingelman-Sundberg, M.; Lauschke, V.M. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet. Med., 2017, 19(1), 20-29.
[http://dx.doi.org/10.1038/gim.2016.33] [PMID: 27101133]
[14]
Sakuyama, K.; Sasaki, T.; Ujiie, S.; Obata, K.; Mizugaki, M.; Ishikawa, M.; Hiratsuka, M. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57). Drug Metab. Dispos., 2008, 36(12), 2460-2467.
[http://dx.doi.org/10.1124/dmd.108.023242] [PMID: 18784265]
[15]
Muroi, Y.; Saito, T.; Takahashi, M.; Sakuyama, K.; Niinuma, Y.; Ito, M.; Tsukada, C.; Ohta, K.; Endo, Y.; Oda, A.; Hirasawa, N.; Hiratsuka, M. Functional characterization of wild-type and 49 CYP2D6 allelic variants for N-desmethyltamoxifen 4-hydroxylation activity. Drug Metab. Pharmacokinet., 2014, 29(5), 360-366.
[http://dx.doi.org/10.2133/dmpk.DMPK-14-RG-014] [PMID: 24647041]
[16]
Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V.M. Worldwide distribution of cytochrome P450 alleles: A meta-analysis of population-scale sequencing projects. Clin. Pharmacol. Ther., 2017, 102(4), 688-700.
[http://dx.doi.org/10.1002/cpt.690] [PMID: 28378927]
[17]
Nofziger, C.; Turner, A.J.; Sangkuhl, K.; Whirl-Carrillo, M.; Agúndez, J.A.G.; Black, J.L.; Dunnenberger, H.M.; Ruano, G.; Kennedy, M.A.; Phillips, M.S.; Hachad, H.; Klein, T.E.; Gaedigk, A. Pharm Var GeneFocus: CYP2D6. Clin. Pharmacol. Ther., 2020, 107(1), 154-170.
[http://dx.doi.org/10.1002/cpt.1643] [PMID: 31544239]
[18]
Caudle, K.E.; Dunnenberger, H.M.; Freimuth, R.R.; Peterson, J.F.; Burlison, J.D.; Whirl-Carrillo, M.; Scott, S.A.; Rehm, H.L.; Williams, M.S.; Klein, T.E.; Relling, M.V.; Hoffman, J.M. Standardizing terms for clinical pharmacogenetic test results: Consensus terms from the clinical pharmacogenetics implementation consortium (CPIC). Genet. Med., 2017, 19(2), 215-223.
[http://dx.doi.org/10.1038/gim.2016.87] [PMID: 27441996]
[19]
Taylor, C.; Crosby, I.; Yip, V.; Maguire, P.; Pirmohamed, M.; Turner, R.M. A review of the important role of CYP2D6 in pharmacogenomics. Genes (Basel), 2020, 11(11), 1295.
[http://dx.doi.org/10.3390/genes11111295] [PMID: 33143137]
[20]
Brockmöller, J.; Kirchheiner, J.; Schmider, J.; Walter, S.; Sachse, C.; Mülleroerlinghausen, B.; Roots, I. The impact of the polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin. Pharmacol. Ther., 2002, 72(4), 438-452.
[http://dx.doi.org/10.1067/mcp.2002.127494] [PMID: 12386646]
[21]
Jiang, X.L.; Shen, H.W.; Yu, A.M. Pinoline may be used as a probe for CYP2D6 activity. Drug Metab. Dispos., 2009, 37(3), 443-446.
[http://dx.doi.org/10.1124/dmd.108.025056] [PMID: 19095720]
[22]
Zastrozhin, M.; Skryabin, V.; Petukhov, A.; Pankratenko, E.; Pozdniakov, S.; Ivanchenko, V.; Horyaev, D.; Vlasovskih, R.; Bryun, E.; Sychev, D. Effects of CYP2D6*4 polymorphism on the steady-state concentration of paroxetine in patients diagnosed with depressive episode and comorbid alcohol use disorder. J. Psychopharmacol., 2022, 36(10), 1146-1150. Epub ahead of print
[http://dx.doi.org/10.1177/02698811221112939] [PMID: 35861192]
[23]
Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull., 1987, 13(2), 261-276.
[http://dx.doi.org/10.1093/schbul/13.2.261] [PMID: 3616518]
[24]
Lingjærde, O.; Ahlfors, U.G.; Bech, P.; Dencker, S.J.; Elgen, K. The UKU side effect rating scale: A new comprehensive rating scale for psychotropic drugs and a cross-sectional study of side effects in neuroleptic-treated patients. Acta Psychiatr. Scand., 1987, 76(s334), 1-100.
[http://dx.doi.org/10.1111/j.1600-0447.1987.tb10566.x] [PMID: 2887090]
[25]
Simpson, G.M. B, M.; B, G.H.; Angus, J.W.S.; P, F.R.C.; M, D.P. A rating scale for extrapyramidal side effects. Acta Psychiatr. Scand., 1970, 45(S212), 11-19.
[http://dx.doi.org/10.1111/j.1600-0447.1970.tb02066.x] [PMID: 4917967]
[26]
Gaedigk, A.; Sangkuhl, K.; Whirl-Carrillo, M.; Klein, T.; Leeder, J.S. Prediction of CYP2D6 phenotype from genotype across world populations. Genet. Med., 2017, 19(1), 69-76.
[http://dx.doi.org/10.1038/gim.2016.80] [PMID: 27388693]
[27]
Waade, R.B.; Solhaug, V.; Høiseth, G. Impact of CYP2D6 on serum concentrations of flupentixol, haloperidol, perphenazine and zuclopenthixol. Br. J. Clin. Pharmacol., 2021, 87(5), 2228-2235.
[http://dx.doi.org/10.1111/bcp.14626] [PMID: 33118660]
[28]
Sychev, D.; Zastrozhin, M.S.; Smirnov, V.; Grishina, E.; Savchenko, L.; Bryun, E. The correlation between CYP2D6 isoenzyme activity and haloperidol efficacy and safety profile in patients with alcohol addiction during the exacerbation of the addiction. Pharm. Genomics Pers. Med., 2016, 9, 89-95.
[http://dx.doi.org/10.2147/PGPM.S110385] [PMID: 27695358]
[29]
Petrović J.; Pešić V.; Lauschke, V.M. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur. J. Hum. Genet., 2020, 28(1), 88-94.
[http://dx.doi.org/10.1038/s41431-019-0480-8] [PMID: 31358955]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy