[1]
Singleton, D.C.; Macann, A.; Wilson, W.R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol., 2021, 18(12), 751-772.
[http://dx.doi.org/10.1038/s41571-021-00539-4] [PMID: 34326502]
[http://dx.doi.org/10.1038/s41571-021-00539-4] [PMID: 34326502]
[2]
Monk, B.J.; Enomoto, T.; Kast, W.M.; McCormack, M.; Tan, D.S.P.; Wu, X.; González-Martín, A. Integration of immunotherapy into treatment of cervical cancer: Recent data and ongoing trials. Cancer Treat. Rev., 2022, 106, 102385.
[http://dx.doi.org/10.1016/j.ctrv.2022.102385] [PMID: 35413489]
[http://dx.doi.org/10.1016/j.ctrv.2022.102385] [PMID: 35413489]
[3]
Couzin-Frankel.J. Cancer immunotherapy. Science, 2013, 342(6165), 1432-1433.
[http://dx.doi.org/10.1126/science.342.6165.1432] [PMID: 24357284]
[http://dx.doi.org/10.1126/science.342.6165.1432] [PMID: 24357284]
[4]
Aktar, N.; Yueting, C.; Abbas, M.; Zafar, H.; Paiva-Santos, A.C.; Zhang, Q.; Chen, T.; Ahmed, M.; Raza, F.; Zhou, X. Understanding of immune escape mechanisms and advances in cancer immunotherapy. J. Oncol., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/8901326] [PMID: 35401745]
[http://dx.doi.org/10.1155/2022/8901326] [PMID: 35401745]
[5]
Gong, N.; Sheppard, N.C.; Billingsley, M.M.; June, C.H.; Mitchell, M.J. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol., 2021, 16(1), 25-36.
[http://dx.doi.org/10.1038/s41565-020-00822-y] [PMID: 33437036]
[http://dx.doi.org/10.1038/s41565-020-00822-y] [PMID: 33437036]
[6]
Sharma, S.; Bhatia, V. Nanoscale drug delivery systems for glaucoma: experimental and in silico advances. Curr. Top. Med. Chem., 2021, 21(2), 115-125.
[http://dx.doi.org/10.2174/1568026620666200922114210] [PMID: 32962618]
[http://dx.doi.org/10.2174/1568026620666200922114210] [PMID: 32962618]
[7]
Feng, L.S. Development and advances of drugs for cancer theranostics-part-III. Curr. Top. Med. Chem., 2021, 21(5), 347.
[http://dx.doi.org/10.2174/156802662105210216122217] [PMID: 33726640]
[http://dx.doi.org/10.2174/156802662105210216122217] [PMID: 33726640]
[8]
Ganjeifar, B.; Morshed, S.F. Targeted drug delivery in brain tumors-nanochemistry applications and advances. Curr. Top. Med. Chem., 2021, 21(14), 1202-1223.
[http://dx.doi.org/10.2174/1568026620666201113140258] [PMID: 33185163]
[http://dx.doi.org/10.2174/1568026620666201113140258] [PMID: 33185163]
[9]
Zhang, X.; Yang, Y.; Kang, T.; Wang, J.; Yang, G.; Yang, Y.; Lin, X.; Wang, L.; Li, K.; Liu, J.; Ni, J.S. NIR-II absorbing semiconducting polymer-triggered gene-directed enzyme prodrug therapy for cancer treatment. Small, 2021, 17(23), 2100501.
[http://dx.doi.org/10.1002/smll.202100501] [PMID: 33896106]
[http://dx.doi.org/10.1002/smll.202100501] [PMID: 33896106]
[10]
Ni, J.S.; Zhang, X.; Yang, G.; Kang, T.; Lin, X.; Zha, M.; Li, Y.; Wang, L.; Li, K. A photoinduced nonadiabatic decay-guided molecular motor triggers effective photothermal conversion for cancer therapy. Angew. Chem. Int. Ed., 2020, 59(28), 11298-11302.
[http://dx.doi.org/10.1002/anie.202002516] [PMID: 32285540]
[http://dx.doi.org/10.1002/anie.202002516] [PMID: 32285540]
[11]
Barenholz, Y.C. Doxil® - The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[12]
Zhou, M.; Wen, K.; Bi, Y.; Lu, H.; Chen, J.; Hu, Y.; Chai, Z. The application of stimuli-responsive nanocarriers for targeted drug delivery. Curr. Top. Med. Chem., 2017, 17(20), 2319-2334.
[http://dx.doi.org/10.2174/1568026617666170224121008] [PMID: 28240179]
[http://dx.doi.org/10.2174/1568026617666170224121008] [PMID: 28240179]
[13]
Mundekkad, D.; Cho, W.C. Nanoparticles in clinical translation for cancer therapy. Int. J. Mol. Sci., 2022, 23(3), 1685.
[http://dx.doi.org/10.3390/ijms23031685] [PMID: 35163607]
[http://dx.doi.org/10.3390/ijms23031685] [PMID: 35163607]
[14]
Song, W.; Musetti, S.N.; Huang, L. Nanomaterials for cancer immunotherapy. Biomaterials, 2017, 148, 16-30.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.017] [PMID: 28961532]
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.017] [PMID: 28961532]
[15]
Gao, M.; Deng, H.; Zhang, W. Hyaluronan-based multifunctional nano-carriers for combination cancer therapy. Curr. Top. Med. Chem., 2021, 21(2), 126-139.
[http://dx.doi.org/10.2174/1568026620666200922113846] [PMID: 32962617]
[http://dx.doi.org/10.2174/1568026620666200922113846] [PMID: 32962617]
[16]
Chen, S.; Huang, X. Nanomaterials in scaffolds for periodontal tissue engineering: frontiers and prospects. Bioengineering (Basel), 2022, 9(9), 431.
[http://dx.doi.org/10.3390/bioengineering9090431] [PMID: 36134977]
[http://dx.doi.org/10.3390/bioengineering9090431] [PMID: 36134977]
[17]
Gong, F.; Xu, J.; Liu, B.; Yang, N.; Cheng, L.; Huang, P.; Wang, C.; Chen, Q.; Ni, C.; Liu, Z. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. Chem, 2022, 8(1), 268-286.
[http://dx.doi.org/10.1016/j.chempr.2021.11.020]
[http://dx.doi.org/10.1016/j.chempr.2021.11.020]
[18]
Meng, Z.; Zhang, Y.; Zhou, X.; Ji, J.; Liu, Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv. Drug Deliv. Rev., 2022, 182, 114107.
[http://dx.doi.org/10.1016/j.addr.2021.114107] [PMID: 34995678]
[http://dx.doi.org/10.1016/j.addr.2021.114107] [PMID: 34995678]
23
2