Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Visible Light-promoted Synthesis of Bioactive N, N-heterocycles

Author(s): Sasadhar Majhi* and Ipsita Saha

Volume 9, Issue 3, 2022

Published on: 29 December, 2022

Page: [127 - 144] Pages: 18

DOI: 10.2174/2213346110666221223141323

Price: $65

Abstract

Heterocycles are a valuable type of structural motifs which occupy a major space in the area of medicinal, pharmaceutical, and bioactive natural product chemistry as well as synthetic organic chemistry. Most frequently, nitrogen heterocycles represent a highly significant type of compounds that are extensively employed in agrochemistry, materials science, and synthesis of bioactive complex molecules and it also has a profound role in modern drug design. Among N-heterocycles, bioactive N, Nheterocycles play a crucial role in the drug discovery and development process. Benzimidazoles, oxadiazoles, pyrazoles, pyrazolines, pyridazines, pyrimidines, thiadiazoles, triazoles, etc. are important classes of N, N-heterocycles due to their significant physiological and biological activities as well as versatile synthetic utility. For example, compounds containing an oxadiazole core such as phidianidines A and B display cytotoxicity. Zibotentan including 1,3,4-oxadiazole and pyrazine skeletons was accepted for the treatment of prostate cancer by the FDA, and cefozopran (SCE-2787) comprising 1,2,4-thiadiazole core is a powerful commercial antibiotic. So, there is continuing considerable attention to the improvement of efficient, convenient, and eco-friendly synthetic protocols for the formation of pharmaceutically relevant N,N-heterocycles. In this context, visible light-assisted synthesis of bioactive N,N-heterocycles has a great impact on sustainable development as it constitutes a clean, renewable, and abundant energy source, as well as its encouraging application in industry. Hence, this review aims to deal with the understanding of the visible light-promoted synthesis of bioactive N,N-heterocycles and further stimulate the development of more new relevant strategies.

Keywords: Bioactive heterocycles, visible light, photochemistry, sustainable chemistry, energy-efficient, organic synthesis.

Graphical Abstract
[1]
Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-Light Photocatalysis: Does it make a difference in Organic Synthesis? Angew. Chem. Int. Ed., 2018, 57(32), 10034-10072.
[http://dx.doi.org/10.1002/anie.201709766] [PMID: 29457971]
[2]
Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
[3]
Ravelli, D.; Protti, S.; Fagnoni, M.; Albini, A. Visible light photocatalysis. A green choice? Curr. Org. Chem., 2013, 17(21), 2366-2373.
[http://dx.doi.org/10.2174/13852728113179990051]
[4]
Ravelli, D.; Fagnoni, M.; Albini, A. Photoorganocatalysis. What for? Chem. Soc. Rev., 2013, 42(1), 97-113.
[http://dx.doi.org/10.1039/C2CS35250H] [PMID: 22990664]
[5]
Wang, C.; Astruc, D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev., 2014, 43(20), 7188-7216.
[http://dx.doi.org/10.1039/C4CS00145A] [PMID: 25017125]
[6]
Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. Mater. CdS-decorated UiO–66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. J. Chem. A., 2013, 1, 11473.
[7]
Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Photocatalysis for the formation of the C-C bond. Chem. Rev., 2007, 107(6), 2725-2756.
[http://dx.doi.org/10.1021/cr068352x] [PMID: 17530909]
[8]
Chen, J.; Cen, J.; Xu, X.; Li, X. The application of heterogeneous visible light photocatalysts in organic synthesis. Catal. Sci. Technol., 2016, 6(2), 349-362.
[http://dx.doi.org/10.1039/C5CY01289A]
[9]
Johansson, J.R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: scope, mechanism, and applications. Chem. Rev., 2016, 116(23), 14726-14768.
[http://dx.doi.org/10.1021/acs.chemrev.6b00466] [PMID: 27960271]
[10]
He, C.; Shreeve, J.M. Energetic materials with promising properties: synthesis and characterization of 4,4′-Bis(5-nitro-1,2,3-2 H -triazole) derivatives. Angew. Chem. Int. Ed., 2015, 54(21), 6260-6264.
[http://dx.doi.org/10.1002/anie.201412303] [PMID: 25823615]
[11]
Lal, K.; Yadav, P.; Kumar, A. Synthesis, characterization and antimicrobial activity of 4-((1-benzyl/phenyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde analogues. Med. Chem. Res., 2016, 25(4), 644-652.
[http://dx.doi.org/10.1007/s00044-016-1515-0]
[12]
Çavuşoğolu, B.K.; Yurttaş, L.; Cantürk, Z. The synthesis, antifungal and apoptotic effects of triazole-oxadiazoles against Candida species. Eur. J. Med. Chem., 2018, 144, 255-261.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.020] [PMID: 29274492]
[13]
Majhi, S. Recent developments in the synthesis and anti-cancer activity of acridine and xanthine-based molecules. Phys. Sci. Rev., 2022.
[http://dx.doi.org/10.1515/psr-2021-0216]
[14]
Majhi, S. Applications of Norrish type I and II reactions in the total synthesis of natural products: a review. Photochem. Photobiol. Sci., 2021, 20(10), 1357-1378.
[http://dx.doi.org/10.1007/s43630-021-00100-3] [PMID: 34537894]
[15]
Majhi, S. The art of total synthesis of bioactive natural products via microwaves. Curr. Org. Chem., 2021, 25(9), 1047-1069.
[http://dx.doi.org/10.2174/1385272825666210303112302]
[16]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[17]
Majhi, S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrason. Sonochem., 2021, 77, 105665.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105665] [PMID: 34298310]
[18]
Majhi, S. Discovery, development and design of anthocyanins-inspired anticancer agents: A comprehensive review. Anticancer. Agents Med. Chem., 2022, 22(19), 3219-3238.
[http://dx.doi.org/10.2174/1871520621666211015142310] [PMID: 34779372]
[19]
Majhi, S.; Das, D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update. Tetrahedron, 2021, 78, 131801.
[http://dx.doi.org/10.1016/j.tet.2020.131801]
[20]
Majhi, S. Applications of Yamaguchi method to esterification and macrolactonization in total synthesis of bioactive natural products. ChemistrySelect, 2021, 6(17), 4178-4206.
[http://dx.doi.org/10.1002/slct.202100206]
[21]
Zhang, T.; Li, S.; Zhang, Y.; Wu, Q.; Meng, F. Design, synthesis, and biological evaluation of 5-(4-(pyridin-4-yl)-1 H -1,2,3-triazol-1-yl)benzonitrile derivatives as xanthine oxidase inhibitors. Chem. Biol. Drug Des., 2018, 91(2), 526-533.
[http://dx.doi.org/10.1111/cbdd.13114] [PMID: 28950055]
[22]
Majhi, S. Diterpenoids: Natural distribution, semisynthesis at room temperature and pharmacological aspects‐a decade update. ChemistrySelect, 2020, 5(40), 12450-12464.
[http://dx.doi.org/10.1002/slct.202002836]
[23]
Mahji, S. Synthesis of bioactive natural products and their analogs at room temperature–an update. Phys. Sci. Rev., 2022.
[http://dx.doi.org/10.1515/psr-2021-0094]
[24]
Lamberth, C. Heterocyclic chemistry in crop protection. Pest Manag. Sci., 2013, 69(10), 1106-1114.
[http://dx.doi.org/10.1002/ps.3615] [PMID: 23908156]
[25]
Chand, K.; Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep., 2017, 69(2), 281-295.
[http://dx.doi.org/10.1016/j.pharep.2016.11.007] [PMID: 28171830]
[26]
Kirschning, A. Coenzymes and their role in the evolution of life. Angew. Chem. Int. Ed., 2021, 60(12), 6242-6269.
[http://dx.doi.org/10.1002/anie.201914786] [PMID: 31945250]
[27]
Rodriguez, L.E.; House, C.H.; Smith, K.E.; Roberts, M.R.; Callahan, M.P. Nitrogen heterocycles form peptide nucleic acid precursors in complex prebiotic mixtures. Sci. Rep., 2019, 9(1), 9281.
[http://dx.doi.org/10.1038/s41598-019-45310-z] [PMID: 31243303]
[28]
Fan, J.; Wang, T.; Li, C.; Wang, R.; Lei, X.; Liang, Y.; Zhang, Z. Synthesis of Benzoaryl-5-yl(2-hydroxyphenyl)methanones via Photoinduced Rearrangement of (E)-3-Arylvinyl-4 H -chromen-4-ones. Org. Lett., 2017, 19(21), 5984-5987.
[http://dx.doi.org/10.1021/acs.orglett.7b03007] [PMID: 29047271]
[29]
Luo, K.; Chen, Y.Z.; Yang, W.C.; Zhu, J.; Wu, L. Cross-coupling hydrogen evolution by visible light photocatalysis toward C(sp 2)–P formation: Metal-Free C–H functionalization of thiazole derivatives with diarylphosphine oxides. Org. Lett., 2016, 18(3), 452-455.
[http://dx.doi.org/10.1021/acs.orglett.5b03497] [PMID: 26794145]
[30]
Chen, R.; Jalili, Z.; Tayebee, R. UV-visible light-induced photochemical synthesis of benzimidazoles by coomassie brilliant blue coated on W–ZnO@NH2 nanoparticles. RSC Advances, 2021, 11(27), 16359-16375.
[http://dx.doi.org/10.1039/D0RA10843J] [PMID: 35479136]
[31]
Samoľová, E.; Premužić, D.; Plociennik, S.; Hołyńyska, M. Bis(benzimidazole) as supramolecular building block in manganese(IV) chemistry. J. Mol. Struct., 2019, 1176, 366-375.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.100]
[32]
Shimomura, I.; Yokoi, A.; Kohama, I.; Kumazaki, M.; Tada, Y.; Tatsumi, K.; Ochiya, T.; Yamamoto, Y. Drug library screen reveals benzimidazole derivatives as selective cytotoxic agents for KRAS-mutant lung cancer. Cancer Lett., 2019, 451, 11-22.
[http://dx.doi.org/10.1016/j.canlet.2019.03.002] [PMID: 30862488]
[33]
Krishnaveni, K.; Iniya, M.; Jeyanthi, D.; Siva, A.; Chellappa, D. A new multifunctional benzimidazole tagged coumarin as ratiometric fluorophore for the detection of Cd2+/F− ions and imaging in live cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 205, 557-567.
[http://dx.doi.org/10.1016/j.saa.2018.07.075] [PMID: 30075436]
[34]
Kiranmye, T.; Vadivelu, M.; Magadevan, D.; Sampath, S.; Parthasarathy, K.; Aman, N.; Karthikeyan, K. Sunlight‐assisted photocatalytic sustainable synthesis of 1,4‐disubstituted 1,2,3‐triazoles and benzimidazoles using TiO2-Cu2(OH)PO4 under solvent‐free condition. ChemistrySelect, 2021, 6(6), 1210-1215.
[http://dx.doi.org/10.1002/slct.202004427]
[35]
Mukherjee, S.; Maji, B.; Tlahuext-Aca, A.; Glorius, F. Visible-light-promoted activation of unactivated C(sp3)-H bonds and their selective trifluoromethylthiolation. J. Am. Chem. Soc., 2016, 138(50), 16200-16203.
[http://dx.doi.org/10.1021/jacs.6b09970] [PMID: 27935270]
[36]
Dong, W.; Liu, Y.; Hu, B.; Ren, K.; Li, Y.; Xie, X.; Jiang, Y.; Zhang, Z. Visible light induced radical cyclization of o-iodophenylacrylamides: a concise synthesis of indolin-2-one. Chem. Commun. (Camb.), 2015, 51(22), 4587-4590.
[http://dx.doi.org/10.1039/C5CC00072F] [PMID: 25688002]
[37]
Ding, Y.; Zhang, W.; Li, H.; Meng, Y.; Zhang, T.; Chen, Q.Y.; Zhu, C. Metal-free synthesis of ketones by visible-light induced aerobic oxidative radical addition of aryl hydrazines to alkenes. Green Chem., 2017, 19(13), 2941-2944.
[http://dx.doi.org/10.1039/C7GC01083D]
[38]
Nicewicz, D.A.; Nguyen, T.M. Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal., 2014, 4(1), 355-360.
[http://dx.doi.org/10.1021/cs400956a]
[39]
Li, Z.; Song, H.; Guo, R.; Zuo, M.; Hou, C.; Sun, S.; He, X.; Sun, Z.; Chu, W. Visible-light-induced condensation cyclization to synthesize benzimidazoles using fluorescein as a photocatalyst. Green Chem., 2019, 21(13), 3602-3605.
[http://dx.doi.org/10.1039/C9GC01359H]
[40]
Xu, P.; Wang, Y.; Qin, Z.; Qiu, L.; Zhang, M.; Huang, Y.; Zheng, J.C. Combined medication of antiretroviral drugs tenofovir disoproxil fumarate, emtricitabine, and Raltegravir reduces neural progenitor cell proliferation in vivo and in vitro. J. Neuroimmune Pharmacol., 2017, 12(4), 682-692.
[http://dx.doi.org/10.1007/s11481-017-9755-4] [PMID: 28735382]
[41]
Rosanò, L.; Cianfrocca, R.; Spinella, F.; Di Castro, V.; Nicotra, M.R.; Lucidi, A.; Ferrandina, G.; Natali, P.G.; Bagnato, A. Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin. Cancer Res., 2011, 17(8), 2350-2360.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2325] [PMID: 21220476]
[42]
Khanfar, M.A.; Hill, R.A.; Kaddoumi, A.; El Sayed, K.A. Discovery of novel GSK-3β inhibitors with potent in vitro and in vivo activities and excellent brain permeability using combined ligand- and structure-based virtual screening. J. Med. Chem., 2010, 53(24), 8534-8545.
[http://dx.doi.org/10.1021/jm100941j] [PMID: 21082766]
[43]
Li, J.; Wen, J.X.; Lu, X.C.; Hou, G.Q.; Gao, X.; Li, Y.; Liu, L. Catalyst-free visible-light-promoted cyclization of aldehydes: Access to 2,5-disubstituted 1,3,4-oxadiazole derivatives. ACS Omega, 2021, 6(40), 26699-26706.
[http://dx.doi.org/10.1021/acsomega.1c04098] [PMID: 34661023]
[44]
Boström, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem., 2012, 55(5), 1817-1830.
[http://dx.doi.org/10.1021/jm2013248] [PMID: 22185670]
[45]
Russoa, C.; Cannalirea, R.; Lucianoa, P.; Brunellib, F.; Cesare, G.; Giustiniano, T.M. Visible-light photocatalytic Ugi/Aza-wittig cascade towards 2-aminomethyl-1,3,4-oxadiazole derivatives. Synthesis, 2021, 53. [A–I.].
[46]
Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev., 2014, 114(24), 12174-12277.
[http://dx.doi.org/10.1021/cr500249p] [PMID: 25514509]
[47]
Chiu, K.Y.; Ha Tran, T.T.; Chang, S.H.; Yang, T.F.; Su, Y.O. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC. Dyes Pigments, 2017, 146, 512-519.
[http://dx.doi.org/10.1016/j.dyepig.2017.07.049]
[48]
Beharry, A.A.; Woolley, G.A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev., 2011, 40(8), 4422-4437.
[http://dx.doi.org/10.1039/c1cs15023e] [PMID: 21483974]
[49]
Broichhagen, J.; Frank, J.A.; Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res., 2015, 48(7), 1947-1960.
[http://dx.doi.org/10.1021/acs.accounts.5b00129] [PMID: 26103428]
[50]
Zhilin, E.S.; Polkovnichenko, M.S.; Ananyev, I.V.; Fershtat, L.L.; Makhova, N.N. Novel arylazo-1,2,5-oxadiazole photoswitches: synthesis, photoisomerization and NO-releasing properties. ChemPhotoChem, 2020, 4(12), 5346-5354.
[http://dx.doi.org/10.1002/cptc.202000157]
[51]
Xuan, J.; Cao, X.; Cheng, X. Advances in heterocycle synthesis via [3+ m ]-cycloaddition reactions involving an azaoxyallyl cation as the key intermediate. Chem. Commun. (Camb.), 2018, 54(41), 5154-5163.
[http://dx.doi.org/10.1039/C8CC00787J] [PMID: 29701223]
[52]
Cai, B.G.; Chen, Z.L.; Xu, G.Y.; Xuan, J.; Xiao, W.J. [3 + 2]-cycloaddition of 2 H -azirines with nitrosoarenes: Visible-light-promoted synthesis of 2,5-dihydro-1,2,4-oxadiazoles. Org. Lett., 2019, 21(11), 4234-4238.
[http://dx.doi.org/10.1021/acs.orglett.9b01416] [PMID: 31095398]
[53]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.; Al-aizari, F.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[54]
Keter, F.K.; Darkwa, J. Perspective: the potential of pyrazole-based compounds in medicine. Biometals, 2012, 25(1), 9-21.
[http://dx.doi.org/10.1007/s10534-011-9496-4] [PMID: 22002344]
[55]
Pascual-Escudero, A.; Ortiz-Rojano, L.; Simón-Fuente, S.; Adrio, J.; Ribagorda, M. Aldehydes as photoremovable directing groups: Synthesis of pyrazoles by a photocatalyzed [3+2] cycloaddition/norrish type fragmentation sequence. Org. Lett., 2021, 23(12), 4903-4908.
[http://dx.doi.org/10.1021/acs.orglett.1c01665] [PMID: 34097415]
[56]
Dwivedi, J.; Sharma, S.; Jain, S.; Singh, A. The synthetic and biological attributes of pyrazole derivatives: A review. Mini Rev. Med. Chem., 2018, 18, 918.
[57]
Meng, Y.; Zhang, T.; Gong, X.; Zhang, M.; Zhu, C. Visible-light promoted one-pot synthesis of pyrazoles from alkynes and hydrazines. Tetrahedron Lett., 2019, 60(2), 171-174.
[http://dx.doi.org/10.1016/j.tetlet.2018.12.009]
[58]
Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Monofluoroalkenylation of dimethylamino compounds through radical–radical cross‐coupling. Angew. Chem. Int. Ed., 2016, 55(32), 9416-9421.
[http://dx.doi.org/10.1002/anie.201602347]
[59]
Cheng, J.; Li, W.; Duan, Y.; Cheng, Y.; Yu, S.; Zhu, C. Relay visible-light photoredox catalysis: synthesis of pyrazole derivatives via Formal [4 + 1] annulation and aromatization. Org. Lett., 2017, 19(1), 214-217.
[http://dx.doi.org/10.1021/acs.orglett.6b03497] [PMID: 27996274]
[60]
Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. Photoredox catalysis in organic chemistry. J. Org. Chem., 2016, 81, 6898.
[http://dx.doi.org/10.1021/acs.joc.6b01449]
[61]
Fan, X.W.; Lei, T.; Zhou, C.; Meng, Q.Y.; Chen, B.; Tung, C.H.; Wu, L.Z. Radical addition of hydrazones by α-bromo ketones to prepare 1,3,5-Trisubstituted pyrazoles via visible light catalysis. J. Org. Chem., 2016, 81(16), 7127-7133.
[http://dx.doi.org/10.1021/acs.joc.6b00992] [PMID: 27362866]
[62]
Amador, A.G.; Yoon, T.P. Angew. A chiral metal photocatalyst architecture for highly enantioselective photoreactions. Chem. Angew. Chem. Int. Ed., 2016, 55(7), 2304-2306.
[http://dx.doi.org/10.1002/anie.201511443] [PMID: 26799357]
[63]
Ding, Y.; Zhang, T.; Chen, Q.Y.; Zhu, C. Visible-light photocatalytic aerobic annulation for the green synthesis of pyrazoles. Org. Lett., 2016, 18(17), 4206-4209.
[http://dx.doi.org/10.1021/acs.orglett.6b01867] [PMID: 27529570]
[64]
Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37(2), 320-330.
[http://dx.doi.org/10.1039/B610213C] [PMID: 18197348]
[65]
Yu, J.; Cai, C. Ambient-light-promoted perfluoroalkylative cyclization of β&γ-Unsaturated hydrazones: synthesis of perfluoroalkylated pyrazolines. Eur. J. Org. Chem., 2017, 2017(40), 6008-6012.
[http://dx.doi.org/10.1002/ejoc.201701201]
[66]
Kaur, K.; Kumar, V.; Sharma, A.K.; Gupta, G.K. Isoxazoline containing natural products as anticancer agents: A review. Eur. J. Med. Chem., 2014, 77, 121-133.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.063] [PMID: 24631731]
[67]
Reddy, M.V.R.; Billa, V.K.; Pallela, V.R.; Mallireddigari, M.R.; Boominathan, R.; Gabriel, J.L.; Reddy, E.P. Design, synthesis, and biological evaluation of 1-(4-sulfamylphenyl)-3-trifluoromethyl-5-indolylpyrazolines as cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) inhibitors. Bioorg. Med. Chem., 2008, 16, 3907.
[http://dx.doi.org/10.1016/j.bmc.2008.01.047] [PMID: 18272371]
[68]
Wei, Q.; Chen, J.R.; Hu, X.Q.; Yang, X.C.; Lu, B.; Xiao, W.J. Photocatalytic radical trifluoromethylation/cyclization cascade: Synthesis of CF 3 -containing pyrazolines and isoxazolines. Org. Lett., 2015, 17(18), 4464-4467.
[http://dx.doi.org/10.1021/acs.orglett.5b02118] [PMID: 26332823]
[69]
Wermuth, C.G. Are pyridazines privileged structures? MedChemComm, 2011, 2(10), 935-941.
[http://dx.doi.org/10.1039/C1MD00074H]
[70]
Lange, J.H.M.; den Hartog, A.P.; van der Neut, M.A.W.; van Vliet, B.J.; Kruse, C.G. Synthesis and SAR of 1,4,5,6-tetrahydropyridazines as potent cannabinoid CB1 receptor antagonists. Bioorg. Med. Chem. Lett., 2009, 19(19), 5675-5678.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.007] [PMID: 19699640]
[71]
Azzi, E.; Ghigo, G.; Parisotto, S.; Pellegrino, F.; Priola, E.; Renzi, P.; Deagostino, A. Visible Light Mediated Photocatalytic N -radical cascade reactivity of γδ-unsaturated N -Arylsulfonylhydrazones: A general approach to structurally diverse tetrahydropyridazines. J. Org. Chem., 2021, 86(4), 3300-3323.
[http://dx.doi.org/10.1021/acs.joc.0c02605] [PMID: 33523670]
[72]
Grote, R.; Chen, Y.; Zeeck, A.; Chen, Z.; Zähner, H.; Mischnick-Lübbecke, P.; König, W.A. Metabolic products of microorganisms. 243. Pyridazomycin, a new antifungal antibiotic produced by Streptomyces violaceoniger. J. Antibiot. (Tokyo), 1988, 41(5), 595-601.
[http://dx.doi.org/10.7164/antibiotics.41.595] [PMID: 3384747]
[73]
Winter, J.M.; Jansma, A.L.; Handel, T.M.; Moore, B.S. Formation of the pyridazine natural product azamerone by biosynthetic rearrangement of an aryl diazoketone. Angew. Chem. Int. Ed., 2009, 48(4), 767-770.
[http://dx.doi.org/10.1002/anie.200805140] [PMID: 19072974]
[74]
Zhang, Y.; Cao, Y.; Lu, L.; Zhang, S.; Bao, W.; Huang, S.; Rao, Y. Perylenequinonoid-catalyzed [4 + 1] and [4 + 2] annulations of azoalkenes: Photocatalytic access to 1,2,3-thiadiazole/1,4,5,6-tetrahydropyridazine derivatives. J. Org. Chem., 2019, 84(12), 7711-7721.
[http://dx.doi.org/10.1021/acs.joc.9b00545] [PMID: 31117482]
[75]
Sekhar, T.; Thriveni, P.; Venkateswarlu, A.; Daveedu, T.; Peddanna, K.; Sainath, S.B. One-pot synthesis of thiazolo[3,2-a]pyrimidine derivatives, their cytotoxic evaluation and molecular docking studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 231, 118056.
[http://dx.doi.org/10.1016/j.saa.2020.118056] [PMID: 32006911]
[76]
Akbari, J.D.; Kachhadia, P.K.; Tala, S.D.; Bapodra, A.H.; Dhaduk, M.F.; Joshi, H.S.; Mehta, K.B.; Pathak, S.J. Synthesis of some new 1,2,3,4-tetrahydropyrimidine-2-thiones and their thiazolo [3,2-a] pyrimidine derivatives as potential biological agents. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(8), 1911-1922.
[http://dx.doi.org/10.1080/10426500701796330]
[77]
Wang, Y.; Han, Y.; Zhang, L. Binary catalytic system for homo- and block copolymerization of ε-caprolactone with δ-valerolactone. RSC Advances, 2020, 10(43), 25979-25987.
[http://dx.doi.org/10.1039/D0RA04974C] [PMID: 35518598]
[78]
Aggarwal, R.; Jain, N.; Sharma, S.; Kumar, P.; Dubey, G.P.; Chugh, H.; Chandra, R. Visible-light driven regioselective synthesis, characterization and binding studies of 2 -ar oyl-3- met hyl -6, 7-d ihy dro -5 H- thi azolo[ 3,2 -a]pyrimidines with DNA and BSA using biophysical and computational techniques. Sci. Rep., 2021, 11, 22135.
[http://dx.doi.org/10.1038/s41598-021-01037-4] [PMID: 34764313]
[79]
Pati Tripathi, B.; Mishra, A.; Rai, P.; Kumar Pandey, Y.; Srivastava, M.; Yadav, S.; Singh, J.; Singh, J. A green and clean pathway: one pot, multicomponent, and visible light assisted synthesis of pyrano[2,3-c]pyrazoles under catalyst-free and solvent-free conditions. New J. Chem., 2017, 41(19), 11148-11154.
[http://dx.doi.org/10.1039/C7NJ01688C]
[80]
Mohamadpour, F. Visible light irradiation promoted catalyst-free and solvent-free synthesis of pyrano[2,3-d]pyrimidine scaffolds at room temperature. J. Saudi Chem. Soc., 2020, 24(8), 636-641.
[http://dx.doi.org/10.1016/j.jscs.2020.06.006]
[81]
Abdelgawad, M.A.; Labib, M.B.; Ali, W.A.M.; Kamel, G.; Azouz, A.A.; EL-Nahass, E.L.S. Design, synthesis, analgesic, anti-inflammatory activity of novel pyrazolones possessing aminosulfonyl pharmacophore as inhibitors of COX-2/5-LOX enzymes: Histopathological and docking studies. Bioorg. Chem., 2018, 78, 103-114.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.011] [PMID: 29550530]
[82]
Castro, A.; Castaño, T.; Encinas, A.; Porcal, W.; Gil, C. Advances in the synthesis and recent therapeutic applications of 1,2,4-thiadiazole heterocycles. Bioorg. Med. Chem., 2006, 14(5), 1644-1652.
[http://dx.doi.org/10.1016/j.bmc.2005.10.012] [PMID: 16249092]
[83]
Zhuo, L.; Xie, S.; Wang, H.; Zhu, H. Aerobic visible‐light induced intermolecular S−N bond construction: Synthesis of 1,2,4‐Thiadiazoles from thioamides under photosensitizer‐free conditions. Eur. J. Org. Chem., 2021, 2021(23), 3398-3402.
[http://dx.doi.org/10.1002/ejoc.202100440]
[84]
Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859.
[http://dx.doi.org/10.1021/jm4017625] [PMID: 24471928]
[85]
Yang, C.; Wang, J.; Cheng, Y.; Yang, X.; Feng, Y.; Zhuang, X.; Li, Z.; Zhao, W.; Zhang, J.; Sun, X.; He, X. N-Quinary heterocycle-4-sulphamoylbenzamides exert anti-hypoxic effects as dual inhibitors of carbonic anhydrases I/II. Bioorg. Chem., 2020, 100, 103931.
[http://dx.doi.org/10.1016/j.bioorg.2020.103931] [PMID: 32450385]
[86]
Santos, T.F.; de Jesus, J.B.; Neufeld, P.M.; Jordão, A.K.; Campos, V.R.; Cunha, A.C.; Castro, H.C.; de Souza, M.C.B.V.; Ferreira, V.F.; Rodrigues, C.R.; Abreu, P.A. Exploring 1,2,3-triazole derivatives by using in vitro and in silico assays to target new antifungal agents and treat Candidiasis. Med. Chem. Res., 2017, 26(3), 680-689.
[http://dx.doi.org/10.1007/s00044-017-1789-x]
[87]
Dong, J.Y.; Wang, H.; Mao, S.; Wang, X.; Zhou, M.D.; Li, L. Visible Light‐Induced [3+2] cyclization reactions of hydrazones with hypervalent iodine diazo reagents for the synthesis of 1‐Amino‐1,2,3-Triazoles. Adv. Synth. Catal., 2021, 363(8), 2133-2139.
[http://dx.doi.org/10.1002/adsc.202001436]
[88]
Seo, B.; Jeon, W.H.; Kim, J.; Kim, S.; Lee, P.H. Synthesis of fluorenes via tandem copper-catalyzed [3 + 2] cycloaddition and rhodium-catalyzed denitrogenative cyclization in a 5-exo mode from 2-ethynylbiaryls and N-sulfonyl azides in one pot. J. Org. Chem., 2015, 80(2), 722-732.
[http://dx.doi.org/10.1021/jo5027113] [PMID: 25543833]
[89]
Xi, W.; Scott, T.F.; Kloxin, C.J.; Bowman, C.N. Click Chemistry in materials science. Adv. Funct. Mater., 2014, 24(18), 2572-2590.
[http://dx.doi.org/10.1002/adfm.201302847]
[90]
Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113(7), 4905-4979.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
[91]
Wang, T.; Guo, Z. Copper in medicine: homeostasis, chelation therapy and antitumor drug design. Curr. Med. Chem., 2006, 13(5), 525-537.
[http://dx.doi.org/10.2174/092986706776055742] [PMID: 16515519]
[92]
Aghayan, M.M.; Saeedi, M.; Boukherroub, R. Cu2O/reduced graphene oxide/TiO2 nanomaterial: An effective photocatalyst for azide-alkyne cycloaddition with benzyl halides or epoxide derivatives under visible light irradiation. Appl. Organomet. Chem., 2020, e5928.
[93]
Khan, I.; Ibrar, A.; Abbas, N. Triazolothiadiazoles and triazolothiadiazines – Biologically attractive scaffolds. Eur. J. Med. Chem., 2013, 63, 854-868.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.060] [PMID: 23603045]
[94]
Aggarwal, R.; Sharma, S.; Hooda, M.; Sanz, D.; Claramunt, R.M.; Twamley, B.; Rozas, I. Visible-light mediated regioselective approach towards synthesis of 7-aroyl-6-methyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines. Tetrahedron, 2019, 75(50), 130728.
[http://dx.doi.org/10.1016/j.tet.2019.130728]
[95]
Moulin, A.; Bibian, M.; Blayo, A.L.; El Habnouni, S.; Martinez, J.; Fehrentz, J.A. Synthesis of 3,4,5-trisubstituted-1,2,4-triazoles. Chem. Rev., 2010, 110(4), 1809-1827.
[http://dx.doi.org/10.1021/cr900107r] [PMID: 20151658]
[96]
Wang, H.; Ren, Y.; Wang, K.; Man, Y.; Xiang, Y.; Li, N.; Tang, B. Visible light-induced cyclization reactions for the synthesis of 1,2,4-triazolines and 1,2,4-triazoles. Chem. Commun. (Camb.), 2017, 53(69), 9644-9647.
[http://dx.doi.org/10.1039/C7CC04911K] [PMID: 28812065]
[97]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[98]
Frank, É.; Szőllőllsi, G. Nitrogen-containing heterocycles as significant molecular scaffolds for medicinal and other applications. Molecules, 2021, 26(15), 4617.
[http://dx.doi.org/10.3390/molecules26154617] [PMID: 34361770]
[99]
Bora, O.R.; Dar, B.; Pradhan, V.; Farooqui, M. [1, 2, 4]-oxadiazoles: synthesis and biological applications. Mini Rev. Med. Chem., 2014, 14, 355-369.
[http://dx.doi.org/10.2174/1389557514666140329200745] [PMID: 24678879]
[100]
Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2019, 23, 3156-3192.
[101]
Yan, K.; Zhu, Y.; Ji, W.; Chen, F.; Zhang, J. Visible Light-driven membraneless photocatalytic fuel cell toward self-powered aptasensing of PCB77. Anal. Chem., 2018, 90(16), 9662-9666.
[http://dx.doi.org/10.1021/acs.analchem.8b02302] [PMID: 30074763]
[102]
Rabé, K.; Liu, L.; Nahyoon, N.A.; Zhang, Y.; Idris, A.M. Visible-light photocatalytic fuel cell with Z-scheme g-C3N4/Fe0/TiO2 anode and WO3 cathode efficiently degrades berberine chloride and stably generates electricity. Separ. Purif. Tech., 2019, 212, 774-782.
[http://dx.doi.org/10.1016/j.seppur.2018.11.089]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy