Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Effectiveness of HM-3-HSA on Inhibiting Cancer Cell Migration and Metastasis

Author(s): Ting Li, Ruyue Wang, Kaike Li, Peiya Wang, Jiang Zhao, Qi Guo, Jun Zhang, Yang Li, Hongyu Li and Hui Yang*

Volume 24, Issue 2, 2023

Published on: 06 January, 2023

Page: [190 - 198] Pages: 9

DOI: 10.2174/1389203724666221221115630

Price: $65

Abstract

Background: Metastasis is the major cause of treatment failure in cancer patients and cancer- associated death, and an antimetastatic drug would be a beneficial therapy for cancer patients. HM-3-HSA is a fusion protein which improved the pharmacokinetics of HM-3 and exerted antitumor and anti-angiogenesis activity in multiple tumor models. However, the efficacy of HM-3-HSA in cancer cell migration and metastasis has not been elucidated.

Materials and Methods: Herein, high-cell density fermentation of Pichiapink strain expressing HM- 3-HSA was performed for the first time. Then, the desired protein was purified by Butyl Sepharose High performance, Capto Blue, Phenyl Sepharose 6FF HS and DEAE Sepharose FF. Furthermore, the effect of HM-3-HSA on the migration and invasion of cancer cells was also evaluated, and B16F10 metastasis model was established to detected the anti- metastasis effect of HM-3-HSA in vivo.

Results: The results indicated that the yield of HM-3-HSA was 320 mg/L in a 10 L fermenter, which was a 46% increase over that expressed in flask cultivation. The desired protein was purified by fourstep, which yielded a 40% recovery of a product that had over 99% purity. Purified HM-3-HSA significantly suppressed the migration and invasion of HCT-116, SMMC-7721 and B16F10 cell lines.

Conclusion: On the other hand, in the B16F10 metastasis model, HM-3-HSA significantly inhibited pulmonary metastases of B16F10 cells, suggesting that HM-3-HSA exerted the anti-metastasis effect in vivo.

Keywords: HM-3-HSA, Pichiapink strain, metastasis, migration, fermentation, purification.

« Previous
Graphical Abstract
[1]
Pramani, K.A.; Jones, S.; Gao, Y.; Sweet, C.; Vangara, A.; Begum, S.; Ray, P.C. Multifunctional hybrid graphene oxide for circulating tumor cell isolation and analysis. Adv. Drug Deliv. Rev., 2018, 125, 21-35.
[http://dx.doi.org/10.1016/j.addr.2018.01.004] [PMID: 29329995]
[2]
Gutiontov, S.I.; Pitroda, S.P.; Tran, P.T.; Weichselbaum, R.R. (Oligo)metastasis as a Spectrum of Disease. Cancer Res., 2021, 81(10), 2577-2583.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3337] [PMID: 33452011]
[3]
Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.M. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J. Clin. Med., 2019, 9(1), 84.
[http://dx.doi.org/10.3390/jcm9010084] [PMID: 31905724]
[4]
Zhang, C.; Li, Q.; Qin, G.; Zhang, Y.; Li, C.; Han, L.; Wang, R.; Wang, S.; Chen, H.; Liu, K.; He, C. Anti-angiogenesis and anti-metastasis effects of Polyphyllin VII on Hepatocellular carcinoma cells in vitro and in vivo. Chin. Med., 2021, 16(1), 41.
[http://dx.doi.org/10.1186/s13020-021-00447-w] [PMID: 34059099]
[5]
Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[6]
Condeelis, J.; Singer, R.H.; Segall, J.E. The great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol., 2005, 21(1), 695-718.
[http://dx.doi.org/10.1146/annurev.cellbio.21.122303.120306] [PMID: 16212512]
[7]
Ivaska, J.; Heino, J. Adhesion receptors and cell invasion: Mechanisms of integrin-guided degradation of extracellular matrix. Cell. Mol. Life Sci., 2000, 57(1), 16-24.
[http://dx.doi.org/10.1007/s000180050496] [PMID: 10949578]
[8]
Hamidi, H.; Ivaska, J. Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer, 2018, 18(9), 533-548.
[http://dx.doi.org/10.1038/s41568-018-0038-z] [PMID: 30002479]
[9]
Cooper, J.; Giancotti, F.G. Integrin signaling in cancer: Mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell, 2019, 35(3), 347-367.
[http://dx.doi.org/10.1016/j.ccell.2019.01.007] [PMID: 30889378]
[10]
Li, M.; Wang, Y.; Li, M.; Wu, X.; Setrerrahmane, S.; Xu, H. Integrins as attractive targets for cancer therapeutics. Acta Pharm. Sin. B, 2021, 11(9), 2726-2737.
[http://dx.doi.org/10.1016/j.apsb.2021.01.004] [PMID: 34589393]
[11]
Li, T.; Ge, G.; Zhang, H.; Wang, R.; Liu, Y.; Zhang, Q.; Yue, Z.; Ma, W.; Li, W.; Zhang, J.; Yang, H.; Wang, P.; Zhao, J.; Fang, Y.; Xie, Q.; Wang, M.; Li, Y.; Zhu, H.; Li, H. HM-3-HSA exhibits potent anti-angiogenesis and antitumor activity in hepatocellular carcinoma. Eur. J. Pharm. Sci., 2021, 167, 106017.
[http://dx.doi.org/10.1016/j.ejps.2021.106017] [PMID: 34555448]
[12]
Li, T.; Zhang, H.Z.; Ge, G.F.; Yue, Z.R.; Wang, R.Y.; Zhang, Q.; Gu, Y.; Song, M.J.; Li, W.B.; Ma, M.Z.; Wang, M.Z.; Yang, H.; Li, Y.; Li, H.Y. Albumin fusion at the N-Terminus or C-Terminus of HM-3 leads to improved pharmacokinetics and bioactivities. Biomedicines, 2021, 9(9), 1084.
[http://dx.doi.org/10.3390/biomedicines9091084] [PMID: 34572270]
[13]
Guan, X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B, 2015, 5(5), 402-418.
[http://dx.doi.org/10.1016/j.apsb.2015.07.005] [PMID: 26579471]
[14]
Wang, M.; Zhi, D.; Wang, H.; Ru, Y.; Ren, H.; Wang, N.; Liu, Y.; Li, Y.; Li, H. TAT-HSA-α-MSH fusion protein with extended half-life inhibits tumor necrosis factor-α in brain inflammation of mice. Appl. Microbiol. Biotechnol., 2016, 100(12), 5353-5361.
[http://dx.doi.org/10.1007/s00253-015-7251-4] [PMID: 26816094]
[15]
Spadiut, O.; Posch, G.; Ludwig, R.; Haltrich, D.; Peterbauer, C.K. Evaluation of different expression systems for the heterologous expression of pyranose 2-oxidase from Trametes multicolor in E. coli. Microb. Cell Fact., 2010, 9(1), 14.
[http://dx.doi.org/10.1186/1475-2859-9-14] [PMID: 20214772]
[16]
Sluzky, V.; Tamada, J.A.; Klibanov, A.M.; Langer, R. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc. Natl. Acad. Sci. USA, 1991, 88(21), 9377-9381.
[http://dx.doi.org/10.1073/pnas.88.21.9377] [PMID: 1946348]
[17]
Shao, R.; Hamel, K.; Petersen, L.; Cao, Q.J.; Arenas, R.B.; Bigelow, C.; Bentley, B.; Yan, W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene, 2009, 28(50), 4456-4468.
[http://dx.doi.org/10.1038/onc.2009.292] [PMID: 19767768]
[18]
Pelillo, C.; Mollica, H.; Eble, J.A.; Grosche, J.; Herzog, L.; Codan, B.; Sava, G.; Bergamo, A. Inhibition of adhesion, migration and of α5β1 integrin in the HCT-116 colorectal cancer cells treated with the ruthenium drug NAMI-A. J. Inorg. Biochem., 2016, 160, 225-235.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.025] [PMID: 26961176]
[19]
Wu, Y.; Zuo, J.; Ji, G.; Saiyin, H.; Liu, X.; Yin, F.; Cao, N.; Wen, Y.; Li, J.J.; Yu, L. Proapoptotic function of integrin beta(3) in human hepatocellular carcinoma cells. Clin. Cancer Res., 2009, 15(1), 60-69.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1028] [PMID: 19118033]
[20]
Pan, T.J.; Li, L.X.; Zhang, J.W.; Yang, Z.S.; Shi, D.M.; Yang, Y.K.; Wu, W.Z. Antimetastatic effect of fucoidan-sargassum against liver cancer cell invadopodia formation via targeting integrin αVβ3 and mediating αVβ3/Src/E2F1 signaling. J. Cancer, 2019, 10(20), 4777-4792.
[http://dx.doi.org/10.7150/jca.26740] [PMID: 31598149]
[21]
Fu, B.H.; Wu, Z.Z.; Qin, J. Effects of integrins on laminin chemotaxis by hepatocellular carcinoma cells. Mol. Biol. Rep., 2010, 37(3), 1665-1670.
[http://dx.doi.org/10.1007/s11033-009-9790-1] [PMID: 19768654]
[22]
Sil, H.; Sen, T.; Chatterjee, A. Fibronectin-integrin (alpha5beta1) modulates migration and invasion of murine melanoma cell line B16F10 by involving MMP-9. Oncol. Res., 2011, 19(7), 335-348.
[http://dx.doi.org/10.3727/096504011X13079697132925] [PMID: 21936403]
[23]
Mitra, A.; Chakrabarti, J.; Chatterjee, A. Binding of alpha5 monoclonal antibody to cell surface alpha5beta1 integrin modulates MMP-2 and MMP-7 activity in B16F10 melanoma cells. J. Environ. Pathol. Toxicol. Oncol., 2003, 22(3), 167-178.
[http://dx.doi.org/10.1615/JEnvPathToxOncol.v22.i3.20] [PMID: 14529092]
[24]
Barrionuevo, E.; Cayrol, F.; Cremaschi, G.A.; Cornier, P.G.; Boggián, D.B.; Delpiccolo, C.M.L.; Mata, E.G.; Roguin, L.P.; Blank, V.C. A penicillin derivative exerts an anti-metastatic activity in melanoma cells through the downregulation of integrin αvβ3 and Wnt/β-catenin pathway. Front. Pharmacol., 2020, 11, 127.
[http://dx.doi.org/10.3389/fphar.2020.00127] [PMID: 32158394]
[25]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[26]
Bravo-Cordero, J.J.; Hodgson, L.; Condeelis, J. Directed cell invasion and migration during metastasis. Curr. Opin. Cell Biol., 2012, 24(2), 277-283.
[http://dx.doi.org/10.1016/j.ceb.2011.12.004] [PMID: 22209238]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy