Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Non-vesicular Lipid Transport Machinery in Trichomonas vaginalis: Novel Drug Targets against Trichomoniasis

Author(s): Koushik Das*, Seikh Batin Rahaman, Shashi Upadhyay, Dikhita Das and Utsab Debnath*

Volume 23, Issue 7, 2023

Published on: 18 January, 2023

Page: [540 - 550] Pages: 11

DOI: 10.2174/1568026623666221220124443

Price: $65

Open Access Journals Promotions 2
Abstract

Eukaryotic cells have separate membrane-enclosed organelles with distinct biochemical identities and specialized functions. The unique characteristics of each organelle are regulated by asymmetric distribution and intra-cellular trafficking of two important biomolecules, proteins and lipids. Non-vesicular lipid transport facilitated by lipid transfer proteins performs essential roles in intracellular lipid trafficking and homeostasis, while vesicular transport regulates protein trafficking. Comparative analysis of lipid transport machinery in protists could help us to understand the basis of parasitism and insight into eukaryotic evolution. Trichomonas vaginalis, a parasitic protist, greatly depends on receptor-ligand-mediated signaling pathways for cellular differentiation, nutrient uptake, secretion of virulence factors, and pathogenesis. Lipids, despite being key molecules of signaling cascades, have mechanisms of intracellular transport that are largely unexplored in T. vaginalis. We have identified a repertoire of seventeen potential lipid transfer protein (LTP) homologs in T. vaginalis based on a domain-based search on TrichDB (genome database of Trichomonas) coupled with bioinformatics analyses, which indicates the presence of well-organized lipid transport machinery in this parasite. We emphasized here their evolutionary uniqueness and conservation and discussed their potential implications for parasite biology in regard to future therapeutic targets against Trichomoniasis.

Keywords: Lipid, Trichomonas vaginalis, Signaling, Drug development, Pathogenesis, Eukaryotic cells.

Graphical Abstract
[1]
Holthuis, J.C.M.; van Meer, G.; Huitema, K. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review). Mol. Membr. Biol., 2003, 20(3), 231-241.
[http://dx.doi.org/10.1080/0988768031000100768] [PMID: 12893531]
[2]
Lev, S. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat. Rev. Mol. Cell Biol., 2010, 11(10), 739-750.
[http://dx.doi.org/10.1038/nrm2971] [PMID: 20823909]
[3]
Voelker, D.R. Organelle biogenesis and intracellular lipid transport in eukaryotes. Microbiol. Rev., 1991, 55(4), 543-560.
[http://dx.doi.org/10.1128/mr.55.4.543-560.1991] [PMID: 1779926]
[4]
Sprong, H.; van der Sluijs, P.; van Meer, G. How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol., 2001, 2(7), 504-513.
[http://dx.doi.org/10.1038/35080071] [PMID: 11433364]
[5]
Blom, T.; Somerharju, P.; Ikonen, E. Synthesis and biosynthetic trafficking of membrane lipids. Cold Spring Harb. Perspect. Biol., 2011, 3(8), a004713.
[http://dx.doi.org/10.1101/cshperspect.a004713] [PMID: 21482741]
[6]
Kaplan, M.R.; Simoni, R.D. Intracellular transport of phosphatidylcholine to the plasma membrane. J. Cell Biol., 1985, 101(2), 441-445.
[http://dx.doi.org/10.1083/jcb.101.2.441] [PMID: 4040519]
[7]
Vance, J.E.; Aasman, E.J.; Szarka, R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J. Biol. Chem., 1991, 266(13), 8241-8247.
[http://dx.doi.org/10.1016/S0021-9258(18)92968-6] [PMID: 2022641]
[8]
Li, J.; Gao, G.; Xu, K.; Chen, B.; Yan, G.; Li, F.; Qiao, J.; Zhang, T.; Wu, X. Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L. PLoS One, 2014, 9(1), e84556.
[http://dx.doi.org/10.1371/journal.pone.0084556] [PMID: 24497919]
[9]
Levine, T. Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol., 2004, 14(9), 483-490.
[http://dx.doi.org/10.1016/j.tcb.2004.07.017] [PMID: 15350976]
[10]
Holthuis, J.C.M.; Levine, T.P. Lipid traffic: floppy drives and a superhighway. Nat. Rev. Mol. Cell Biol., 2005, 6(3), 209-220.
[http://dx.doi.org/10.1038/nrm1591] [PMID: 15738987]
[11]
Sleight, R.G. Intracellular lipid transport in eukaryotes. Annu. Rev. Physiol., 1987, 49(1), 193-208.
[http://dx.doi.org/10.1146/annurev.ph.49.030187.001205] [PMID: 3551798]
[12]
van Meer, G. Lipid traffic in animal cells. Annu. Rev. Cell Biol., 1989, 5(1), 247-275.
[http://dx.doi.org/10.1146/annurev.cb.05.110189.001335] [PMID: 2688705]
[13]
Jones, J.D.; Thompson, T.E. Spontaneous phosphatidylcholine transfer by collision between vesicles at high lipid concentration. Biochemistry, 1989, 28(1), 129-134.
[http://dx.doi.org/10.1021/bi00427a019] [PMID: 2640559]
[14]
Mesmin, B.; Maxfield, F.R. Intracellular sterol dynamics. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2009, 1791(7), 636-645.
[http://dx.doi.org/10.1016/j.bbalip.2009.03.002]
[15]
Lev, S. Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol., 2012, 4(10), a013300.
[http://dx.doi.org/10.1101/cshperspect.a013300] [PMID: 23028121]
[16]
Helle, S.C.J.; Kanfer, G.; Kolar, K.; Lang, A.; Michel, A.H.; Kornmann, B. Organization and function of membrane contact sites. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(11), 2526-2541.
[http://dx.doi.org/10.1016/j.bbamcr.2013.01.028] [PMID: 23380708]
[17]
Ohashi, M.; de Vries, K.J.; Frank, R.; Snoek, G.; Bankaitis, V.; Wirtz, K.; Huttner, W.B. A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature, 1995, 377(6549), 544-547.
[http://dx.doi.org/10.1038/377544a0] [PMID: 7566155]
[18]
Kim, Y.J.; Guzman-Hernandez, M.L.; Wisniewski, E.; Balla, T. Phosphatidylinositol-phosphatidic acid exchange by Nir2 at ER-PM contact sites maintains phosphoinositide signaling competence. Dev. Cell, 2015, 33(5), 549-561.
[http://dx.doi.org/10.1016/j.devcel.2015.04.028] [PMID: 26028218]
[19]
Hobbs, M.M.; Sena, A.C.; Swygard, H. Trichomonas vaginalis and trichomoniasis. In: Sexually transmitted disease, 4th ed; Holmes, K.; Holmes, K.K.; Sparling, P.F., Eds.; McGraw-Hill: New York, 2008.
[20]
Hirt, R.P.; de Miguel, N.; Nakjang, S.; Dessi, D.; Liu, Y.C.; Diaz, N.; Rappelli, P.; Acosta-Serrano, A.; Fiori, P.L.; Mottram, J.C. Trichomonas vaginalis Pathobiology. Adv. Parasitol., 2011, 77, 87-140.
[http://dx.doi.org/10.1016/B978-0-12-391429-3.00006-X] [PMID: 22137583]
[21]
Figueroa-Angulo, E.E.; Rendón-Gandarilla, F.J.; Puente-Rivera, J.; Calla-Choque, J.S.; Cárdenas-Guerra, R.E.; Ortega-López, J.; Quintas-Granados, L.I.; Alvarez-Sánchez, M.E.; Arroyo, R. The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect., 2012, 14(15), 1411-1427.
[http://dx.doi.org/10.1016/j.micinf.2012.09.004] [PMID: 23022315]
[22]
Pereira-Neves, A.; Ribeiro, K.C.; Benchimol, M. Pseudocysts in trichomonads--new insights. Protist, 2003, 154(3-4), 313-329.
[http://dx.doi.org/10.1078/143446103322454095] [PMID: 14658492]
[23]
Shah, Z.H.; Jones, D.R.; Sommer, L.; Foulger, R.; Bultsma, Y.; D’Santos, C.; Divecha, N. Nuclear phosphoinositides and their impact on nuclear functions. FEBS J., 2013, 280(24), 6295-6310.
[http://dx.doi.org/10.1111/febs.12543] [PMID: 24112514]
[24]
Ryan, C.M.; Miguel, N.; Johnson, P.J.; Johnson, P.J. Trichomonas vaginalis: current understanding of host–parasite interactions. Essays Biochem., 2011, 51, 161-175.
[http://dx.doi.org/10.1042/bse0510161] [PMID: 22023448]
[25]
de Miguel, N.; Riestra, A.; Johnson, P.J. Reversible association of tetraspanin with Trichomonas vaginalis flagella upon adherence to host cells. Cell. Microbiol., 2012, 14(12), 1797-1807.
[http://dx.doi.org/10.1111/cmi.12003] [PMID: 22882837]
[26]
Carlton, J.M.; Malik, S.B.; Sullivan, S.A.; Sicheritz-Pontén, T.; Tang, P.; Hirt, R.P. The genome of Trichomonas vaginalis. In: Anaerobic parasitic protozoa: genomics and molecular biology; Caister Academic Press, 2010.
[27]
Cho, W. Membrane targeting by C1 and C2 domains. J. Biol. Chem., 2001, 276(35), 32407-32410.
[http://dx.doi.org/10.1074/jbc.R100007200] [PMID: 11432875]
[28]
Kasper, A.M.; Helmkamp, G.M., Jr Intermembrane phospholipid fluxes catalyzed by bovine brain phospholipid exchange protein. Biochim. Biophys. Acta Lipids Lipid Metab., 1981, 664(1), 22-32.
[http://dx.doi.org/10.1016/0005-2760(81)90025-4] [PMID: 7236697]
[29]
Helmkamp, G.M. Jr Phospholipid transfer proteins: Mechanism of action. J. Bioenerg. Biomembr., 1986, 18(2), 71-91.
[http://dx.doi.org/10.1007/BF00743477] [PMID: 3522562]
[30]
Nichols, J.W. Kinetics of fluorescent-labeled phosphatidylcholine transfer between nonspecific lipid transfer protein and phospholipid vesicles. Biochemistry, 1988, 27(6), 1889-1896.
[http://dx.doi.org/10.1021/bi00406a014] [PMID: 3378037]
[31]
Rueckert, D.G.; Schmidt, K. Lipid transfer proteins. Chem. Phys. Lipids, 1990, 56(1), 1-20.
[http://dx.doi.org/10.1016/0009-3084(90)90083-4] [PMID: 2091833]
[32]
Wirtz, K.W.A. Phospholipid transfer proteins. Annu. Rev. Biochem., 1991, 60(1), 73-99.
[http://dx.doi.org/10.1146/annurev.bi.60.070191.000445] [PMID: 1883207]
[33]
Gadella, T.W.J., Jr; Wirtz, K.W.A. Phospholipid binding and transfer by the nonspecific lipid-transfer protein (sterol carrier protein 2). A kinetic model. Eur. J. Biochem., 1994, 220(3), 1019-1028.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18707.x] [PMID: 8143718]
[34]
Wirtz, K.W.A.; Schouten, A.; Gros, P. Phosphatidylinositol transfer proteins: From closed for transport to open for exchange. Adv. Enzyme Regul., 2006, 46(1), 301-311.
[http://dx.doi.org/10.1016/j.advenzreg.2006.01.020] [PMID: 16854452]
[35]
Voelker, D.R. Bridging gaps in phospholipid transport. Trends Biochem. Sci., 2005, 30(7), 396-404.
[http://dx.doi.org/10.1016/j.tibs.2005.05.008] [PMID: 15951180]
[36]
Levine, T.; Loewen, C. Inter-organelle membrane contact sites: through a glass, darkly. Curr. Opin. Cell Biol., 2006, 18(4), 371-378.
[http://dx.doi.org/10.1016/j.ceb.2006.06.011] [PMID: 16806880]
[37]
Giorgi, C.; De Stefani, D.; Bononi, A.; Rizzuto, R.; Pinton, P. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int. J. Biochem. Cell Biol., 2009, 41(10), 1817-1827.
[http://dx.doi.org/10.1016/j.biocel.2009.04.010] [PMID: 19389485]
[38]
Lebiedzinska, M.; Szabadkai, G.; Jones, A.W.E.; Duszynski, J.; Wieckowski, M.R. Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int. J. Biochem. Cell Biol., 2009, 41(10), 1805-1816.
[http://dx.doi.org/10.1016/j.biocel.2009.02.017] [PMID: 19703651]
[39]
Kular, G.; Loubtchenkov, M.; Swigart, P.; Whatmore, J.; Ball, A.; Cockcroft, S.; Wetzker, R. Co-operation of phosphatidylinositol transfer protein with phosphoinositide 3-kinase γ in the formylmethionyl-leucylphenylalanine-dependent production of phosphatidylinositol 3,4,5-trisphosphate in human neutrophils. Biochem. J., 1997, 325(2), 299-301.
[http://dx.doi.org/10.1042/bj3250299] [PMID: 9230105]
[40]
Kular, G.S.; Chaudhary, A.; Prestwich, G.; Swigart, P.; Wetzker, R.; Cockcroft, S. Co-operation of phosphatidylinositol transfer protein with phosphoinositide 3-kinase γ in vitro. Adv. Enzyme Regul., 2002, 42, 53-61.
[http://dx.doi.org/10.1016/S0065-2571(01)00023-1] [PMID: 12123706]
[41]
Cockcroft, S.; Garner, K. Potential role for phosphatidylinositol transfer protein (PITP) family in lipid transfer during phospholipase C signalling. Adv. Biol. Regul., 2013, 53(3), 280-291.
[http://dx.doi.org/10.1016/j.jbior.2013.07.007] [PMID: 23916246]
[42]
Alpy, F.; Tomasetto, C. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J. Cell Sci., 2005, 118(13), 2791-2801.
[http://dx.doi.org/10.1242/jcs.02485] [PMID: 15976441]
[43]
Clark, B.J. The mammalian START domain protein family in lipid transport in health and disease. J. Endocrinol., 2012, 212(3), 257-275.
[http://dx.doi.org/10.1530/JOE-11-0313] [PMID: 21965545]
[44]
Kumagai, K.; Kawano-Kawada, M.; Hanada, K. Phosphoregulation of the ceramide transport protein CERT at serine 315 in the interaction with VAMP-associated protein (VAP) for inter-organelle trafficking of ceramide in mammalian cells. J. Biol. Chem., 2014, 289(15), 10748-10760.
[http://dx.doi.org/10.1074/jbc.M113.528380] [PMID: 24569996]
[45]
Kölsch, V.; Charest, P.G.; Firtel, R.A. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci., 2008, 121(5), 551-559.
[http://dx.doi.org/10.1242/jcs.023333] [PMID: 18287584]
[46]
Martin, T.F.J. Role of PI(4,5)P(2) in vesicle exocytosis and membrane fusion. Subcell. Biochem., 2012, 59, 111-130.
[http://dx.doi.org/10.1007/978-94-007-3015-1_4] [PMID: 22374089]
[47]
Haastert, B.; Mellanby, R.J.; Anderton, S.M.; O’Connor, R.A. T cells at the site of autoimmune inflammation show increased potential for trogocytosis. PLoS One, 2013, 8(12), e81404.
[http://dx.doi.org/10.1371/journal.pone.0081404] [PMID: 24324692]
[48]
Levin, R.; Grinstein, S.; Schlam, D. Phosphoinositides in phagocytosis and macropinocytosis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2015, 1851(6), 805-823.
[http://dx.doi.org/10.1016/j.bbalip.2014.09.005] [PMID: 25238964]
[49]
Litvak, V.; Dahan, N.; Ramachandran, S.; Sabanay, H.; Lev, S. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nat. Cell Biol., 2005, 7(3), 225-234.
[http://dx.doi.org/10.1038/ncb1221] [PMID: 15723057]
[50]
Peretti, D.; Dahan, N.; Shimoni, E.; Hirschberg, K.; Lev, S. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol. Biol. Cell, 2008, 19(9), 3871-3884.
[http://dx.doi.org/10.1091/mbc.e08-05-0498] [PMID: 18614794]
[51]
Mattjus, P. Glycolipid transfer proteins and membrane interaction. Biochim. Biophys. Acta Biomembr., 2009, 1788(1), 267-272.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.003] [PMID: 19007748]
[52]
Curwin, A.J.; Fairn, G.D.; McMaster, C.R. Phospholipid transfer protein Sec14 is required for trafficking from endosomes and regulates distinct trans-Golgi export pathways. J. Biol. Chem., 2009, 284(11), 7364-7375.
[http://dx.doi.org/10.1074/jbc.M808732200] [PMID: 19129178]
[53]
Bankaitis, V.A.; Aitken, J.R.; Cleves, A.E.; Dowhan, W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature, 1990, 347(6293), 561-562.
[http://dx.doi.org/10.1038/347561a0] [PMID: 2215682]
[54]
McGee, T.P.; Skinner, H.B.; Whitters, E.A.; Henry, S.A.; Bankaitis, V.A. A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J. Cell Biol., 1994, 124(3), 273-287.
[http://dx.doi.org/10.1083/jcb.124.3.273] [PMID: 8294512]
[55]
Skinner, H.B.; McGee, T.P.; McMaster, C.R.; Fry, M.R.; Bell, R.M.; Bankaitis, V.A. The Saccharomyces cerevisiae phosphatidylinositol-transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity. Proc. Natl. Acad. Sci. USA, 1995, 92(1), 112-116.
[http://dx.doi.org/10.1073/pnas.92.1.112] [PMID: 7816798]
[56]
Schaaf, G.; Ortlund, E.A.; Tyeryar, K.R.; Mousley, C.J.; Ile, K.E.; Garrett, T.A.; Ren, J.; Woolls, M.J.; Raetz, C.R.H.; Redinbo, M.R.; Bankaitis, V.A. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol. Cell, 2008, 29(2), 191-206.
[http://dx.doi.org/10.1016/j.molcel.2007.11.026] [PMID: 18243114]
[57]
Tanaka, K.; Horiguchi, K.; Yoshida, T.; Takeda, M.; Fujisawa, H.; Takeuchi, K.; Umeda, M.; Kato, S.; Ihara, S.; Nagata, S.; Fukui, Y. Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus. J. Biol. Chem., 1999, 274(7), 3919-3922.
[http://dx.doi.org/10.1074/jbc.274.7.3919] [PMID: 9933577]
[58]
Martelli, A.M.; Bortul, R.; Tabellini, G.; Bareggi, R.; Manzoli, L.; Narducci, P.; Cocco, L. Diacylglycerol kinases in nuclear lipid-dependent signal transduction pathways. Cell. Mol. Life Sci., 2002, 59(7), 1129-1137.
[http://dx.doi.org/10.1007/s00018-002-8492-9] [PMID: 12222960]
[59]
Audhya, A.; Emr, S.D. Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase. EMBO J., 2003, 22(16), 4223-4236.
[http://dx.doi.org/10.1093/emboj/cdg397] [PMID: 12912920]
[60]
Irvine, R.F. Nuclear lipid signalling. Nat. Rev. Mol. Cell Biol., 2003, 4(5), 349-361.
[http://dx.doi.org/10.1038/nrm1100] [PMID: 12728269]
[61]
Balla, A.; Balla, T. Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol., 2006, 16(7), 351-361.
[http://dx.doi.org/10.1016/j.tcb.2006.05.003] [PMID: 16793271]
[62]
Matsubara, T.; Shirai, Y.; Miyasaka, K.; Murakami, T.; Yamaguchi, Y.; Ueyama, T.; Kai, M.; Sakane, F.; Kanoh, H.; Hashimoto, T.; Kamada, S.; Kikkawa, U.; Saito, N. Nuclear transportation of diacylglycerol kinase gamma and its possible function in the nucleus. J. Biol. Chem., 2006, 281(10), 6152-6164.
[http://dx.doi.org/10.1074/jbc.M509873200] [PMID: 16407189]
[63]
Carman, G.M.; Henry, S.A. Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J. Biol. Chem., 2007, 282(52), 37293-37297.
[http://dx.doi.org/10.1074/jbc.R700038200] [PMID: 17981800]
[64]
Demmel, L.; Beck, M.; Klose, C.; Schlaitz, A.L.; Gloor, Y.; Hsu, P.P.; Havlis, J.; Shevchenko, A.; Krause, E.; Kalaidzidis, Y.; Walch-Solimena, C. Nucleocytoplasmic shuttling of the Golgi phosphatidylinositol 4-kinase Pik1 is regulated by 14-3-3 proteins and coordinates Golgi function with cell growth. Mol. Biol. Cell, 2008, 19(3), 1046-1061.
[http://dx.doi.org/10.1091/mbc.e07-02-0134] [PMID: 18172025]
[65]
Mishkind, M.; Vermeer, J.E.M.; Darwish, E.; Munnik, T. Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J., 2009, 60(1), 10-21.
[http://dx.doi.org/10.1111/j.1365-313X.2009.03933.x] [PMID: 19500308]
[66]
Ren, H.; Federico, L.; Huang, H.; Sunkara, M.; Drennan, T.; Frohman, M.A.; Smyth, S.S.; Morris, A.J. A phosphatidic acid binding/nuclear localization motif determines lipin1 function in lipid metabolism and adipogenesis. Mol. Biol. Cell, 2010, 21(18), 3171-3181.
[http://dx.doi.org/10.1091/mbc.e10-01-0073] [PMID: 20660155]
[67]
Jang, Y.H.; Min, D.S. Nuclear localization of phospholipase D1 mediates the activation of nuclear protein kinase C(α) and extracellular signal-regulated kinase signaling pathways. J. Biol. Chem., 2011, 286(6), 4680-4689.
[http://dx.doi.org/10.1074/jbc.M110.162602] [PMID: 21113078]
[68]
Siniossoglou, S. Phospholipid metabolism and nuclear function: Roles of the lipin family of phosphatidic acid phosphatases. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2013, 1831(3), 575-581.
[http://dx.doi.org/10.1016/j.bbalip.2012.09.014] [PMID: 23026159]
[69]
Jülke, S.; Ludwig-Müller, J. Response of Arabidopsis thaliana roots with altered lipid transfer protein (LTP) gene expression to the club root diseases and salt stress. Plants, 2015, 5(1), 2.
[http://dx.doi.org/10.3390/plants5010002] [PMID: 27135222]
[70]
Karlsson, T.; Altankhuyag, A.; Dobrovolska, O.; Turcu, D.C.; Lewis, A.E. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochem. J., 2016, 473(14), 2033-2047.
[http://dx.doi.org/10.1042/BCJ20160274] [PMID: 27118868]
[71]
Tsai, T.Y.; Wang, W.T.; Li, H.K.; Chen, W.J.; Tsai, Y.H.; Chao, C.H.; Wu Lee, Y.H. RNA helicase DDX3 maintains lipid homeostasis through upregulation of the microsomal triglyceride transfer protein by interacting with HNF4 and SHP. Sci. Rep., 2017, 7(1), 41452-41469.
[http://dx.doi.org/10.1038/srep41452] [PMID: 28128295]
[72]
Zhou, T.; Li, S.; Zhong, W.; Vihervaara, T.; Béaslas, O.; Perttilä, J.; Luo, W.; Jiang, Y.; Lehto, M.; Olkkonen, V.M.; Yan, D. OSBP-related protein 8 (ORP8) regulates plasma and liver tissue lipid levels and interacts with the nucleoporin Nup62. PLoS One, 2011, 6(6), e21078.
[http://dx.doi.org/10.1371/journal.pone.0021078] [PMID: 21698267]
[73]
Béaslas, O.; Vihervaara, T.; Li, J.; Laurila, P.P.; Yan, D.; Olkkonen, V.M. Silencing of OSBP-related protein 8 (ORP8) modifies the macrophage transcriptome, nucleoporin p62 distribution, and migration capacity. Exp. Cell Res., 2012, 318(15), 1933-1945.
[http://dx.doi.org/10.1016/j.yexcr.2012.05.026] [PMID: 22683860]
[74]
Goldfinger, L.E.; Ptak, C.; Jeffery, E.D.; Shabanowitz, J.; Han, J.; Haling, J.R.; Sherman, N.E.; Fox, J.W.; Hunt, D.F.; Ginsberg, M.H. An experimentally derived database of candidate Ras-interacting proteins. J. Proteome Res., 2007, 6(5), 1806-1811.
[http://dx.doi.org/10.1021/pr060630l] [PMID: 17439166]
[75]
Weber-Boyvat, M.; Zhong, W.; Yan, D.; Olkkonen, V.M. Oxysterolbinding proteins: functions in cell regulation beyond lipid metabolism. Biochem. Pharmacol., 2013, 86, 89-95.
[76]
Curwin, A.; McMaster, C. Structure and function of the enigmatic Sec14 domain-containing proteins and theetiology of human disease. Future Lipidol., 2008, 3(4), 399-410.
[http://dx.doi.org/10.2217/17460875.3.4.399]
[77]
Bankaitis, V.A.; Malehorn, D.E.; Emr, S.D.; Greene, R. The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol., 1989, 108(4), 1271-1281.
[http://dx.doi.org/10.1083/jcb.108.4.1271] [PMID: 2466847]
[78]
Im, Y.J.; Raychaudhuri, S.; Prinz, W.A.; Hurley, J.H. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature, 2005, 437(7055), 154-158.
[http://dx.doi.org/10.1038/nature03923] [PMID: 16136145]
[79]
Li, N.; Xu, C.; Li-Beisson, Y.; Philippar, K. Fatty acid and lipid transport in plant cells. Trends Plant Sci., 2016, 21(2), 145-158.
[http://dx.doi.org/10.1016/j.tplants.2015.10.011] [PMID: 26616197]
[80]
van Ooij, C.; Withers-Martinez, C.; Ringel, A.S.; Haldar, K.; Blackman, M.J. Identification of a Plasmodium falciparum phospholipid transfer protein. J. Biol. Chem., 2013, 288(44), 31971-31983.
[http://dx.doi.org/10.1074/jbc.M113.474189]
[81]
Hill, R.J.; Ringel, A.; Knuepfer, E.; Moon, R.W.; Blackman, M.J.; van Ooij, C. Regulation and essentiality of the StAR-related lipid transfer (START) domain-containing phospholipid transfer protein PFA0210c in malaria parasites. J. Biol. Chem., 2016, 291(46), 24280-24292.
[http://dx.doi.org/10.1074/jbc.M116.740506] [PMID: 27694132]
[82]
Das, K.; Nozaki, T. Non-vesicular lipid transport machinery in Entamoeba histolytica. Front. Cell. Infect. Microbiol., 2018, 8, 315.
[http://dx.doi.org/10.3389/fcimb.2018.00315] [PMID: 30283742]
[83]
Das, K.; Watanabe, N.; Nozaki, T. Two StAR-related lipid transfer proteins play specific roles in endocytosis, exocytosis, and motility in the parasitic protist Entamoeba histolytica. PLoS Pathog., 2021, 17(4), e1009551.
[http://dx.doi.org/10.1371/journal.ppat.1009551] [PMID: 33909710]
[84]
Raychaudhuri, S.; Im, Y.J.; Hurley, J.H.; Prinz, W.A. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein–related proteins and phosphoinositides. J. Cell Biol., 2006, 173(1), 107-119.
[http://dx.doi.org/10.1083/jcb.200510084] [PMID: 16585271]
[85]
Schulz, T.A.; Prinz, W.A. Sterol transport in yeast and the oxysterol binding protein homologue (OSH) family. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2007, 1771(6), 769-780.
[http://dx.doi.org/10.1016/j.bbalip.2007.03.003] [PMID: 17434796]
[86]
Raychaudhuri, S.; Prinz, W.A. The diverse functions of oxysterol-binding proteins. Annu. Rev. Cell Dev. Biol., 2010, 26(1), 157-177.
[http://dx.doi.org/10.1146/annurev.cellbio.042308.113334] [PMID: 19575662]
[87]
Olkkonen, VM. OSBP-related protein family in lipid transport over membrane contact sites. Lipid insights 2015, LPI-S31726.
[88]
Hanada, K. Intracellular trafficking of ceramide by ceramide transfer protein. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2010, 86(4), 426-437.
[http://dx.doi.org/10.2183/pjab.86.426] [PMID: 20431265]
[89]
Nile, A.H.; Bankaitis, V.A.; Grabon, A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. Clin. Lipidol., 2010, 5(6), 867-897.
[http://dx.doi.org/10.2217/clp.10.67] [PMID: 21603057]
[90]
Miliara, X.; Garnett, J.A.; Tatsuta, T.; Abid Ali, F.; Baldie, H.; Pérez-Dorado, I.; Simpson, P.; Yague, E.; Langer, T.; Matthews, S. Structural insight into the TRIAP 1/PRELI ‐like domain family of mitochondrial phospholipid transfer complexes. EMBO Rep., 2015, 16(7), 824-835.
[http://dx.doi.org/10.15252/embr.201540229] [PMID: 26071602]
[91]
Tatsuta, T.; Langer, T. Intramitochondrial phospholipid trafficking. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(1), 81-89.
[http://dx.doi.org/10.1016/j.bbalip.2016.08.006] [PMID: 27542541]
[92]
Rojas, M.L.; Cruz Del Puerto, M.M.; Flores-Martín, J.; Racca, A.C.; Kourdova, L.T.; Miranda, A.L.; Panzetta-Dutari, G.M.; Genti-Raimondi, S. Role of the lipid transport protein StarD7 in mitochondrial dynamics. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(12), 159029.
[http://dx.doi.org/10.1016/j.bbalip.2021.159029] [PMID: 34416390]
[93]
Reinisch, K.M.; De Camilli, P. SMP-domain proteins at membrane contact sites: Structure and function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2016, 1861(8)(8 Pt B), 924-927.
[http://dx.doi.org/10.1016/j.bbalip.2015.12.003] [PMID: 26686281]
[94]
Guschina, I.A.; Harris, K.M.; Maskrey, B.; Goldberg, B.; Lloyd, D.; Harwood, J.L. The microaerophilic flagellate, Trichomonas vaginalis, contains unusual acyl lipids but no detectable cardiolipin. J. Eukaryot. Microbiol., 2009, 56(1), 52-57.
[http://dx.doi.org/10.1111/j.1550-7408.2008.00365.x] [PMID: 19335774]
[95]
González-Salazar, F.; Garza-González, J.N.; Hernandez-Luna, C.E.; Mata-Cárdenas, B.D.; Carranza-Rosales, P.; Castro-Garza, J.E.; Hernández-García, M.E.; Vargas-Villarreal, J. Sphingomyelinase activity of Trichomonas vaginalis extract and subfractions. BioMed Res. Int., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/679365] [PMID: 24024206]
[96]
Di Paolo, G.; De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature, 2006, 443(7112), 651-657.
[http://dx.doi.org/10.1038/nature05185] [PMID: 17035995]
[97]
Allen-Baume, V.; Ségui, B.; Cockcroft, S. Current thoughts on the phosphatidylinositol transfer protein family. FEBS Lett., 2002, 531(1), 74-80.
[http://dx.doi.org/10.1016/S0014-5793(02)03412-9]
[98]
Phillips, S.E.; Vincent, P.; Rizzieri, K.E.; Schaaf, G.; Bankaitis, V.A.; Gaucher, E.A. The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes. Crit. Rev. Biochem. Mol. Biol., 2006, 41(1), 21-49.
[http://dx.doi.org/10.1080/10409230500519573] [PMID: 16455519]
[99]
Štáfková, J.; Rada, P.; Meloni, D.; Žárský, V.; Smutná, T.; Zimmann, N.; Harant, K.; Pompach, P.; Hrdý, I.; Tachezy, J. Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases. Mol. Cell. Proteomics, 2018, 17(2), 304-320.
[http://dx.doi.org/10.1074/mcp.RA117.000434] [PMID: 29233912]
[100]
Rada, P.; Kellerová, P.; Verner, Z.; Tachezy, J. Investigation of the secretory pathway in Trichomonas vaginalis argues against a moonlighting function of hydrogenosomal enzymes. J. Eukaryot. Microbiol., 2019, 66(6), 899-910.
[http://dx.doi.org/10.1111/jeu.12741] [PMID: 31077495]
[101]
Johansson, M.; Rocha, N.; Zwart, W.; Jordens, I.; Janssen, L.; Kuijl, C.; Olkkonen, V.M.; Neefjes, J. Activation of endosomal dynein motors by stepwise assembly of Rab7– RILP–p150Glued, ORP1L, and the receptor βlll spectrin. J. Cell Boil., 2007, 176(4), 459-471.
[102]
Cremona, O.; De Camilli, P. Phosphoinositides in membrane traffic at the synapse. J. Cell Sci., 2001, 114(6), 1041-1052.
[http://dx.doi.org/10.1242/jcs.114.6.1041] [PMID: 11228149]
[103]
Keinan, O.; Kedan, A.; Gavert, N.; Selitrennik, M.; Kim, S.; Karn, T.; Becker, S.; Lev, S. The lipid-transfer protein Nir2 enhances epithelial-mesenchymal transition and facilitates breast cancer metastasis. J. Cell Sci. 2014, 127(Pt 21)
[http://dx.doi.org/10.1242/jcs.155721] [PMID: 25179602]
[104]
Nile, A.H.; Tripathi, A.; Yuan, P.; Mousley, C.J.; Suresh, S.; Wallace, I.M.; Shah, S.D.; Pohlhaus, D.T.; Temple, B.; Nislow, C.; Giaever, G.; Tropsha, A.; Davis, R.W.; St Onge, R.P.; Bankaitis, V.A. PITPs as targets for selectively interfering with phosphoinositide signaling in cells. Nat. Chem. Biol., 2014, 10(1), 76-84.
[http://dx.doi.org/10.1038/nchembio.1389] [PMID: 24292071]
[105]
Khan, D.; McGrath, K.R.; Dorosheva, O.; Bankaitis, V.A.; Tripathi, A. Structural elements that govern Sec14-like PITP sensitivities to potent small molecule inhibitors. J. Lipid Res., 2016, 57(4), 650-662.
[http://dx.doi.org/10.1194/jlr.M066381] [PMID: 26921357]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy