Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Cross-Sectional Study

Evaluation of Gold Nanoparticles on the Expression of NorA and NorB Efflux Pumps in Ciprofloxacin-resistant Staphylococcus aureus Isolated from Burn Patients

Author(s): Mohammad Hossein Soleimani, Pegah Shakib, Ali Javadi and Mohammad Reza Zolfaghari*

Volume 18, Issue 2, 2023

Published on: 09 January, 2023

Page: [175 - 182] Pages: 8

DOI: 10.2174/1574885518666221214113003

Price: $65

Abstract

Background: In the development of multidrug resistance, efflux pumps effectively pump drug compounds out of cells, which results in reduced membrane permeability to drug compounds. This study evaluated the effect of gold nanoparticles on the inhibition of norA and norB efflux pumps in ciprofloxacin-resistant Staphylococcus aureus isolated from burn patients in Qom province, Iran.

Methods: In this cross-sectional study, S. aureus strains were isolated from burn patients in Qom hospital, Iran. After gold nanoparticles were synthesized using chemical reduction and characterized by spectrophotometry, transmission electron microscopy (TEM), and dynamic light scattering (DLS), ciprofloxacin resistance of S. aureus was screened by the disc diffusion method. The Minimum Inhibitory Concentration (MIC) of ciprofloxacin (CCCP), ciprofloxacin + gold nanoparticles (CCCP + gold nanoparticles), and ciprofloxacin + CCCP was determined. Moreover, norA and norB genes were evaluated by PCR using special primers. Real-time PCR was then performed for norA and norB genes.

Results: Of 88 S. aureus strains tested, 50 (56.81%) were resistant to ciprofloxacin. From the 50 ciprofloxacin-resistant S. aureus strains, 12 isolates had active pumps. Real-time PCR of 12 ciprofloxacin- resistant S. aureus and S. aureus ATCC 25923 before and after exposure to ciprofloxacin, gold nanoparticles, and gold nanoparticles with sub-MIC ciprofloxacin revealed significant differences in expression of norA and norB genes before exposure to the treatments compared to after exposure (p <0.05).

Conclusion: Gold nanoparticles with ciprofloxacin could be used to prevent the expression of pump genes involved in resistance to fluoroquinolone compounds.

Keywords: Staphylococcus aureus, ciprofloxacin, efflux pump, gold nanoparticles, multidrug resistance, minimum inhibitory concentration (MIC).

Graphical Abstract
[1]
Bien J, Sokolova O, Bozko P. Characterization of virulence factors of Staphylococcus aureus: Novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. J Pathog 2011; 2011: 601905.
[http://dx.doi.org/10.4061/2011/601905]
[2]
Bozdogan B, Esel D, Whitener C, Browne FA, Appelbaum PC. Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hershey Medical Center. J Antimicrob Chemother 2003; 52(5): 864.
[http://dx.doi.org/10.1093/jac/dkg457]
[3]
Acar JF, Goldstein FW. Trends in bacterial resistance to fluoroquinolones. Clin Infect Dis 1997; 24(S1): S67-73.
[http://dx.doi.org/10.1093/clinids/24.Supplement_1.S67] [PMID: 8994781]
[4]
Marangon FB, Miller D, Muallem MS, Romano AC, Alfonso EC. Ciprofloxacin and levofloxacin resistance among methicillinsensitive Staphylococcus aureus isolates from keratitis and conjunctivitis. Ame J Ophthalmol 2004; 137(3): 453-8.
[http://dx.doi.org/10.1016/j.ajo.2003.10.026]
[5]
Hassanzadeh S,. ganjloo S, Pourmand MR, Mashhadi R, Ghazvini K. Epidemiology of efflux pumps genes mediating resistance among Staphylococcus aureus; A systematic review. Microb Pathog 2020; 139: 103850.
[http://dx.doi.org/10.1016/j.micpath.2019.103850] [PMID: 31706002]
[6]
Hassanzadeh S, Mashhadi R, Yousefi M, Askari E, Saniei M, Pourmand MR. Frequency of efflux pump genes mediating ciprofloxacin and antiseptic resistance in methicillin-resistant Staphylococcus aureus isolates. Microb Pathog 2017; 111: 71-4.
[http://dx.doi.org/10.1016/j.micpath.2017.08.026] [PMID: 28826767]
[7]
Nikaido H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 1994; 264(5157): 382-8.
[http://dx.doi.org/10.1126/science.8153625] [PMID: 8153625]
[8]
De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 2020; 33(3): e00181-19.
[http://dx.doi.org/10.1128/CMR.00181-19] [PMID: 32404435]
[9]
Laxminarayan R, Van Boeckel T, Frost I, et al. The lancet infectious diseases commission on antimicrobial resistance: 6 years later. Lancet Infect Dis 2020; 20(4): e51-60.
[http://dx.doi.org/10.1016/S1473-3099(20)30003-7] [PMID: 32059790]
[10]
Zhang D, Chen L, Zang C, Chen Y, Lin H. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydr Polym 2013; 92(2): 2088-94.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.100] [PMID: 23399262]
[11]
Chavan C, Kamble S, Murthy AVR, Kale SN. Ampicillinmediated functionalized gold nanoparticles against ampicillinresistant bacteria: Strategy, preparation and interaction studies. Nanotechnology 2020; 31(21): 215604.
[http://dx.doi.org/10.1088/1361-6528/ab72b4] [PMID: 32018229]
[12]
Ali S, Perveen S, Shah MR, et al. Bactericidal potentials of silver and gold nanoparticles stabilized with cefixime: A strategy against antibiotic-resistant bacteria. J Nanopart Res 2020; 22(7): 201.
[http://dx.doi.org/10.1007/s11051-020-04939-y]
[13]
Wang L, Yang J, Yang X, et al. Mercaptophenylboronic acidactivated gold nanoparticles as nanoantibiotics against multidrugresistant bacteria. ACS Appl Mater Interfaces 2020; 12(46): 51148-59.
[http://dx.doi.org/10.1021/acsami.0c12597] [PMID: 33155812]
[14]
Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 2006; 110(32): 15700-7.
[http://dx.doi.org/10.1021/jp061667w] [PMID: 16898714]
[15]
Humphries RM, Ambler J, Mitchell SL, et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol 2018; 56(4): e01934-17.
[http://dx.doi.org/10.1128/JCM.01934-17] [PMID: 29367292]
[16]
Martins A, Cunha ML, Cunha M. Methicillin resistance in Staphylococcus aureus and coagulase-negative Staphylococci: Epidemiological and molecular aspects. Microbiol Immunol 2007; 51(9): 787-95.
[http://dx.doi.org/10.1111/j.1348-0421.2007.tb03968.x] [PMID: 17895595]
[17]
Chikkala R, George NO, Ratnakar KS, Iyer RN, Sritharan V. Heterogeneity in femA in the Indian isolates of Staphylococcus aureus limits its usefulness as a species specific marker. Adv Infect Dis 2012; 2(03): 82.
[http://dx.doi.org/10.4236/aid.2012.23013]
[18]
Carvalho MJ, Pimenta FC, Hayashida M, et al. Prevalence of methicillin-resistant and methicillin-susceptible S. aureus in the saliva of health professionals. Clinics 2009; 64(4): 295-302.
[19]
Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis 2012; 2012: 1-37.
[http://dx.doi.org/10.1155/2012/976273] [PMID: 23097666]
[20]
Aligholi M, Emaneini M, Hashemi FB, Shasavan S, Jebelameli F. Determination of antimicrobial resistance pattern of Staphylococcus aureus isolated from clinical specimens. Tehran Univ Med J 2006; 64(9): 26-32.
[21]
Christena LR, Mangalagowri V, Pradheeba P, et al. Copper nanoparticles as an efflux pump inhibitor to tackle drug resistant bacteria. RSC Advances 2015; 5(17): 12899-909.
[http://dx.doi.org/10.1039/C4RA15382K]
[22]
Madhi M, Hasani A, Shahbazi Mojarrad J, et al. Impact of chitosan and silver nanoparticles laden with antibiotics on multidrugresistant Pseudomonas aeruginosa and Acinetobacter baumannii. Arch Clin Infect Dis 2020; 15(4): e100195.
[http://dx.doi.org/10.5812/archcid.100195]
[23]
Khare T, Mahalunkar S, Shriram V, Gosavi S, Kumar V. Embelinloaded chitosan gold nanoparticles interact synergistically with ciprofloxacin by inhibiting efflux pumps in multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. Environ Res 2021; 199: 111321.
[http://dx.doi.org/10.1016/j.envres.2021.111321] [PMID: 33989619]
[24]
Arya SS, Sharma MM, Das RK, Rookes J, Cahill D, Lenka SK. Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon 2019; 5(7): e02021.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02021] [PMID: 31312733]
[25]
Khosravi M, Mirzaie A, Kashtali AB, Noorbazargan H. Antibacterial, anti-efflux, anti-biofilm, anti-slime (exopolysaccharide) production and urease inhibitory efficacies of novel synthesized gold nanoparticles coated Anthemis atropatana extract against multidrug- resistant Klebsiella pneumoniae strains. Arch Microbiol 2020; 202(8): 2105-15.
[http://dx.doi.org/10.1007/s00203-020-01930-y] [PMID: 32500253]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy