Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Proteomics of the Skin Secretion of Pulchrana glandulosa (Anura: Ranidae) (Boulenger, 1882), Langkawi Island, Kedah, Peninsular Malaysia

Author(s): Dasi Ong, Mohd Nazri Ismail and Shahriza Shahrudin*

Volume 20, Issue 1, 2023

Published on: 26 December, 2022

Page: [3 - 11] Pages: 9

DOI: 10.2174/1570164620666221209121936

Price: $65

Abstract

Background: The advancement of proteomics studies leads to various benefits in research. However, in Malaysia, proteomics studies are still in their early stage.

Objective: Four adult Pulchrana glandulosa individuals were collected from the stream of Temurun Waterfall for their proteomics information.

Methods: These frogs’ skin secretions were collected, extracted, and analysed for their protein antimicrobial peptide compounds and biomedical potentials using liquid chromatography-mass spectrometry.

Results: Forty-six proteins had been identified from the skin secretion of this species. They contained unreviewed proteins, enzymes, AMPs, receptors, regulatory, transport, hormone, and developmental proteins. In addition, 11 AMP had been identified, consisting of esculentin-2, brevinin 1, and other AMPs.

Conclusion: These proteins and AMPs have a wide range of biomedical importance, such as antimicrobials, anti-tumour, anti-cancerous, anti-viral, wound healing, anti-inflammation, anti-ageing and maintaining homeostasis.

Keywords: Bioinformatics, biomedical function, Frog, LC-MS/MS, protein composition, skin mucous.

Graphical Abstract
[1]
Inger, R.F.; Stuebing, R.B. A Field Guide to the Frogs of Borneo. Natural History Publications. Natural History Publications; Borneo: Sabah,, 2017.
[2]
Frost, D. Amphibia species of the world 6.1, an online reference. Available from: http://research.amnh.org/herpetology/amphibia/ index
[3]
Ong, D.; Shahrudin, S.; Ismail, M.N. Review on antimicrobial peptides from Malaysian amphibian resources: status, research approaches and ways forward. Turk. J. Zool., 2021, 45(2), 79-90.
[http://dx.doi.org/10.3906/zoo-2011-8]
[4]
Conlon, J.M.; Kolodziejek, J.; Nowotny, N.; Leprince, J.; Vaudry, H.; Coquet, L.; Jouenne, T.; King, J.D. Characterization of antimicrobial peptides from the skin secretions of the Malaysian frogs, Odorrana hosii and Hylarana picturata (Anura:Ranidae). Toxicon, 2008, 52(3), 465-473.
[http://dx.doi.org/10.1016/j.toxicon.2008.06.017] [PMID: 18621071]
[5]
Sabri, M. Antimicrobial activity of partially purified peptides isolated from the skin secretions of Bornean frogs in the family of Ranidae. Malays. Appl. Biol., 2018, 47(6), 145-152.
[6]
Jenggut, E.J. Characterisation of Antimicrobial Peptides from the Skin Secretions of Bornean Frogs belonging to the Family of Ranidae; Universiti Malaysia Sarawak: Malaysia, 2019.
[7]
Shahrudin, S.; Ismail, M.; Kwan, S.; Najimudin, N. Ecology and protein composition of Polypedates leucomystax (Gravenhorst, 1829)(Anura: Rhacophoridae) foam nests from Peninsular Malaysia. Annu. Res. Rev. Biol., 2017, 14(6), 1-10.
[http://dx.doi.org/10.9734/ARRB/2017/34211]
[8]
Kwan, S.H.; Baie, S.; Mohammed, N.; Ismail, M.N. Proteomic profiling of freeze-and spray-dried water extracts of snakehead fish (Channa striatus): In search of biomolecules for wound healing properties. South As. J. Life Sci., 2015, 3(1), 22-41.
[http://dx.doi.org/10.14737/journal.sajls/2015/3.1.22.41]
[9]
Kwan, S.H.; Ismail, M.N. Identification of the potential bio-active proteins associated with wound healing properties in snakehead fish (Channa striata) mucus. Curr. Proteomics, 2018, 15(4), 299-312.
[http://dx.doi.org/10.2174/1570164615666180717143418]
[10]
Kinter, M.; Sherman, N.E. Protein sequencing and identification using tandem mass spectrometry; John Wiley & Sons: Hoboken, 2005.
[11]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[12]
Pirtskhalava, M.; Gabrielian, A.; Cruz, P.; Griggs, H.L.; Squires, R.B.; Hurt, D.E.; Grigolava, M.; Chubinidze, M.; Gogoladze, G.; Vishnepolsky, B.; Alekseev, V.; Rosenthal, A.; Tartakovsky, M. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res., 2016, 44(D1), D1104-D1112.
[http://dx.doi.org/10.1093/nar/gkv1174] [PMID: 26578581]
[13]
Wang, A.; Wang, J.; Hong, J.; Feng, H.; Yang, H.; Yu, X.; Ma, Y.; Lai, R. A novel family of antimicrobial peptides from the skin of Amolops loloensis. Biochimie, 2008, 90(6), 863-867.
[http://dx.doi.org/10.1016/j.biochi.2008.02.003] [PMID: 18312859]
[14]
Conlon, J.M.; Sonnevend, A. Clinical applications of amphibian antimicrobial peptides. J. Med. Sci., 2011, 4(2), 62-72.
[15]
Stucki, D.; Freitak, D.; Sundström, L. Survival and gene expression under different temperature and humidity regimes in ants. PLoS One, 2017, 12(7)e0181137
[http://dx.doi.org/10.1371/journal.pone.0181137] [PMID: 28759608]
[16]
Navas, C.A.; Otani, L. Physiology, environmental change, and anuran conservation. Phyllomedusa, 2007, 6(2), 83-103.
[http://dx.doi.org/10.11606/issn.2316-9079.v6i2p83-103]
[17]
Rollins-Smith, L.A.; Reinert, L.K.; O’Leary, C.J.; Houston, L.E.; Woodhams, D.C. Antimicrobial Peptide defenses in amphibian skin. Integr. Comp. Biol., 2005, 45(1), 137-142.
[http://dx.doi.org/10.1093/icb/45.1.137] [PMID: 21676754]
[18]
Varga, J.F.A.; Bui-Marinos, M.P.; Katzenback, B.A. Frog skin innate immune defences: Sensing and surviving pathogens. Front. Immunol., 2019, 9, 3128.
[http://dx.doi.org/10.3389/fimmu.2018.03128] [PMID: 30692997]
[19]
Afzal, M.; Sielaff, M.; Curella, V.; Neerukonda, M.; El Hassouni, K.; Schuppan, D.; Tenzer, S.; Longin, C.F.H. Characterisation of 150 wheat cultivars by LC-MS-based label-free quantitative proteomics unravels possibilities to design wheat better for baking quality and human health. Plants, 2021, 10(3), 424.
[http://dx.doi.org/10.3390/plants10030424] [PMID: 33668233]
[20]
Caty, S.N.; Alvarez-Buylla, A.; Byrd, G.D.; Vidoudez, C.; Roland, A.B.; Tapia, E.E.; Budnik, B.; Trauger, S.A.; Coloma, L.A.; O’Connell, L.A. Molecular physiology of chemical defenses in a poison frog. J. Exp. Biol., 2019, 222(Pt 12), jeb.204149.
[http://dx.doi.org/10.1242/jeb.204149] [PMID: 31138640]
[21]
Matutte, B.; Storey, K.B.; Knoop, F.C.; Conlon, J.M. Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica, in response to environmental stimuli. FEBS Lett., 2000, 483(2-3), 135-138.
[http://dx.doi.org/10.1016/S0014-5793(00)02102-5] [PMID: 11042268]
[22]
Mangoni, M.L.; Miele, R.; Renda, T.G.; Barra, D.; Simmaco, M. The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms. FASEB J., 2001, 15(8), 1431-1432.
[http://dx.doi.org/10.1096/fj.00-0695fje] [PMID: 11387247]
[23]
Douglas, A.J.; Hug, L.A.; Katzenback, B.A. Composition of the North American wood frog (Rana sylvatica) bacterial skin microbiome and seasonal variation in community structure. Microb. Ecol., 2021, 81(1), 78-92.
[http://dx.doi.org/10.1007/s00248-020-01550-5] [PMID: 32613267]
[24]
Conlon, J.M.; Leprince, J. Identification and analysis of bioactive peptides in amphibian skin secretions.In: Peptidomics; Humana Press: New Jersey, 2010, pp. 145-157.
[http://dx.doi.org/10.1007/978-1-60761-535-4_12]
[25]
Conlon, J.M.; Mechkarska, M.; Leprince, J. Peptidomic analysis in the discovery of therapeutically valuable peptides in amphibian skin secretions. Expert Rev. Proteomics, 2019, 16(11-12), 897-908.
[http://dx.doi.org/10.1080/14789450.2019.1693894] [PMID: 31729236]
[26]
Koole, K.; Brunen, D.; van Kempen, P.M.W.; Noorlag, R.; de Bree, R.; Lieftink, C.; van Es, R.J.J.; Bernards, R.; Willems, S.M. FGFR1 is a potential prognostic biomarker and therapeutic target in head and neck squamous cell carcinoma. Clin. Cancer Res., 2016, 22(15), 3884-3893.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1874] [PMID: 26936917]
[27]
Fisher, M.M. SenthilKumar, G; Hu, R; Goldstein, S; Ong, IM; Miller, MC; Brennan, SR; Kaushik, S; Abel, L; Nickel, KP; Iyer, G Fibroblast growth factor receptors as targets for radiosensitisation in head and neck squamous cell carcinomas. Int. J. Radia. Oncol., 2020, 107(4), 793-803.
[28]
SenthilKumar. G.; Fisher, M.M.; Skiba, J.H.; Miller, M.C.; Brennan, S.R.; Kaushik, S.; Bradley, S.T.; Longhurst, C.A.; Buehler, D.; Nickel, K.P.; Iyer, G.; Kimple, R.J.; Baschnagel, A.M. FGFR inhibition enhances sensitivity to radiation in non–small cell lung cancer. Mol. Cancer Ther., 2020, 19(6), 1255-1265.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0931] [PMID: 32371583]
[29]
Komi-Kuramochi, A.; Kawano, M.; Oda, Y.; Asada, M.; Suzuki, M.; Oki, J.; Imamura, T. Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice. J. Endocrinol., 2005, 186(2), 273-289.
[http://dx.doi.org/10.1677/joe.1.06055] [PMID: 16079254]
[30]
Nunes, Q.M.; Li, Y.; Sun, C.; Kinnunen, T.K.; Fernig, D.G. Fibroblast growth factors as tissue repair and regeneration therapeutics. PeerJ, 2016, 4e1535
[http://dx.doi.org/10.7717/peerj.1535] [PMID: 26793421]
[31]
de Araújo, R.; Lôbo, M.; Trindade, K.; Silva, D.F.; Pereira, N. Fibroblast growth factors: A controlling mechanism of skin aging. Skin Pharmacol. Physiol., 2019, 32(5), 275-282.
[http://dx.doi.org/10.1159/000501145] [PMID: 31352445]
[32]
Koike, Y.; Yozaki, M.; Utani, A.; Murota, H. Fibroblast growth factor 2 accelerates the epithelial–mesenchymal transition in keratinocytes during wound healing process. Sci. Rep., 2020, 10(1), 18545.
[http://dx.doi.org/10.1038/s41598-020-75584-7] [PMID: 33122782]
[33]
Wang, Y.; Rathinam, R.; Walch, A.; Alahari, S.K. ST14 (suppression of tumorigenicity 14) gene is a target for miR-27b, and the inhibitory effect of ST14 on cell growth is independent of miR-27b regulation. J. Biol. Chem., 2009, 284(34), 23094-23106.
[http://dx.doi.org/10.1074/jbc.M109.012617] [PMID: 19546220]
[34]
Kosa, P.; Szabo, R.; Molinolo, A.A.; Bugge, T.H. Suppression of Tumorigenicity-14, encoding matriptase, is a critical suppressor of colitis and colitis-associated colon carcinogenesis. Oncogene, 2012, 31(32), 3679-3695.
[http://dx.doi.org/10.1038/onc.2011.545] [PMID: 22139080]
[35]
Cotterill, S.J. ST14. Cancer genetics. Available from: ics.org/ST14.htm
[36]
Holte, H.R.; Bjørnstad-Østensen, A.; Berg, T. The role of endogenous bradykinin in blood pressure homeostasis in spontaneously hypertensive rats. Br. J. Pharmacol., 1996, 118(8), 1925-1930.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15626.x] [PMID: 8864525]
[37]
Stewart, J.M.; Gera, L.; Chan, D.C.; Bunn, P.A., Jr; York, E.J.; Simkeviciene, V.; Helfrich, B. Bradykinin-related compounds as new drugs for cancer and inflammation. Can. J. Physiol. Pharmacol., 2002, 80(4), 275-280.
[http://dx.doi.org/10.1139/y02-030] [PMID: 12025961]
[38]
Stewart, J. Bradykinin antagonists as anti-cancer agents. Curr. Pharm. Des., 2003, 9(25), 2036-2042.
[http://dx.doi.org/10.2174/1381612033454171] [PMID: 14529414]
[39]
Wang, G.; Sun, J.; Liu, G.; Fu, Y.; Zhang, X. Bradykinin promotes cell proliferation, migration, invasion, and tumor growth of gastric cancer through ERK signaling pathway. J. Cell. Biochem., 2017, 118(12), 4444-4453.
[http://dx.doi.org/10.1002/jcb.26100] [PMID: 28464378]
[40]
Capsoni, S.; Cattaneo, A. On the molecular basis linking Nerve Growth Factor (NGF) to Alzheimer’s disease. Cell. Mol. Neurobiol., 2006, 26(4-6), 617-631.
[http://dx.doi.org/10.1007/s10571-006-9112-2] [PMID: 16944323]
[41]
Xu, C.J.; Wang, J.L.; Jin, W.L. The emerging therapeutic role of NGF in Alzheimer’s disease. Neurochem. Res., 2016, 41(6), 1211-1218.
[http://dx.doi.org/10.1007/s11064-016-1829-9] [PMID: 26801170]
[42]
Zohrab, F.; Askarian, S.; Jalili, A.; Kazemi Oskuee, R. Biological properties, current applications and potential therapeautic applications of brevinin peptide superfamily. Int. J. Pept. Res. Ther., 2019, 25(1), 39-48.
[http://dx.doi.org/10.1007/s10989-018-9723-8] [PMID: 32214928]
[43]
Goraya, J.; Wang, Y.; Li, Z.; O’Flaherty, M.; Knoop, F.C.; Platz, J.E.; Conlon, J.M. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur. J. Biochem., 2000, 267(3), 894-900.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01074.x] [PMID: 10651828]
[44]
Rollins-Smith, L.A.; Doersam, J.K.; Longcore, J.E.; Taylor, S.K.; Shamblin, J.C.; Carey, C.; Zasloff, M.A. Antimicrobial peptide defenses against pathogens associated with global amphibian declines. Dev. Comp. Immunol., 2002, 26(1), 63-72.
[http://dx.doi.org/10.1016/S0145-305X(01)00041-6] [PMID: 11687264]
[45]
Musale, V.; Casciaro, B.; Mangoni, M.L.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; Conlon, J.M. Assessment of the potential of temporin peptides from the frog Rana temporaria (Ranidae) as anti-diabetic agents. J. Pept. Sci., 2018, 24(2)e3065
[http://dx.doi.org/10.1002/psc.3065] [PMID: 29349894]
[46]
Chadbourne, F.L.; Raleigh, C.; Ali, H.Z.; Denny, P.W.; Cobb, S.L. Studies on the antileishmanial properties of the antimicrobial peptides temporin A, B and 1Sa. J. Pept. Sci., 2011, 17(11), 751-755.
[http://dx.doi.org/10.1002/psc.1398] [PMID: 21805542]
[47]
Selvamani, P.; Latha, S.; Bibiana, M.A.; Vinothkumar, G. Docking of short chain peptides temporins with Ebola virus target 4ibk. Bioinformatics, 2016, 12, 14.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy