Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Continuous Flow Chemistry and its Application in the Extraction of Natural Compounds

Author(s): Giovanna Gabriely Araujo Silva and Paula Larangeira Garcia Martins*

Volume 26, Issue 17, 2022

Published on: 21 December, 2022

Page: [1653 - 1660] Pages: 8

DOI: 10.2174/1385272827666221209095536

Price: $65

Abstract

Continuous flow chemistry refers to the delicate chemical production processes, without interruptions and with the best possible use. It is a practice identified as an opportune for the incorporation of the principles of Green Chemistry into economically favorable industrial processes. The purpose of this work is to verify the efficiency advantage and lower the wastage of time and materials that continuous flow extraction can bring to industries, compared to the conventional methods, such as the batch method, for bioactive compound extraction. Herein, a systematic literature review of the available research was made, and the data were collected from articles in different languages (in Portuguese, Spanish, and English), dissertations, and theses, including the Web of Science database. By collecting, analyzing, and comparing publications in which tests using different methodologies for extracting compounds were conducted, we obtained results with the acquisition of extensive information about reactors and machinery that make extraction through continuous flow chemistry viable on a laboratory scale. We observed the expansion of the exothermic synthetic step options that are not possible in batch reactors. Continuous flow chemistry proves to be very advantageous compared to other conventional methods owing to several factors, such as environmental and economical, especially because it facilitates the reuse of waste materials in industrial processes. It not only allows a relatively fast and efficient extraction but also proves to be less aggressive to the environment.

Keywords: Biocompounds, green chemistry, extraction, industrial processes, continuous flow, conventional methods.

« Previous
Graphical Abstract
[1]
Roschangar, F.; Sheldon, R.A.; Senanayake, C.H. Overcoming barriers to green chemistry in the pharmaceutical industry – the Green Aspiration Level™ concept. Green Chem., 2015, 17(2), 752-768.
[http://dx.doi.org/10.1039/C4GC01563K]
[2]
Martins, P.L.G.; de Rosso, V.V. Thermal and light stabilities and antioxidant activity of carotenoids from tomatoes extracted using an ultrasound-assisted completely solvent-free method. Food Res. Int., 2016, 82, 156-164.
[http://dx.doi.org/10.1016/j.foodres.2016.01.015]
[3]
Collom, S.L.; Anastas, P.T.; Beach, E.S.; Crabtree, R.H.; Hazari, N.; Sommer, T.J. Differing selectivities in mechanochemical versus conventional solution oxidation using Oxone. Tetrahedron Lett., 2013, 54(19), 2344-2347.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.056]
[4]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[5]
Spizzirri, U.G.; Parisi, O.I.; Iemma, F.; Cirillo, G.; Puoci, F.; Curcio, M.; Picci, N. Antioxidant–polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydr. Polym., 2010, 79(2), 333-340.
[http://dx.doi.org/10.1016/j.carbpol.2009.08.010]
[6]
Shahid, M. Shahid-ul-Islam; Mohammad, F. Recent advancements in natural dye applications: A review. J. Clean. Prod., 2013, 53, 310-331.
[http://dx.doi.org/10.1016/j.jclepro.2013.03.031]
[7]
Schettini, E.; Santagata, G.; Malinconico, M.; Immirzi, B.; Scarascia Mugnozza, G.; Vox, G. Recycled wastes of tomato and hemp fibres for biodegradable pots: Physico-chemical characterization and field performance. Resour. Conserv. Recycling, 2013, 70, 9-19.
[http://dx.doi.org/10.1016/j.resconrec.2012.11.002]
[8]
Martins, P.L.G.; Braga, A.R.; de Rosso, V.V. Can ionic liquid solvents be applied in the food industry? Trends Food Sci. Technol., 2017, 66, 117-124.
[http://dx.doi.org/10.1016/j.tifs.2017.06.002]
[9]
Baumann, M.; Baxendale, I.R. A continuous flow synthesis and derivatization of 1,2,4-thiadiazoles. Bioorg. Med. Chem., 2017, 25(23), 6218-6223.
[http://dx.doi.org/10.1016/j.bmc.2017.01.022] [PMID: 28161250]
[10]
Corrêa, A.G.; Zuin, V.G.; Ferreira, V.F.; Vazquez, P.G. Green chemistry in Brazil. Pure Appl. Chem., 2013, 85(8), 1643-1653.
[http://dx.doi.org/10.1351/PAC-CON-12-11-16]
[11]
Ahmed, I.; Qazi, I.M.; Jamal, S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov. Food Sci. Emerg. Technol., 2016, 34, 29-43.
[http://dx.doi.org/10.1016/j.ifset.2016.01.003]
[12]
de Souza, P.M.; Müller, A.; Beniaich, A.; Mayer-Miebach, E.; Oehlke, K.; Stahl, M.; Greiner, R.; Fernández, A. Functional properties and nutritional composition of liquid egg products treated in a coiled tube UV-C reactor. Innov. Food Sci. Emerg. Technol., 2015, 32, 156-164.
[http://dx.doi.org/10.1016/j.ifset.2015.09.004]
[13]
Kahveci, D.; Laguerre, M.; Villeneuve, P. 7 - Phenolipids as new antioxidants: production, activity, and potential applications.Polar Lipids; Elsevier, 2015, pp. 185-214.
[http://dx.doi.org/10.1016/B978-1-63067-044-3.50011-X]
[14]
Murador, D.C.; Braga, A.R.C.; Martins, P.L.G.; Mercadante, A.Z.; de Rosso, V.V. Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food Res. Int., 2019, 126, 108653.
[http://dx.doi.org/10.1016/j.foodres.2019.108653] [PMID: 31732025]
[15]
Silva, N.A.; Rodrigues, E.; Mercadante, A.Z.; de Rosso, V.V. Phenolic compounds and carotenoids from four fruits native from the Brazilian Atlantic Forest. J. Agric. Food Chem., 2014, 62(22), 5072-5084.
[http://dx.doi.org/10.1021/jf501211p] [PMID: 24780053]
[16]
Murador, D.C.; Mercadante, A.Z.; de Rosso, V.V. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage. Food Chem., 2016, 196, 1101-1107.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.037] [PMID: 26593594]
[17]
De Rosso, M.; Tonidandel, L.; Larcher, R.; Nicolini, G.; Dalla Vedova, A.; De Marchi, F.; Gardiman, M.; Giust, M.; Flamini, R. Identification of new flavonols in hybrid grapes by combined liquid chromatography–mass spectrometry approaches. Food Chem., 2014, 163, 244-251.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.110] [PMID: 24912722]
[18]
Böhm, V. Use of column temperature to optimize carotenoid isomer separation by C30 high performance liquid chromatography. J. Sep. Sci., 2001, 24(12), 955-959.
[http://dx.doi.org/10.1002/1615-9314(20011201)24:12<955:AID-JSSC955>3.0.CO;2-B]
[19]
Wang, C.Y.; Chen, B.H. Tomato pulp as source for the production of lycopene powder containing high proportion of cis-isomers. Eur. Food Res. Technol., 2006, 222(3-4), 347-353.
[http://dx.doi.org/10.1007/s00217-005-0058-2]
[20]
Nellis, S.C.; Correia, A.F.K.; Spoto, M.H.F. Extraction and quantification of carotenoids in dehydrated mini tomato (Sweet Grape) through the application of different solvents. Braz. J. Food. Technol., 2017, 20(0), 20.
[http://dx.doi.org/10.1590/1981-6723.15616]
[21]
Low, L.E.; Siva, S.P.; Ho, Y.K.; Chan, E.S.; Tey, B.T. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Adv. Colloid Interface Sci., 2020, 277, 102117.
[http://dx.doi.org/10.1016/j.cis.2020.102117] [PMID: 32035999]
[22]
Kowalska, M.; Żbikowska, A. Application of a laser diffraction method for determination of stability of dispersion systems in food and chemical industry. J. Dispers. Sci. Technol., 2013, 34(10), 1447-1453.
[http://dx.doi.org/10.1080/01932691.2012.739953]
[23]
Rodríguez-López, M.I.; Mercader-Ros, M.T.; López-Miranda, S.; Pellicer, J.A.; Pérez-Garrido, A.; Pérez-Sánchez, H.; Núñez-Delicado, E.; Gabaldón, J.A. Thorough characterization and stability of HP-β-cyclodextrin thymol inclusion complexes prepared by microwave technology: A required approach to a successful application in food industry. J. Sci. Food Agric., 2019, 99(3), 1322-1333.
[http://dx.doi.org/10.1002/jsfa.9307] [PMID: 30094851]
[24]
Murador, D.C.; de Souza Mesquita, L.M.; Vannuchi, N.; Braga, A.R.C.; de Rosso, V.V. Bioavailability and biological effects of bioactive compounds extracted with natural deep eutectic solvents and ionic liquids: advantages over conventional organic solvents. Curr. Opin. Food Sci., 2019, 26, 25-34.
[http://dx.doi.org/10.1016/j.cofs.2019.03.002]
[25]
Baxendale, I.R.; Hornung, C.; Ley, S.V.; Molina, J.M.M.; Wikström, A. Flow microwave technology and microreactors in synthesis. Aust. J. Chem., 2013, 66(2), 131-144.
[http://dx.doi.org/10.1071/CH12365]
[26]
Kock, L. Equipment and Separation Units for Flow Chemistry Applications and Process Development. In: Chemical Engineering & Technology; Wiley Online Library, 2020.
[27]
Rimez, B.; Debuysschère, R.; Conté, J.; Lecomte-Norrant, E.; Gourdon, C.; Cognet, P.; Scheid, B. Continuous-flow tubular crystallization to discriminate between two competing crystal polymorphs. 1. cooling crystallization. Cryst. Growth Des., 2018, 18(11), 6431-6439.
[http://dx.doi.org/10.1021/acs.cgd.8b00928]
[28]
Brzozowski, M.; O’Brien, M.; Ley, S.V.; Polyzos, A. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor. Acc. Chem. Res., 2015, 48(2), 349-362.
[http://dx.doi.org/10.1021/ar500359m] [PMID: 25611216]
[29]
Nagano, T.; Naganawa, H.; Suzuki, H.; Toshimitsu, M.; Mitamura, H.; Yanase, N.; Grambow, B. Continuous liquid–liquid extraction of uranium from uranium-containing wastewater using an organic phase-refining-type emulsion flow extractor. Anal. Sci., 2018, 34, 1099-1102.
[http://dx.doi.org/10.2116/analsci.18N002]
[30]
Drageset, A.; Bjørsvik, H-R. Continuous flow synthesis concatenated with continuous flow liquid–liquid extraction for work-up and purification: selective mono- and di-iodination of the imidazole backbone. React. Chem. Eng., 2016, 1, 436-444.
[http://dx.doi.org/10.1039/C6RE00091F]
[31]
Li, Y.; Zhang, L.; Wu, L.; Sun, S.; Shan, H.; Wang, Z. Purification and enrichment of polycyclic aromatic hydrocarbons in environmental water samples by column clean-up coupled with continuous flow single drop microextraction. J. Chromatogr. A, 2018, 1567, 81-89.
[http://dx.doi.org/10.1016/j.chroma.2018.07.013]
[32]
Hessel, V.; Tran, N.N. Orandi, Sanaz; Asrami, Mahdieh Razi; Goodsite, Michael; Nguyen, Hung Continuous‐flow extraction of adjacent metals—a disruptive economic window for in situ resource utilization of asteroids? Angew. Chem. Int. Ed. Engl., 2020, 60(7), 3368-3388.
[http://dx.doi.org/10.1002/anie.201912205]
[33]
Gürsel, I.V.; Kurt, S.K.; Aalders, J.; Wang, Q.; Noël, T. Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous flow liquid–liquid extraction processes. Chem. Eng. J., 2016, 283, 855-868.
[http://dx.doi.org/10.1016/j.cej.2015.08.028]
[34]
Wu, L. Dynamic microwave-assisted extraction combined with continuous-flow microextraction for determination of pesticides in vegetables. Food Chem., 2016, 192, 596-602.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.055]
[35]
Mastronardi, F.; Gutmann, B.; Kappe, C.O. Continuous flow generation and reactions of anhydrous diazomethane using a teflon AF-2400 tube-in-tube reactor. Org. Lett., 2013, 1521, 5590-5593.
[http://dx.doi.org/10.1021/ol4027914]
[36]
Zichová, S.; Brisudová, A.; Hrouzková, S. Influence of relevant parameters on the extraction efficiency and the stability of the microdrop in the single drop microextraction. Acta Chim. Slov., 2018, 11(1), 60-67.
[http://dx.doi.org/10.2478/acs-2018-0010]
[37]
Federico, R.R.; Enrique, L.G.; Patricia, V.V.; del Angel, C.; Martha, E.; Nigam, K.; Willson, D.P.; Richard, C.; Marco, R.P. Continuous aqueous two-phase extraction of microalgal C-phycocyanin using a coiled flow inverter. Chem. Eng. Proc. Proc. Intens., 2019, 142, 107554.
[http://dx.doi.org/10.1016/j.cep.2019.107554]
[38]
Ciriminna, R.; Carnaroglio, D.; Delisi, R.; Arvati, S.; Tamburino, A.; Pagliaro, M. Industrial feasibility of natural products extraction with microwave technology. Chem. Select, 2016, 1, 549-555.
[http://dx.doi.org/10.1002/slct.201600075]
[39]
Kumar, R.C.; Mahagundappa, M.B.; Bandaru, D.P.; Krupashankara, M.S.; Kulkarni, R.S.; Siddaligaswamy, H.S. Microwave assisted extraction of oil from Pongamia pinnata seeds. Mater. Today Proc., 2018, 5, 2960-2964.
[http://dx.doi.org/10.1016/j.matpr.2018.01.094]
[40]
Calinescu, I.; Lavric, V.; Asofiei, I.; Gavrila, A.I.; Trifan, A.; Ighigeanu, D.; Martin, D.; Matei, C. Microwave assisted extraction of polyphenols using a coaxial antenna and a cooling system. Chem. Eng. Prog., 2017, 122, 373-379.
[http://dx.doi.org/10.1016/j.cep.2017.02.003]
[41]
Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol., 2011, 5, 409-424.
[http://dx.doi.org/10.1007/s11947-011-0573-z]
[42]
Radoiu, M.; Kaur, H.; Bakowska-Barczak, A.; Splinter, S. Microwave-assisted industrial scale cannabis extraction. Technologies, 2020, 8(3), 45.
[http://dx.doi.org/10.3390/technologies8030045]
[43]
Radoiu, M.; Splinter, S. Continuous industrial-scale microwave-assisted extraction of high-value ingredients from natural biomass. 10.4995/AMPERE, 2019, 2019, 9758
[44]
Lasunon, P.; Sengkhamparn, N. Effect of ultrasound-assisted, microwave-assisted and ultrasound-microwave-assisted extraction on pectin extraction from industrial tomato waste. Molecules, 2022, 27(4), 1157.
[http://dx.doi.org/10.3390/molecules27041157]
[45]
Wu, L.; Li, Z. Continuous-flow microwave-assisted extraction coupled with online single drop microextraction prior to GC-MS for determination of amide herbicides in rice samples. J. Sep. Sci., 2020, 44(4), 870-878.
[http://dx.doi.org/10.1002/jssc.202001092]
[46]
Yifeng, Z.; Hangxi, L.; Feixue, G.; Xiaoli, T.; Yawen, C.; Baowei, H.; Qifei, H.; Ming, F.; Xiangke, W. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. Energy Chem., 2022, 4, 100078.
[http://dx.doi.org/10.1016/j.enchem.2022.100078]
[47]
Liu, X.; Verma, G.; Chen, Z.; Hu, B.; Huang, Q.; Yang, H.; Ma, S.; Wang, X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation (Camb), 2022, 3(5), 100281.
[http://dx.doi.org/10.1016/j.xinn.2022.100281]
[48]
Dhakshinamoorthy, A.; Navalon, S.; Asiri, A. Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chem. Commun., 2019, 56, 26-45.
[http://dx.doi.org/10.1039/C9CC07953J]
[49]
Arrutia, F.; Adam, M.; Calvo-Carrascal, M.Á.; Mao, Y.; Binner, E. Development of a continuous-flow system for microwave-assisted extraction of pectin-derived oligosaccharides from food waste. Chem. Eng. J., 2020, 395, 125056.
[http://dx.doi.org/10.1016/j.cej.2020.125056]
[50]
Oliveira, E. Unit Operations III – Food Engineering/Unipampa; , 2017. Availavle from: https://operacoesunitariaseaunipampa.files.wordpress.com/2013/04/material-lixiviac3a7c3a3o.pdf
[51]
Alvarenga, G.L. Reuse of pressed palm fiber for extraction of oil rich in carotenoids using solvent mixtures. Dissertation (Master in Food Engineering Sciences) - Faculty of Animal Science and Food Engineering: University of São Paulo, Pirassununga, 2018.
[http://dx.doi.org/10.11606/D.74.2018.tde-07082018-101505]
[52]
Radoiu, M.; Kaur, H.; Bakowska-barczak, A.; Splinter, S. Microwave-assisted industrial scale cannabis extraction. Technologies, 2020, 3, 45.
[http://dx.doi.org/10.3390/technologies8030045]
[53]
Vargai, P.; Červeňanský, I.; Mihaľ, M.; Markoł, J. Design of hybrid systems with in-situ product removal from fermentation broth: Case study for 2-phenylethanol production. Chem. Eng. Proces. Process Intens., 2018, 134, 58-71.
[http://dx.doi.org/10.1016/j.cep.2018.10.011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy