Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Nanostructured Transition Metal Sulfide-based Glucose and Lactic Acid Electrochemical Sensors for Clinical Applications

Author(s): Mani Arivazhagan, Palanisamy Kannan and Govindhan Maduraiveeran*

Volume 23, Issue 4, 2023

Published on: 26 December, 2022

Page: [284 - 294] Pages: 11

DOI: 10.2174/1568026623666221205093154

Price: $65

conference banner
Abstract

Engineered nanostructures of mixed transition metal sulfides have emerged as promising nanomaterials (NMs) for various electrochemical sensors and biosensors applications, including glucose sensors (GS) and lactic acid sensors (LAS) in clinical aspects. Electrochemical sensors based on nanostructured materials, such as transition metal sulfides and their nanocomposites, including graphene, carbon nanotubes, molecularly imprinted polymers, and metal-organic frameworks, have emerged as potent tools for the monitoring and quantification of biomolecules. Highly sensitive and selective electrochemical detection systems have generally been established credibly by providing new functional surfaces, miniaturization processes, and different nanostructured materials with exceptional characteristics. This review provides an overview of glucose and lactic acid sensors based on transition metal nanomaterials and their nanocomposites with a detailed discussion about the advantages and challenges. The merits of nanoscale transition metal sulphide-based electrochemical sensors and biosensor systems include cost-effectiveness, ease of miniaturization process, energy- and time-efficient, simple preparation, etc. Moreover, online sensing competence is the dynamic strength for sustained progress of electrochemical detection systems, thus fascinating interdisciplinary research. In particular, we discuss the synthesis, characteristics, electrode construction strategies, and uses in electrochemical sensing of glucose and lactic acid primarily based on our most recent research and other reports. In addition, the challenges and future perspectives of the nanostructured transition metal sulfides-based electrochemical sensing and biosensing systems toward the detection of glucose and lactic acid are described.

Keywords: Nanostructures, Transition metal sulfides, Electrochemical sensors, Glucose sensors, Lactic acid sensors, Clinical applications.

Graphical Abstract
[1]
Harjola, V.P.; Parissis, J.; Bauersachs, J.; Brunner-La Rocca, H.P.; Bueno, H.; Čelutkienė, J.; Chioncel, O.; Coats, A.J.S.; Collins, S.P.; de Boer, R.A.; Filippatos, G.; Gayat, E.; Hill, L.; Laine, M.; Lassus, J.; Lommi, J.; Masip, J.; Mebazaa, A.; Metra, M.; Miró, Ò.; Mortara, A.; Mueller, C.; Mullens, W.; Peacock, W.F.; Pentikäinen, M.; Piepoli, M.F.; Polyzogopoulou, E.; Rudiger, A.; Ruschitzka, F.; Seferovic, P.; Sionis, A.; Teerlink, J.R.; Thum, T.; Varpula, M.; Weinstein, J.M.; Yilmaz, M.B. Acute coronary syndromes and acute heart failure: a diagnostic dilemma and high‐risk combination. A statement from the Acute Heart Failure Committee of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail., 2020, 22(8), 1298-1314.
[http://dx.doi.org/10.1002/ejhf.1831] [PMID: 32347648]
[2]
Petruș, A.; Lighezan, D.; Dănilă, M.; Duicu, O.; Sturza, A.; Muntean, D.; Ioniță, I. Assessment of platelet respiration as emerging biomarker of disease. Physiol. Res., 2019, 68(3), 347-363.
[http://dx.doi.org/10.33549/physiolres.934032] [PMID: 30904011]
[3]
Adamson, T.L.; Eusebio, F.A.; Cook, C.B.; LaBelle, J.T. The promise of electrochemical impedance spectroscopy as novel technology for the management of patients with diabetes mellitus. Analyst (Lond.), 2012, 137(18), 4179-4187.
[http://dx.doi.org/10.1039/c2an35645g] [PMID: 22842610]
[4]
Zhang, C.; Du, X. Electrochemical sensors based on carbon nanomaterial used in diagnosing metabolic disease. Front Chem., 2020, 8, 651.
[http://dx.doi.org/10.3389/fchem.2020.00651] [PMID: 32850664]
[5]
Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech. 2017, 7(2017), 1-14.
[http://dx.doi.org/10.1007/s13205-016-0586-4]
[6]
Novik, G.; Meerovskaya, O.; Savich, V. Waste Degradation and Utilization by Lactic Acid Bacteria: Use of Lactic Acid Bacteria in Production of Food Additives; Bioenergy and Biogas, Food Addit; Intechopen, 2017.
[http://dx.doi.org/10.5772/intechopen.69284]
[7]
Braga, M.; Ferreira, P.M.; Almeida, J.R.M. Screening method to prioritize relevant bio-based acids and their biochemical processes using recent patent information. Biofuels Bioprod. Biorefin., 2021, 15(1), 231-249.
[http://dx.doi.org/10.1002/bbb.2156]
[8]
Tan, C.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev., 2015, 44(9), 2713-2731.
[http://dx.doi.org/10.1039/C4CS00182F] [PMID: 25292209]
[9]
Prakash, S.; Chakrabarty, T.; Singh, A.K.; Shahi, V.K. Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens. Bioelectron., 2013, 41, 43-53.
[http://dx.doi.org/10.1016/j.bios.2012.09.031] [PMID: 23083910]
[10]
Prabhu, P.; Wan, Y.; Lee, J.M. Electrochemical conversion of biomass derived products into high-value chemicals. Matter, 2020, 3(4), 1162-1177.
[http://dx.doi.org/10.1016/j.matt.2020.09.002]
[11]
Nicks, J.; Sasitharan, K.; Prasad, R.R.R.; Ashworth, D.J.; Foster, J.A. Metal-organic framework nanosheets: Programmable 2D materials for catalysis, sensing, electronics, and separation applications. Adv. Funct. Mater., 2021, 31(42), 2103723.
[http://dx.doi.org/10.1002/adfm.202103723]
[12]
Silva, A.L.; Pinto, E.M.; Ponzio, E.A.; de Figueiredo, E.C.; Semaan, F.S. Bioinspired chemically modified electrodes for electroanalysis, new dev. Anal. Chem. Res., 2015, 41-86.
[13]
Reghunath, R. devi, K.; Singh, K.K. Recent advances in graphene based electrochemical glucose sensor. Nano-Struct. Nano-Objects, 2021, 26, 100750.
[http://dx.doi.org/10.1016/j.nanoso.2021.100750]
[14]
Dong, Q.; Ryu, H.; Lei, Y. Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim. Acta, 2021, 370, 137744.
[http://dx.doi.org/10.1016/j.electacta.2021.137744]
[15]
Gao, J.; He, S.; Nag, A. Electrochemical detection of glucose molecules using laser-induced graphene sensors: A review. Sensors, 2021, 21(8), 2818.
[http://dx.doi.org/10.3390/s21082818] [PMID: 33923790]
[16]
Xiao, X.; Wang, H.; Bao, W.; Urbankowski, P.; Yang, L.; Yang, Y.; Maleski, K.; Cui, L.; Billinge, S.J.L.; Wang, G.; Gogotsi, Y. Two-dimensional arrays of transition metal nitride nanocrystals. Adv. Mater., 2019, 31(33), 1902393.
[http://dx.doi.org/10.1002/adma.201902393] [PMID: 31237381]
[17]
Heydari, H.; Moosavifard, S.E.; Elyasi, S.; Shahraki, M. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors. Appl. Surf. Sci., 2017, 394, 425-430.
[http://dx.doi.org/10.1016/j.apsusc.2016.10.138]
[18]
Yu, L.; Wu, H.B.; Lou, X.W.D. Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res., 2017, 50(2), 293-301.
[http://dx.doi.org/10.1021/acs.accounts.6b00480] [PMID: 28128931]
[19]
Yun, Q.; Lu, Q.; Zhang, X.; Tan, C.; Zhang, H. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Ed., 2018, 57(3), 626-646.
[http://dx.doi.org/10.1002/anie.201706426] [PMID: 28834184]
[20]
Guo, Y.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; Yamauchi, Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater., 2019, 31(17), 1807134.
[http://dx.doi.org/10.1002/adma.201807134] [PMID: 30793387]
[21]
Wei, H.; Xue, Q.; Li, A.; Wan, T.; Huang, Y.; Cui, D.; Pan, D.; Dong, B.; Wei, R.; Naik, N.; Guo, Z. Dendritic core-shell copper-nickel alloy@metal oxide for efficient non-enzymatic glucose detection. Sens. Actuators B Chem., 2021, 337, 129687.
[http://dx.doi.org/10.1016/j.snb.2021.129687]
[22]
Jeong, H.; Kwac, L.K.; Hong, C.G.; Kim, H.G. Direct growth of flower like-structured CuFe oxide on graphene supported nickel foam as an effective sensor for glucose determination. Mater. Sci. Eng. C, 2021, 118, 111510.
[http://dx.doi.org/10.1016/j.msec.2020.111510] [PMID: 33255067]
[23]
Lu, Y.; Chen, W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev., 2012, 41(9), 3594-3623.
[http://dx.doi.org/10.1039/c2cs15325d] [PMID: 22441327]
[24]
Qiao, Y.; Liu, Q.; Lu, S.; Chen, G.; Gao, S.; Lu, W.; Sun, X. High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(25), 5411-5415.
[http://dx.doi.org/10.1039/D0TB00131G] [PMID: 32452497]
[25]
Hassan, I.U.; Salim, H.; Naikoo, G.A.; Awan, T.; Dar, R.A.; Arshad, F.; Tabidi, M.A.; Das, R.; Ahmed, W.; Asiri, A.M.; Qurashi, A. A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. J. Saudi Chem. Soc., 2021, 25(5), 101228.
[http://dx.doi.org/10.1016/j.jscs.2021.101228]
[26]
Thanh Tran, D.; Kshetri, T.; Dinh Chuong, N.; Gautam, J.; Van Hien, H.; Huu Tuan, L.; Kim, N.H.; Lee, J.H. Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today, 2018, 22, 100-131.
[http://dx.doi.org/10.1016/j.nantod.2018.08.006]
[27]
Zhu, J.; Chen, Z.; Jia, L.; Lu, Y.; Wei, X.; Wang, X.; Wu, W.D.; Han, N.; Li, Y.; Wu, Z. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. Nano Res., 2019, 12(9), 2250-2258.
[http://dx.doi.org/10.1007/s12274-019-2299-8]
[28]
Zhu, W.; Cheng, Y.; Wang, C.; Pinna, N.; Lu, X. Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications. Nanoscale, 2021, 13(20), 9112-9146.
[http://dx.doi.org/10.1039/D1NR01070K] [PMID: 34008677]
[29]
Mazurków, J.M.; Kusior, A.; Radecka, M. Electrochemical characterization of modified glassy carbon electrodes for non-enzymatic glucose sensors. Sensors (Basel), 2021, 21(23), 7928.
[http://dx.doi.org/10.3390/s21237928] [PMID: 34883931]
[30]
Panahi, Z.; Custer, L.; Halpern, J.M. Recent advances in non-enzymatic electrochemical detection of hydrophobic metabolites in biofluids. Sens. Actuat. Reports, 2021, 3, 100051.
[http://dx.doi.org/10.1016/j.snr.2021.100051]
[31]
Shankar, S.S.; Shereema, R.M.; Rakhi, R.B. Electrochemical determination of adrenaline using MXene/Graphite composite paste electrodes. ACS Appl. Mater. Interfaces, 2018, 10(50), 43343-43351.
[http://dx.doi.org/10.1021/acsami.8b11741] [PMID: 30465433]
[32]
Yuan, J.; Jiang, L.; Che, J.; He, G.; Chen, H. Composites of NiS2 microblocks, MoS2 nanosheets, and reduced graphene oxide for energy storage and electrochemical detection of bisphenol A. ACS Appl. Nano Mater., 2021, 4(6), 6093-6102.
[http://dx.doi.org/10.1021/acsanm.1c00908]
[33]
Dăscălescu, D.; Apetrei, C. Nanomaterials based electrochemical sensors for serotonin detection: A review. Chemosensors (Basel), 2021, 9(1), 14.
[http://dx.doi.org/10.3390/chemosensors9010014]
[34]
Wu, W.; Li, Y.; Jin, J.; Wu, H.; Wang, S.; Xia, Q. A novel nonenzymatic electrochemical sensor based on 3D flower-like Ni7S6 for hydrogen peroxide and glucose. Sens. Actuat. B Chem., 2016, 232, 633-641.
[http://dx.doi.org/10.1016/j.snb.2016.04.006]
[35]
Li, G.; Huo, H.; Xu, C. Ni0.31 Co0.69 S2 nanoparticles uniformly anchored on a porous reduced graphene oxide framework for a high-performance non-enzymatic glucose sensor. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(9), 4922-4930.
[http://dx.doi.org/10.1039/C4TA06553K]
[36]
Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2 S4 nanowire arrays supported on Ni Foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater., 2016, 26(26), 4661-4672.
[http://dx.doi.org/10.1002/adfm.201600566]
[37]
Yuan, H.; Ma, C.; Gao, Z.; Zhang, L. Preparation of NiCo2O4 and NiCo2S4 micro-onions for electrochemical sensing of glucose. Appl. Phys., A Mater. Sci. Process., 2019, 125, 61.
[http://dx.doi.org/10.1007/s00339-018-2363-1]
[38]
Huo, H.; Zhao, Y.; Xu, C. III 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(36), 15111-15117.
[http://dx.doi.org/10.1039/C4TA02857K]
[39]
Cheng, C.; Kong, D.; Wei, C.; Du, W.; Zhao, J.; Feng, Y.; Duan, Q. Self-template synthesis of hollow ellipsoid Ni-Mn sulfides for supercapacitors, electrocatalytic oxidation of glucose and water treatment. Dalton Trans., 2017, 46(16), 5406-5413.
[http://dx.doi.org/10.1039/C7DT00355B] [PMID: 28387399]
[40]
Wang, Y.; Wang, J.; Xie, T.; Zhang, L.; Yang, L.; Zhu, Q.; Liu, S.; Peng, Y.; Zhang, X.; Deng, Q. Three-dimensional flower-like Ni-Mn-S on Ti mesh: A monolithic electrochemical platform for detecting glucose. New J. Chem., 2019, 43(20), 7866-7873.
[http://dx.doi.org/10.1039/C9NJ00970A]
[41]
Arivazhagan, M.; Shankar, A.; Maduraiveeran, G. Hollow sphere nickel sulfide nanostructures-based enzyme mimic electrochemical sensor platform for lactic acid in human urine. Mikrochim. Acta, 2020, 187(8), 468.
[http://dx.doi.org/10.1007/s00604-020-04431-3] [PMID: 32700244]
[42]
Vinoth, S.; Rajaitha, P.M.; Venkadesh, A.; Shalini Devi, K.S.; Radhakrishnan, S.; Pandikumar, A. Nickel sulfide-incorporated sulfur-doped graphitic carbon nitride nanohybrid interface for non-enzymatic electrochemical sensing of glucose. Nanoscale Adv., 2020, 2(9), 4242-4250.
[http://dx.doi.org/10.1039/D0NA00172D] [PMID: 36132783]
[43]
Kubendhiran, S.; Sakthivel, R.; Chen, S.M.; Mutharani, B. Functionalized-Carbon black as a conductive matrix for nickel sulfide nanospheres and its application to non-enzymatic glucose sensor. J. Electrochem. Soc., 2018, 165(3), B96-B102.
[http://dx.doi.org/10.1149/2.0451803jes]
[44]
Kim, S.; Lee, S.H.; Cho, M.; Lee, Y. Solvent-assisted morphology confinement of a nickel sulfide nanostructure and its application for non-enzymatic glucose sensor. Biosens. Bioelectron., 2016, 85, 587-595.
[http://dx.doi.org/10.1016/j.bios.2016.05.062] [PMID: 27236724]
[45]
Kannan, P.K.; Rout, C.S. High performance non-enzymatic glucose sensor based on one-step electrodeposited nickel sulfide. Chemistry, 2015, 21(26), 9355-9359.
[http://dx.doi.org/10.1002/chem.201500851] [PMID: 25997754]
[46]
Arivazhagan, M.; Maduraiveeran, G. Ultra-fine nickel sulfide nanoclusters @ nickel sulfide microsphere as enzyme-free electrode materials for sensitive detection of lactic acid. J. Electroanal. Chem. (Lausanne), 2020, 874, 114465.
[http://dx.doi.org/10.1016/j.jelechem.2020.114465]
[47]
Chen, D.; Wang, H.; Yang, M. A novel ball-in-ball hollow NiCo 2 S 4 sphere based sensitive and selective nonenzymatic glucose sensor. Anal. Methods, 2017, 9(32), 4718-4725.
[http://dx.doi.org/10.1039/C7AY01640A]
[48]
Meng, A.; Sheng, L.; Zhao, K.; Li, Z. A controllable honeycomb-like amorphous cobalt sulfide architecture directly grown on the reduced graphene oxide-poly(3,4-ethylenedioxythiophene) composite through electrodeposition for non-enzyme glucose sensing. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(45), 8934-8943.
[http://dx.doi.org/10.1039/C7TB02482G] [PMID: 32264120]
[49]
Zhang, Y.; Ma, Y.; Li, Y.; Zhu, W.; Wei, Z.; Sun, J.; Li, T.; Wang, J. Ambient self-derivation of nickel-cobalt hydroxysulfide multistage nanoarray for high-performance electrochemical glucose sensing. Appl. Surf. Sci., 2020, 505, 144636.
[http://dx.doi.org/10.1016/j.apsusc.2019.144636]
[50]
Cao, X.; Wang, K.; Du, G.; Asiri, A.M.; Ma, Y.; Lu, Q.; Sun, X. One-step electrodeposition of a nickel cobalt sulfide nanosheet film as a highly sensitive nonenzymatic glucose sensor. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(47), 7540-7544.
[http://dx.doi.org/10.1039/C6TB01736C] [PMID: 32263810]
[51]
Nightingale, A.M.; Leong, C.L.; Burnish, R.A.; Hassan, S.; Zhang, Y.; Clough, G.F.; Boutelle, M.G.; Voegeli, D.; Niu, X. Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor. Nat. Commun., 2019, 10(1), 2741.
[http://dx.doi.org/10.1038/s41467-019-10401-y] [PMID: 31227695]
[52]
Roda, A.; Guardigli, M.; Calabria, D.; Calabretta, M.M.; Cevenini, L.; Michelini, E. A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst (Lond.), 2014, 139(24), 6494-6501.
[http://dx.doi.org/10.1039/C4AN01612B] [PMID: 25343380]
[53]
Zhu, X.; Ju, Y.; Chen, J.; Liu, D.; Liu, H. Nonenzymatic wearable sensor for electrochemical analysis of perspiration glucose. ACS Sens., 2018, 3(6), 1135-1141.
[http://dx.doi.org/10.1021/acssensors.8b00168] [PMID: 29767510]
[54]
Scognamiglio, V.; Arduini, F. The technology tree in the design of glucose biosensors. Trends Analyt. Chem., 2019, 120, 115642.
[http://dx.doi.org/10.1016/j.trac.2019.115642]
[55]
Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem. Soc. Rev., 2020, 49(21), 7671-7709.
[http://dx.doi.org/10.1039/D0CS00304B] [PMID: 33020790]
[56]
Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent progress, applications, and future perspective. Chem. Rev., 2019, 119(1), 120-194.
[http://dx.doi.org/10.1021/acs.chemrev.8b00172] [PMID: 30247026]
[57]
Romero, M.R.; Ahumada, F.; Garay, F.; Baruzzi, A.M. Amperometric biosensor for direct blood lactate detection. Anal. Chem., 2010, 82(13), 5568-5572.
[http://dx.doi.org/10.1021/ac1004426] [PMID: 20518470]
[58]
Teymourian, H.; Salimi, A.; Hallaj, R. Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor. Biosens. Bioelectron., 2012, 33(1), 60-68.
[http://dx.doi.org/10.1016/j.bios.2011.12.031] [PMID: 22230696]
[59]
Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep., 2016, 5, 35-54.
[http://dx.doi.org/10.1016/j.bbrep.2015.11.010] [PMID: 28955805]
[60]
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel), 2021, 21(4), 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[61]
Huang, X.; Zhu, Y.; Kianfar, E. Nano Biosensors: Properties, applications and electrochemical techniques. J. Mater. Res. Technol., 2021, 12, 1649-1672.
[http://dx.doi.org/10.1016/j.jmrt.2021.03.048]
[62]
Abdel-Karim, R.; Reda, Y.; Abdel-Fattah, A. Review-nanostructured materials-based nanosensors. J. Electrochem. Soc., 2020, 167(3), 037554.
[http://dx.doi.org/10.1149/1945-7111/ab67aa]
[63]
Chavali, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences, 2019, 1(6), 607.
[http://dx.doi.org/10.1007/s42452-019-0592-3]
[64]
Gutiérrez-Capitán, M.; Baldi, A.; Gómez, R.; García, V.; Jiménez-Jorquera, C.; Fernández-Sánchez, C. Electrochemical nanocomposite-derived sensor for the analysis of chemical oxygen demand in urban wastewaters. Anal. Chem., 2015, 87(4), 2152-2160.
[http://dx.doi.org/10.1021/ac503329a] [PMID: 25594378]
[65]
Singh, P.; Pandey, S.K.; Singh, J.; Srivastava, S.; Sachan, S.; Singh, S.K. Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett., 2016, 8, 193-203.
[http://dx.doi.org/10.1007/s40820-015-0077-x]
[66]
Wang, Z.; Dong, S.; Gui, M.; Asif, M.; Wang, W.; Wang, F.; Liu, H. Graphene paper supported MoS2 nanocrystals monolayer with Cu submicron-buds: High-performance flexible platform for sensing in sweat. Anal. Biochem., 2018, 543, 82-89.
[http://dx.doi.org/10.1016/j.ab.2017.12.010] [PMID: 29233679]
[67]
Guo, Q.; Wu, T.; Liu, L.; He, Y.; Liu, D.; You, T. Hierarchically porous NiCo2S4 nanowires anchored on flexible electrospun graphitic nanofiber for high-performance glucose biosensing. J. Alloys Compd., 2020, 819, 153376.
[http://dx.doi.org/10.1016/j.jallcom.2019.153376]
[68]
Karikalan, N.; Karthik, R.; Chen, S.M.; Karuppiah, C.; Elangovan, A. Sonochemical synthesis of sulfur doped reduced graphene oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications. Sci. Rep., 2017, 7(1), 2494.
[http://dx.doi.org/10.1038/s41598-017-02479-5] [PMID: 28559593]
[69]
Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva-Acuña, C. Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(41), 10715-10722.
[http://dx.doi.org/10.1039/C5TC02043C]
[70]
Yao, P.; Yu, S.; Shen, H.; Yang, J.; Min, L.; Yang, Z.; Zhu, X.A. TiO2-SnS2 nanocomposite as a novel matrix for the development of an enzymatic electrochemical glucose biosensor. New J. Chem., 2019, 43(42), 16748-16752.
[http://dx.doi.org/10.1039/C9NJ04629A]
[71]
Babu, K.J. Raj kumar, T.; Yoo, D.J.; Phang, S.M.; Gnana kumar, G. Electrodeposited nickel cobalt sulfide flowerlike architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications. ACS Sustain. Chem.& Eng., 2018, 6(12), 16982-16989.
[http://dx.doi.org/10.1021/acssuschemeng.8b04340]
[72]
Hekmat, F.; Ezzati, M.; Shahrokhian, S.; Unalan, H.E. Microwave-assisted decoration of cotton fabrics with Nickel-Cobalt sulfide as a wearable glucose sensing platform. J. Electroanal. Chem. (Lausanne), 2021, 890, 115244.
[http://dx.doi.org/10.1016/j.jelechem.2021.115244]
[73]
Xu, Y.; Zhao, J.; Qin, L.; Tang, X.; Wu, B.; Xiang, Y. Synthesis of CoNi2S4 nanoflake-modified nickel wire electrode for sensitive non-enzymatic detection of glucose. Sens. Actuat. Reports, 2022, 4, 100090.
[http://dx.doi.org/10.1016/j.snr.2022.100090]
[74]
Fu, Y.; Jin, W. Facile synthesis of core-shell CuS-Cu2S based nanocomposite for the high-performance glucose detection. Mater. Sci. Eng. C, 2019, 105, 110120.
[http://dx.doi.org/10.1016/j.msec.2019.110120] [PMID: 31546467]
[75]
Geng, D.; Bo, X.; Guo, L. Ni-doped molybdenum disulfide nanoparticles anchored on reduced graphene oxide as novel electroactive material for a non-enzymatic glucose sensor. Sens. Actuators B Chem., 2017, 244, 131-141.
[http://dx.doi.org/10.1016/j.snb.2016.12.122]
[76]
Mai, L.N.T.; Tran, T.H.; Bui, Q.B.; Nhac-Vu, H.T. A novel nanohybrid of gold nanoparticles anchored copper sulfide nanosheets as sensitive sensor for nonenzymatic glucose detection. Colloids Surf. A Physicochem. Eng. Asp., 2019, 582, 123936.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123936]
[77]
Parra-Alfambra, A.M.; Casero, E.; Vázquez, L.; Quintana, C.; del Pozo, M.; Petit-Domínguez, M.D. MoS2 nanosheets for improving analytical performance of lactate biosensors. Sens. Actuators B Chem., 2018, 274, 310-317.
[http://dx.doi.org/10.1016/j.snb.2018.07.124]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy