Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Role of Polyphenols in Alleviating Alzheimer’s Disease: A Review

Author(s): Tharsius Raja William Raja, Veeramuthu Duraipandiyan*, Savarimuthu Ignacimuthu, Udaiyappan Janakiraman and Soosaimanickam Maria Packiam

Volume 30, Issue 35, 2023

Published on: 20 January, 2023

Page: [4032 - 4047] Pages: 16

DOI: 10.2174/0929867330666221202152540

Price: $65

Abstract

Alzheimer’s Disease (AD) is a successive neurodegenerative disorder in the aged population. Many chemicals and phytochemicals are used to treat AD. Polyphenols which occur widely in various fruits, vegetables, beverages, and some other plant sources are gaining importance in AD treatment. Polyphenols comprise various subcategories, such as phenolic acids, lignans, tannins, stilbenes, hydroxybenzoic acid, hydroxycinnamic acid, and flavonoids. These compounds, as sole entities or in combination, can be used for treating AD because they have an abundance of antioxidants that are reported to be effective in free radical scavenging, metal ion chelating, and anti-inflammatory activities. Polyphenols of various plant origins have been studied, and these have been supported by in vitro assays and in vivo studies in rodents. These molecules protect neurons against oxidative stress and deposition of amyloid-β (Aβ) and tau proteins which play a vital role in the pathogenesis of AD. Consumption of wine and other foods rich in polyphenols has a beneficial effect on the neuronal signaling pathways, playing a vital role in shielding neuronal cells from neurodegeneration. Their ability to reduce free radicals and chelate metals are of great advantage. In this review, we highlight the various polyphenols that inhibit neuronal damage and progression of AD while also providing a cure. Some of the polyphenols covered are hesperidin, resveratrol, curcumin, catechin, kaempferol, and quercetin. The mechanisms of the actions of three polyphenols are also elaborated.

Keywords: Polyphenol, Alzheimer’s disease, amyloid-β, tau protein, free radical scavenging, oxidative stress.

« Previous
[1]
Henry, J.D.; von Hippel, W.; Molenberghs, P.; Lee, T.; Sachdev, P.S. Clinical assessment of social cognitive function in neurological disorders. Nat. Rev. Neurol., 2016, 12(1), 28-39.
[http://dx.doi.org/10.1038/nrneurol.2015.229] [PMID: 26670297]
[2]
Abbaszadeh, S.; Javidmehr, A.; Askari, B.; Janssen, P.M.L.; Soraya, H. Memantine, an NMDA receptor antagonist, attenuates cardiac remodeling, lipid peroxidation and neutrophil recruitment in heart failure: A cardioprotective agent? Biomed. Pharmacother., 2018, 108, 1237-1243.
[http://dx.doi.org/10.1016/j.biopha.2018.09.153] [PMID: 30372825]
[3]
Ren, B.; Zhang, Y.; Zhang, M.; Liu, Y.; Zhang, D.; Gong, X.; Feng, Z.; Tang, J.; Chang, Y.; Zheng, J. Fundamentals of cross-seeding of amyloid proteins: An introduction. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(46), 7267-7282.
[http://dx.doi.org/10.1039/C9TB01871A] [PMID: 31647489]
[4]
Salminen, A.; Ojala, J.; Kaarniranta, K.; Kauppinen, A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: Impact on the aging process and age-related diseases. Cell. Mol. Life Sci., 2012, 69(18), 2999-3013.
[http://dx.doi.org/10.1007/s00018-012-0962-0] [PMID: 22446749]
[5]
Schwarzinger, M.; Dufouil, C. Forecasting the prevalence of dementia. Lancet Public Health, 2022, 7(2), e94-e95.
[http://dx.doi.org/10.1016/S2468-2667(21)00277-2] [PMID: 34998486]
[6]
Shea, D.; Hsu, C.C.; Bi, T.M.; Paranjapye, N.; Childers, M.C.; Cochran, J.; Tomberlin, C.P.; Wang, L.; Paris, D.; Zonderman, J.; Varani, G.; Link, C.D.; Mullan, M.; Daggett, V. α-Sheet secondary structure in amyloid β-peptide drives aggregation and toxicity in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2019, 116(18), 8895-8900.
[http://dx.doi.org/10.1073/pnas.1820585116] [PMID: 31004062]
[7]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[8]
Clement, M.V.; Luo, L. Organismal aging and oxidants beyond macromolecules damage. Proteomics, 2020, 20(5-6), 1800400.
[http://dx.doi.org/10.1002/pmic.201800400] [PMID: 31743593]
[9]
Zhang, L.; Shen, C.; Chu, J.; Zhang, R.; Li, Y.; Li, L. Icariin decreases the expression of APP and BACE-1 and reduces the β-amyloid burden in an APP transgenic mouse model of Alzheimer’s disease. Int. J. Biol. Sci., 2014, 10(2), 181-191.
[http://dx.doi.org/10.7150/ijbs.6232] [PMID: 24550686]
[10]
Kim, J.; Wie, M.B.; Ahn, M.; Tanaka, A.; Matsuda, H.; Shin, T. Benefits of hesperidin in central nervous system disorders: A review. Anat. Cell Biol., 2019, 52(4), 369-377.
[http://dx.doi.org/10.5115/acb.19.119] [PMID: 31949974]
[11]
Swomley, A.M.; Butterfield, D.A. Oxidative stress in Alzheimer disease and mild cognitive impairment: Evidence from human data provided by redox proteomics. Arch. Toxicol., 2015, 89(10), 1669-1680.
[http://dx.doi.org/10.1007/s00204-015-1556-z] [PMID: 26126631]
[12]
da Silva Lima, D.; da Silva Gomes, L.; de Sousa Figueredo, E.; de Godoi, M.M.; Silva, E.M.; da Silva Neri, H.F.; Taboga, S.R.; Biancardi, M.F.; Ghedini, P.C.; dos Santos, F.C.A. Aluminum exposure promotes histopathological and pro-oxidant damage to the prostate and gonads of male and female adult gerbils. Exp. Mol. Pathol., 2020, 116, 104486.
[http://dx.doi.org/10.1016/j.yexmp.2020.104486] [PMID: 32585149]
[13]
Mirsafaei, L.; Reiner, Ž.; Shafabakhsh, R.; Asemi, Z. Molecular and biological functions of quercetin as a natural solution for cardiovascular disease prevention and treatment. Plant Foods Hum. Nutr., 2020, 75(3), 307-315.
[http://dx.doi.org/10.1007/s11130-020-00832-0] [PMID: 32588290]
[14]
Amarowicz, R.; Pegg, R.B. The potential protective effects of phenolic compounds against low-density lipoprotein oxidation. Curr. Pharm. Des., 2017, 23(19), 2754-2766.
[http://dx.doi.org/10.2174/1381612823666170329142936] [PMID: 28356039]
[15]
Stanciu, G.D.; Luca, A.; Rusu, R.N.; Bild, V.; Beschea Chiriac, S.I.; Solcan, C.; Bild, W.; Ababei, D.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules, 2019, 10(1), 40.
[http://dx.doi.org/10.3390/biom10010040] [PMID: 31888102]
[16]
Pohanka, M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci., 2014, 15(6), 9809-9825.
[http://dx.doi.org/10.3390/ijms15069809] [PMID: 24893223]
[17]
Costa, V.V.; Del Sarto, J.L.; Rocha, R.F.; Silva, F.R.; Doria, J.G.; Olmo, I.G.; Marques, R.E.; Queiroz-Junior, C.M.; Foureaux, G.; Araújo, J.M.S.; Cramer, A.; Real, A.L.C.V.; Ribeiro, L.S.; Sardi, S.I.; Ferreira, A.J.; Machado, F.S.; de Oliveira, A.C.; Teixeira, A.L.; Nakaya, H.I.; Souza, D.G.; Ribeiro, F.M.; Teixeira, M.M. N-methyl-d-aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. MBio, 2017, 8(2), e00350-17.
[http://dx.doi.org/10.1128/mBio.00350-17] [PMID: 28442607]
[18]
Moss, D.E. Improving anti-neurodegenerative benefits of acetylcholinesterase inhibitors in Alzheimer’s disease: Are irreversible inhibitors the future? Int. J. Mol. Sci., 2020, 21(10), 3438.
[http://dx.doi.org/10.3390/ijms21103438] [PMID: 32414155]
[19]
Kokaz, S.F.; Deb, P.K.; Abed, S.N.; Al-Aboudi, A.; Das, N.; Younes, F.A.; Salou, R.A.; Bataineh, Y.A.; Venugopala, K.N.; Mailavaram, R.P. Pharmacology of acetylcholine and cholinergic receptors. Front. Pharmacol. Neurotransmit., 2020, 69-105.
[20]
Thenmozhi, A.J.; Raja, T.R.W.; Janakiraman, U.; Manivasagam, T. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem. Res., 2015, 40(4), 767-776.
[http://dx.doi.org/10.1007/s11064-015-1525-1] [PMID: 25630717]
[21]
Tolppanen, A.M.; Solomon, A.; Soininen, H.; Kivipelto, M. Midlife vascular risk factors and Alzheimer’s disease: Evidence from epidemiological studies. J. Alzheimers Dis., 2012, 32(3), 531-540.
[http://dx.doi.org/10.3233/JAD-2012-120802] [PMID: 22842867]
[22]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[23]
Bennani, I.; Chentoufi, M.A.; El Otmani, I.S.; Cheikh, A.; Bamou, N.; El Karbane, M.; Bouatia, M. Development and validation of two spectrophotometric methods for simultaneous determination of diosmine and hesperidin in mixture and their applications. J. Appl. Pharm. Sci., 2020, 10(07), 100-107.
[24]
Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. J. Ethnopharmacol., 2021, 267, 113468.
[25]
Gauchan, D.P.; Kandel, P.; Tuladhar, A.; Acharya, A.; Kadel, U.; Baral, A.; Shahi, A.B.; García-Gil, M.R. Evaluation of antimicrobial, antioxidant and cytotoxic properties of bioactive compounds produced from endophytic fungi of Himalayan yew (Taxus wallichiana) in Nepal. F1000 Res., 2020, 9, 379.
[http://dx.doi.org/10.12688/f1000research.23250.2] [PMID: 33093944]
[26]
Das, M.; Devi, K.P. A mini review on the protective effect of lignans for the treatment of neurodegenerative disorders. J. Nutr. Food Lipid Sci., 2019, (1), 40-53.
[27]
Koskela, A.; Reinisalo, M.; Hyttinen, J.M.; Kaarniranta, K.; Karjalainen, R.O. Pinosylvin-mediated protection against oxidative stress in human retinal pigment epithelial cells. Mol. Vis., 2014, 20, 760-769.
[PMID: 24940030]
[28]
Wang, K.J.; Zhang, W.Q.; Liu, J.J.; Cui, Y.; Cui, J.Z. Piceatannol protects against cerebral ischemia/reperfusion‑induced apoptosis and oxidative stress via the Sirt1/FoxO1 signaling pathway. Mol. Med. Rep., 2020, 22(6), 5399-5411.
[http://dx.doi.org/10.3892/mmr.2020.11618] [PMID: 33173979]
[29]
Song, Z.; Han, S.; Pan, X.; Gong, Y.; Wang, M. Pterostilbene mediates neuroprotection against oxidative toxicity via oestrogen receptor α signalling pathways. J. Pharm. Pharmacol., 2015, 67(5), 720-730.
[http://dx.doi.org/10.1111/jphp.12360] [PMID: 25644078]
[30]
Chougle, S.; Kumar, D.; Khan, A.; Zehra, S.; Ali̇, A. Treatment of Alzheimer’s disease by natural products. J. Exp. Clin. Med., 2021, 38(4), 634-644.
[http://dx.doi.org/10.52142/omujecm.38.4.42]
[31]
Essa, M.M.; Subash, S.; Al-Adawi, S.; Memon, M.; Manivasagam, T.; Akbar, M. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regen. Res., 2014, 9(16), 1557-1566.
[http://dx.doi.org/10.4103/1673-5374.139483] [PMID: 25317174]
[32]
Rahman, M.A.; Rahman, M.D.H.; Biswas, P.; Hossain, M.S.; Islam, R.; Hannan, M.A.; Uddin, M.J.; Rhim, H. Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimer’s disease. Antioxidants, 2020, 10(1), 23.
[http://dx.doi.org/10.3390/antiox10010023] [PMID: 33379372]
[33]
Akter, R.; Chowdhury, M.A.R.; Rahman, M.H. Flavonoids and polyphenolic compounds as potential talented agents for the treatment of Alzheimer’s disease and their antioxidant activities. Curr. Pharm. Des., 2021, 27(3), 345-356.
[http://dx.doi.org/10.2174/1381612826666201102102810] [PMID: 33138754]
[34]
Wu, L.H.; Lin, C.; Lin, H.Y.; Liu, Y.S.; Wu, C.Y.J.; Tsai, C.F.; Chang, P.C.; Yeh, W.L.; Lu, D.Y. Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Mol. Neurobiol., 2016, 53(2), 1080-1091.
[http://dx.doi.org/10.1007/s12035-014-9042-9] [PMID: 25579382]
[35]
Raza, S.S.; Khan, M.M.; Ahmad, A.; Ashafaq, M.; Khuwaja, G.; Tabassum, R.; Javed, H.; Siddiqui, M.S.; Safhi, M.M.; Islam, F. Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Res., 2011, 1420, 93-105.
[http://dx.doi.org/10.1016/j.brainres.2011.08.047] [PMID: 21959178]
[36]
Suganthy, N.; Pandima Devi, K. Protective effect of catechin rich extract of Rhizophora mucronata against β-amyloid-induced toxicity in PC12 cells. J. Appl. Biomed., 2016, 14(2), 137-146.
[http://dx.doi.org/10.1016/j.jab.2015.10.003]
[37]
Al-Gayyar, M.M.H.; Matragoon, S.; Pillai, B.A.; Ali, T.K.; Abdelsaid, M.A.; El-Remessy, A.B. Epicatechin blocks pro-nerve growth factor (proNGF)-mediated retinal neurodegeneration via inhibition of p75 neurotrophin receptor proNGF expression in a rat model of diabetes. Diabetologia, 2011, 54(3), 669-680.
[http://dx.doi.org/10.1007/s00125-010-1994-3] [PMID: 21136036]
[38]
Varshney, H.; Siddique, Y.H. Role of natural plant products against Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2021, 20(10), 904-941.
[http://dx.doi.org/10.2174/1871527320666210420135437] [PMID: 33881973]
[39]
Winter, A.N.; Bickford, P.C. Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxidants, 2019, 8(9), 333.
[http://dx.doi.org/10.3390/antiox8090333] [PMID: 31443476]
[40]
Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. Baicalein as a potent neuroprotective agent: A review. Biomed. Pharmacother., 2017, 95, 1021-1032.
[http://dx.doi.org/10.1016/j.biopha.2017.08.135] [PMID: 28922719]
[41]
Fakhri, S.; Iranpanah, A.; Gravandi, M.M.; Moradi, S.Z.; Ranjbari, M.; Majnooni, M.B.; Echeverría, J.; Qi, Y.; Wang, M.; Liao, P.; Farzaei, M.H.; Xiao, J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. Phytomedicine, 2021, 91, 153664.
[http://dx.doi.org/10.1016/j.phymed.2021.153664] [PMID: 34391082]
[42]
Mariadoss, A.V.A.; Vinyagam, R.; Rajamanickam, V.; Sankaran, V.; Venkatesan, S.; David, E. Pharmacological aspects and potential use of phloretin: A systemic review. Mini Rev. Med. Chem., 2019, 19(13), 1060-1067.
[http://dx.doi.org/10.2174/1389557519666190311154425] [PMID: 30864525]
[43]
Kamdi, S.P.; Raval, A.; Nakhate, K.T. Phloridzin attenuates lipopolysaccharide-induced cognitive impairment via antioxidant, anti-inflammatory and neuromodulatory activities. Cytokine, 2021, 139, 155408.
[http://dx.doi.org/10.1016/j.cyto.2020.155408] [PMID: 33476914]
[44]
Cirmi, S.; Maugeri, A.; Lombardo, G.E.; Russo, C.; Musumeci, L.; Gangemi, S.; Calapai, G.; Barreca, D.; Navarra, M. A flavonoid-rich extract of mandarin juice counteracts 6-OHDA-induced oxidative stress in SH-SY5Y cells and modulates Parkinson-related genes. Antioxidants, 2021, 10(4), 539.
[http://dx.doi.org/10.3390/antiox10040539] [PMID: 33808343]
[45]
Xiang, Q.; Li, M.; Wen, J.; Ren, F.; Yang, Z.; Jiang, X.; Chen, Y. The bioactivity and applications of pomegranate peel extract: A review. J. Food Biochem., 2022, 46(7), e14105.
[http://dx.doi.org/10.1111/jfbc.14105] [PMID: 35128669]
[46]
Thapliyal, S.; Singh, T.; Handu, S.; Bisht, M.; Kumari, P.; Arya, P.; Srivastava, P.; Gandham, R. A review on potential footprints of ferulic acid for treatment of neurological disorders. Neurochem. Res., 2021, 46(5), 1043-1057.
[http://dx.doi.org/10.1007/s11064-021-03257-6] [PMID: 33547615]
[47]
Sakamula, R.; Thong-asa, W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab. Brain Dis., 2018, 33(3), 765-773.
[http://dx.doi.org/10.1007/s11011-018-0185-7] [PMID: 29344828]
[48]
Payne, A.; Nahashon, S.; Taka, E.; Adinew, G.M.; Soliman, K.F.A. Epigallocatechin-3-gallate (EGCG): New therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules, 2022, 12(3), 371.
[http://dx.doi.org/10.3390/biom12030371] [PMID: 35327563]
[49]
Huang, D. Dietary antioxidants and health promotion. Antioxidants, 2018, 7(1), 9.
[http://dx.doi.org/10.3390/antiox7010009] [PMID: 29329195]
[50]
Ngabirano, L.; Samieri, C.; Feart, C.; Gabelle, A.; Artero, S.; Duflos, C.; Berr, C.; Mura, T. Intake of meat, fish, fruits, and vegetables and long-term risk of dementia and Alzheimer’s disease. J. Alzheimers Dis., 2019, 68(2), 711-722.
[http://dx.doi.org/10.3233/JAD-180919] [PMID: 30883348]
[51]
Pal, D.I.; Verma, P.R. Flavonoids: A powerful and abundant source of antioxidants. Int. J. Pharm. Pharm. Sci., 2019, 5(3), 95-98.
[52]
Lange, K.W.; Lange, K.M.; Nakamura, Y. Green tea, epigallocatechin gallate and the prevention of Alzheimer’s disease: Clinical evidence. Food Sci. Hum. Wellness, 2022, 11(4), 765-770.
[http://dx.doi.org/10.1016/j.fshw.2022.03.002]
[53]
Li, Y.; Yang, P.; Luo, Y.; Gao, B.; Sun, J.; Lu, W.; Liu, J.; Chen, P.; Zhang, Y.; Yu, L.L. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem., 2019, 286, 8-16.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.013] [PMID: 30827670]
[54]
Carrillo, J.Á.; Zafrilla, M.P.; Marhuenda, J. Cognitive function and consumption of fruit and vegetable polyphenols in a young population: Is there a relationship? Foods, 2019, 8(10), 507.
[http://dx.doi.org/10.3390/foods8100507] [PMID: 31627296]
[55]
Godos, J.; Marventano, S.; Mistretta, A.; Galvano, F.; Grosso, G. Dietary sources of polyphenols in the mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr., 2017, 68(6), 750-756.
[http://dx.doi.org/10.1080/09637486.2017.1285870] [PMID: 28276907]
[56]
Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/316523] [PMID: 23983897]
[57]
El Gaamouch, F.; Liu, K.; Lin, H.; Wu, C.; Wang, J. Development of grape polyphenols as multi-targeting strategies for Alzheimer’s disease. Neurochem. Int., 2021, 147, 105046.
[http://dx.doi.org/10.1016/j.neuint.2021.105046] [PMID: 33872681]
[58]
Sensi, S.L.; Granzotto, A.; Siotto, M.; Squitti, R. Copper and zinc dysregulation in Alzheimer’s disease. Trends Pharmacol. Sci., 2018, 39(12), 1049-1063.
[http://dx.doi.org/10.1016/j.tips.2018.10.001] [PMID: 30352697]
[59]
Khan, I.; Yousif, A.M.; Johnson, S.K.; Gamlath, S. Acute effect of sorghum flour-containing pasta on plasma total polyphenols, antioxidant capacity and oxidative stress markers in healthy subjects: A randomised controlled trial. Clin. Nutr., 2015, 34(3), 415-421.
[http://dx.doi.org/10.1016/j.clnu.2014.08.005] [PMID: 25175757]
[60]
Yadav, R.P.; Mhatre, S.V.; Bhagit, A.A. Pancreatic lipase inhibitor from food plant: Potential molecule for development of safe anti-obesity drug. MGM J. Medi. Sci., 2016, 3(1), 34-41.
[http://dx.doi.org/10.5005/jp-journals-10036-1084]
[61]
Shoji, T.; Yamada, M.; Miura, T.; Nagashima, K.; Ogura, K.; Inagaki, N.; Maeda-Yamamoto, M. Chronic administration of apple polyphenols ameliorates hyperglycaemia in high-normal and borderline subjects: A randomised, placebo-controlled trial. Diabetes Res. Clin. Pract., 2017, 129, 43-51.
[http://dx.doi.org/10.1016/j.diabres.2017.03.028] [PMID: 28505543]
[62]
Ude, C.; Schubert-Zsilavecz, M.; Wurglics, M. Ginkgo biloba extracts: A review of the pharmacokinetics of the active ingredients. Clin. Pharmacokinet., 2013, 52(9), 727-749.
[http://dx.doi.org/10.1007/s40262-013-0074-5] [PMID: 23703577]
[63]
Abdel-Kader, R.; Hauptmann, S.; Keil, U.; Scherping, I.; Leuner, K.; Eckert, A.; Müller, W.E. Stabilization of mitochondrial function by Ginkgo biloba extract (EGb 761). Pharmacol. Res., 2007, 56(6), 493-502.
[http://dx.doi.org/10.1016/j.phrs.2007.09.011] [PMID: 17977008]
[64]
Wang, W.; Nakashima, K.; Hirai, T.; Inoue, M. Neuroprotective effect of naturally occurring RXR agonists isolated from Sophora tonkinensis Gagnep. on amyloid-β-induced cytotoxicity in PC12 cells. J. Nat. Med., 2019, 73(1), 154-162.
[http://dx.doi.org/10.1007/s11418-018-1257-z] [PMID: 30377903]
[65]
Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; Granato, D. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci., 2021, 42, 167-186.
[http://dx.doi.org/10.1016/j.cofs.2021.06.003]
[66]
Daroi, P.A.; Dhage, S.N.; Juvekar, A.R. p-Coumaric acid mitigates lipopolysaccharide induced brain damage via alleviating oxidative stress, inflammation and apoptosis. J. Pharm. Pharmacol., 2022, 74(4), 556-564.
[http://dx.doi.org/10.1093/jpp/rgab077] [PMID: 34190326]
[67]
Sharma, P.; Kumari, S.; Sharma, J.; Purohit, R.; Singh, D. Hesperidin interacts with CREB-BDNF signaling pathway to suppress pentylenetetrazole-induced convulsions in zebrafish. Front. Pharmacol., 2021, 11, 607797.
[http://dx.doi.org/10.3389/fphar.2020.607797] [PMID: 33505312]
[68]
Hegazy, W.; Abdel-Moneim, A.; Abdel-Rehiem, E.S.; Salah, M.; Abdul-Hamid, M. The protective effect of hesperidin on the liver of hypothyroid rats mediated by nuclear factor erythroid 2-related factor 2-dependent activation of heme oxygenase 1. J. Mol. Histol., 2022, 53(3), 543-560.
[http://dx.doi.org/10.1007/s10735-022-10066-w] [PMID: 35224714]
[69]
Hedhli, N.; Depre, C. Proteasome inhibitors and cardiac cell growth. Cardiovasc. Res., 2010, 85(2), 321-329.
[http://dx.doi.org/10.1093/cvr/cvp226] [PMID: 19578073]
[70]
Rainey-Smith, S.; Schroetke, L.W.; Bahia, P.; Fahmi, A.; Skilton, R.; Spencer, J.P.E.; Rice-Evans, C.; Rattray, M.; Williams, R.J. Neuroprotective effects of hesperetin in mouse primary neurones are independent of CREB activation. Neurosci. Lett., 2008, 438(1), 29-33.
[http://dx.doi.org/10.1016/j.neulet.2008.04.056] [PMID: 18467030]
[71]
Noshy, P.A.; Azouz, R.A. Neuroprotective effect of hesperidin against emamectin benzoate-induced neurobehavioral toxicity in rats. Neurotoxicol. Teratol., 2021, 86, 106981.
[http://dx.doi.org/10.1016/j.ntt.2021.106981] [PMID: 33838246]
[72]
Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules, 2019, 24(3), 648.
[http://dx.doi.org/10.3390/molecules24030648] [PMID: 30759833]
[73]
Nowak, D.; Gośliński, M.; Wojtowicz, E.; Przygoński, K. Antioxidant properties and phenolic compounds of vitamin C-rich juices. J. Food Sci., 2018, 83(8), 2237-2246.
[http://dx.doi.org/10.1111/1750-3841.14284] [PMID: 30044505]
[74]
Adedara, A.O.; Babalola, A.D.; Stephano, F.; Awogbindin, I.O.; Olopade, J.O.; Rocha, J.B.T.; Whitworth, A.J.; Abolaji, A.O. An assessment of the rescue action of resveratrol in parkin loss of function-induced oxidative stress in Drosophila melanogaster. Sci. Rep., 2022, 12(1), 3922.
[http://dx.doi.org/10.1038/s41598-022-07909-7] [PMID: 35273283]
[75]
Wierman, M.B.; Smith, J.S. Yeast sirtuins and the regulation of aging. FEMS Yeast Res., 2014, 14(1), 73-88.
[http://dx.doi.org/10.1111/1567-1364.12115] [PMID: 24164855]
[76]
Wang, G.; Hu, Z.; Fu, Q.; Song, X.; Cui, Q.; Jia, R.; Zou, Y.; He, C.; Li, L.; Yin, Z. Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-κBp65/MAPKs signaling cascade. Sci. Rep., 2017, 7(1), 45006.
[http://dx.doi.org/10.1038/srep45006] [PMID: 28322346]
[77]
Reitz, C. Alzheimer’s disease and the amyloid cascade hypothesis: A critical review. Int. J. Alzheimers Dis., 2012, 2012, 369808.
[http://dx.doi.org/10.1155/2012/369808] [PMID: 22506132]
[78]
Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. (Lond.), 2016, 16(3), 247-253.
[http://dx.doi.org/10.7861/clinmedicine.16-3-247] [PMID: 27251914]
[79]
Kumar, J.; Namsechi, R.; Sim, V.L. Structure-based peptide design to modulate amyloid beta aggregation and reduce cytotoxicity. PLoS One, 2015, 10(6), e0129087.
[http://dx.doi.org/10.1371/journal.pone.0129087] [PMID: 26070139]
[80]
Huang, T.C.; Lu, K.T.; Wo, Y.Y.P.; Wu, Y.J.; Yang, Y.L. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One, 2011, 6(12), e29102.
[http://dx.doi.org/10.1371/journal.pone.0029102] [PMID: 22220203]
[81]
Subedi, L.; Ji, E.; Shin, D.; Jin, J.; Yeo, J.; Kim, S. Equol, a dietary daidzein gut metabolite attenuates microglial activation and potentiates neuroprotection in vitro. Nutrients, 2017, 9(3), 207.
[http://dx.doi.org/10.3390/nu9030207] [PMID: 28264445]
[82]
Fang, X.; Zhang, J.; Zhao, J.; Wang, L. Effect of resveratrol combined with donepezil hydrochloride on inflammatory factor level and cognitive function level of patients with Alzheimer’s disease. J. Healthc. Eng., 2022, 2022, 9148650.
[http://dx.doi.org/10.1155/2022/9148650] [PMID: 35368930]
[83]
Rege, S.; Geetha, T.; Broderick, T.; Babu, J. Resveratrol protects β amyloid-induced oxidative damage and memory associated proteins in H19-7 hippocampal neuronal cells. Curr. Alzheimer Res., 2015, 12(2), 147-156.
[http://dx.doi.org/10.2174/1567205012666150204130009] [PMID: 25654502]
[84]
Takahashi, S.; Nakashima, Y. Repeated and long-term treatment with physiological concentrations of resveratrol promotes NO production in vascular endothelial cells. Br. J. Nutr., 2012, 107(6), 774-780.
[http://dx.doi.org/10.1017/S0007114511003588] [PMID: 21791144]
[85]
Jang, M.; Cho, E.J.; Piao, X.L. Protective effects of resveratrol oligomers from Vitis amurensis against sodium nitroprusside-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. Arch. Pharm. Res., 2015, 38(6), 1263-1269.
[http://dx.doi.org/10.1007/s12272-014-0505-3] [PMID: 25348868]
[86]
Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors, 2022, 48(3), 611-633.
[http://dx.doi.org/10.1002/biof.1831] [PMID: 35229925]
[87]
Chertoff, M. Protein malnutrition and brain development. Brain Disord. Ther., 2015, 4(3), 1-6.
[http://dx.doi.org/10.4172/2168-975X.1000171]
[88]
Maiti, P.; Paladugu, L.; Dunbar, G.L. Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the 5xFAD mouse model of Alzheimer’s disease. BMC Neurosci., 2018, 19(1), 7.
[http://dx.doi.org/10.1186/s12868-018-0406-3] [PMID: 29471781]
[89]
Subedi, L.; Gaire, B.P. Neuroprotective effects of curcumin in cerebral ischemia: Cellular and molecular mechanisms. ACS Chem. Neurosci., 2021, 12(14), 2562-2572.
[http://dx.doi.org/10.1021/acschemneuro.1c00153] [PMID: 34251185]
[90]
Huang, L.; Chen, C.; Zhang, X.; Li, X.; Chen, Z.; Yang, C.; Liang, X.; Zhu, G.; Xu, Z. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J. Mol. Neurosci., 2018, 64(1), 129-139.
[http://dx.doi.org/10.1007/s12031-017-1006-x] [PMID: 29243061]
[91]
Buratta, S.; Chiaradia, E.; Tognoloni, A.; Gambelunghe, A.; Meschini, C.; Palmieri, L.; Muzi, G.; Urbanelli, L.; Emiliani, C.; Tancini, B. Effect of curcumin on protein damage induced by rotenone in dopaminergic PC12 cells. Int. J. Mol. Sci., 2020, 21(8), 2761.
[http://dx.doi.org/10.3390/ijms21082761] [PMID: 32316110]
[92]
Gugliandolo, A.; Bramanti, P.; Mazzon, E. Role of vitamin E in the treatment of Alzheimer’s disease: Evidence from animal models. Int. J. Mol. Sci., 2017, 18(12), 2504.
[http://dx.doi.org/10.3390/ijms18122504] [PMID: 29168797]
[93]
Álvarez, S.A.; Rocha-Guzmán, N.E.; González-Laredo, R.F.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; Bravo-Muñoz, M. Ancestral food sources rich in polyphenols, their metabolism, and the potential influence of gut microbiota in the management of depression and anxiety. J. Agric. Food Chem., 2022, 70(4), 944-956.
[http://dx.doi.org/10.1021/acs.jafc.1c06151] [PMID: 35041424]
[94]
Zhang, Z.X.; Li, Y.B.; Zhao, R.P. Epigallocatechin gallate attenuates β-amyloid generation and oxidative stress involvement of PPARγ in N2a/APP695 cells. Neurochem. Res., 2017, 42(2), 468-480.
[http://dx.doi.org/10.1007/s11064-016-2093-8] [PMID: 27889855]
[95]
Parhi, B.; Bharatiya, D.; Swain, S.K. Application of quercetin flavonoid based hybrid nanocomposites: A review. Saudi Pharm. J., 2020, 28(12), 1719-1732.
[http://dx.doi.org/10.1016/j.jsps.2020.10.017] [PMID: 33424263]
[96]
Hassan, H.A.; El-Gharib, N.E. Obesity and clinical riskiness relationship: Therapeutic management by dietary antioxidant supplementation - a review. Appl. Biochem. Biotechnol., 2015, 176(3), 647-669.
[http://dx.doi.org/10.1007/s12010-015-1602-6] [PMID: 25864185]
[97]
Chen, K.; Lu, H.; Gao, T.; Xue, X.; Wang, C.; Miao, F. Synergic interaction between amyloid precursor protein and neural cell adhesion molecule promotes neurite outgrowth. Oncotarget, 2016, 7(12), 14199-14206.
[http://dx.doi.org/10.18632/oncotarget.7348] [PMID: 26883101]
[98]
Plácido, A.I.; Pereira, C.M.F.; Duarte, A.I.; Candeias, E.; Correia, S.C.; Santos, R.X.; Carvalho, C.; Cardoso, S.; Oliveira, C.R.; Moreira, P.I. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implications for Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(9), 1444-1453.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.003] [PMID: 24832819]
[99]
Pardossi-Piquard, R.; Checler, F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J. Neurochem., 2012, 120(S1), 109-124.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07475.x] [PMID: 22122663]
[100]
Lieberknecht, V.; Engel, D.; Rodrigues, A.L.S.; Gabilan, N.H. Neuroprotective effects of mirtazapine and imipramine and their effect in pro- and anti-apoptotic gene expression in human neuroblastoma cells. Pharmacol. Rep., 2020, 72(3), 563-570.
[http://dx.doi.org/10.1007/s43440-019-00009-w] [PMID: 32240535]
[101]
Ordonez, D.; Valencia, A.; Chang, N.B.; Wanielista, M.P. Synergistic effects of aluminum/iron oxides and clay minerals on nutrient removal and recovery in water filtration media. J. Clean. Prod., 2020, 275, 122728.
[http://dx.doi.org/10.1016/j.jclepro.2020.122728]
[102]
Zhao, G.; Rusche, L.N. Sirtuins in epigenetic silencing and control of gene expression in model and pathogenic fungi. Annu. Rev. Microbiol., 2022, 76(1), 157-178.
[http://dx.doi.org/10.1146/annurev-micro-041020-100926] [PMID: 35609947]
[103]
Villalba, J.M.; Alcaín, F.J. Sirtuin activators and inhibitors. Biofactors, 2012, 38(5), 349-359.
[http://dx.doi.org/10.1002/biof.1032] [PMID: 22730114]
[104]
Moon, J.H.; Lee, J.H.; Nazim, U.M.; Lee, Y.J.; Seol, J.W.; Eo, S.K.; Lee, J.H.; Park, S.Y. Human prion protein-induced autophagy flux governs neuron cell damage in primary neuron cells. Oncotarget, 2016, 7(21), 29989-30002.
[http://dx.doi.org/10.18632/oncotarget.8802] [PMID: 27102156]
[105]
Torres, G.; Dileo, J.N.; Hallas, B.H.; Horowitz, J.M.; Leheste, J.R. Silent information regulator 1 mediates hippocampal plasticity through presenilin1. Neuroscience, 2011, 179, 32-40.
[http://dx.doi.org/10.1016/j.neuroscience.2011.01.036] [PMID: 21277951]
[106]
Bordet, R.; Ouk, T.; Petrault, O.; Gelé, P.; Gautier, S.; Laprais, M.; Deplanque, D.; Duriez, P.; Staels, B.; Fruchart, J.C.; Bastide, M. PPAR: A new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem. Soc. Trans., 2006, 34(6), 1341-1346.
[http://dx.doi.org/10.1042/BST0341341] [PMID: 17073815]
[107]
Begum, A.N.; Jones, M.R.; Lim, G.P.; Morihara, T.; Kim, P.; Heath, D.D.; Rock, C.L.; Pruitt, M.A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull, K.F.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 326(1), 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455] [PMID: 18417733]
[108]
Huang, H.C.; Chang, P.; Dai, X.L.; Jiang, Z.F. Protective effects of curcumin on amyloid-β-induced neuronal oxidative damage. Neurochem. Res., 2012, 37(7), 1584-1597.
[http://dx.doi.org/10.1007/s11064-012-0754-9] [PMID: 22476982]
[109]
Tsai, Y.M.; Chien, C.F.; Lin, L.C.; Tsai, T.H. Curcumin and its nano-formulation: The kinetics of tissue distribution and blood–brain barrier penetration. Int. J. Pharm., 2011, 416(1), 331-338.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.030] [PMID: 21729743]
[110]
He, W.; Yuan, K.; Ji, B.; Han, Y.; Li, J. Protective effects of curcumin against neuroinflammation induced by Aβ25-35 in primary rat microglia: Modulation of high-mobility group box 1, toll-like receptor 4 and receptor for advanced glycation end products expression. Ann. Transl. Med., 2020, 8(4), 88.
[http://dx.doi.org/10.21037/atm.2019.12.147] [PMID: 32175381]
[111]
Low, K.J.Y.; Venkatraman, A.; Mehta, J.S.; Pervushin, K. Molecular mechanisms of amyloid disaggregation. J. Adv. Res., 2022, 36, 113-132.
[http://dx.doi.org/10.1016/j.jare.2021.05.007] [PMID: 35127169]
[112]
Trushina, N.I.; Bakota, L.; Mulkidjanian, A.Y.; Brandt, R. The evolution of tau phosphorylation and interactions. Front. Aging Neurosci., 2019, 11, 256.
[http://dx.doi.org/10.3389/fnagi.2019.00256] [PMID: 31619983]
[113]
Xu, H.; Zhou, Q.; Liu, B.; Cheng, K.W.; Chen, F.; Wang, M. Neuroprotective potential of mung bean ( Vigna radiata L.) polyphenols in Alzheimer’s disease: A Review. J. Agric. Food Chem., 2021, 69(39), 11554-11571.
[http://dx.doi.org/10.1021/acs.jafc.1c04049] [PMID: 34551518]
[114]
Caruso, G.; Godos, J.; Privitera, A.; Lanza, G.; Castellano, S.; Chillemi, A.; Bruni, O.; Ferri, R.; Caraci, F.; Grosso, G. Phenolic acids and prevention of cognitive decline: Polyphenols with a neuroprotective role in cognitive disorders and Alzheimer’s disease. Nutrients, 2022, 14(4), 819.
[http://dx.doi.org/10.3390/nu14040819] [PMID: 35215469]
[115]
Yamamoto, H.; Schoonjans, K.; Auwerx, J. Sirtuin functions in health and disease. Mol. Endocrinol., 2007, 21(8), 1745-1755.
[http://dx.doi.org/10.1210/me.2007-0079] [PMID: 17456799]
[116]
Guo, F.; Wang, X.; Liu, X. Protective effects of irigenin against 1-METHYL-4-PHENYLPYRIDINIUM -induced neurotoxicity through regulating the Keap1/Nrf2 pathway. Phytother. Res., 2021, 35(3), 1585-1596.
[http://dx.doi.org/10.1002/ptr.6926] [PMID: 33118665]
[117]
Zhu, H.; Dronamraju, V.; Xie, W.; More, S.S. Sulfur-containing therapeutics in the treatment of Alzheimer’s disease. Med. Chem. Res., 2021, 30(2), 305-352.
[http://dx.doi.org/10.1007/s00044-020-02687-1] [PMID: 33613018]
[118]
Singh, S.K.; Srivastav, S.; Castellani, R.J.; Plascencia-Villa, G.; Perry, G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics, 2019, 16(3), 666-674.
[http://dx.doi.org/10.1007/s13311-019-00767-8] [PMID: 31376068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy