Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Serotonergic 5-HT7 Receptors as Modulators of the Nociceptive System

Author(s): Rita Bardoni*

Volume 21, Issue 7, 2023

Published on: 09 March, 2023

Page: [1548 - 1557] Pages: 10

DOI: 10.2174/1570159X21666221129101800

Price: $65

Abstract

The biogenic amine serotonin modulates pain perception by activating several types of serotonergic receptors, including the 5-HT7 type. These receptors are widely expressed along the pain axis, both peripherally, on primary nociceptors, and centrally, in the spinal cord and the brain. The role of 5-HT7 receptors in modulating pain has been explored in vivo in different models of inflammatory and neuropathic pain. While most studies have reported an antinociceptive effect of 5-HT7 receptor activation, some authors have suggested a pronociceptive action. Differences in pain models, animal species and gender, receptor types, agonists, and route of administration could explain these discrepancies. In this mini-review, some of the main findings concerning the function of 5-HT7 receptors in the pain system have been presented. The expression patterns of the receptors at the different levels of the pain axis, along with the cellular mechanisms involved in their activity, have been described. Alterations in receptor expression and/or function in different pain models and the role of 5-HT7 receptors in controlling pain transmission have also been discussed. Finally, some of the future perspectives in this field have been outlined.

Keywords: Serotonin, pain, 5-HT7 receptors, spinal cord, brain, synaptic transmission, endogenous analgesia.

Graphical Abstract
[1]
Bardin, L. The complex role of serotonin and 5-HT receptors in chronic pain. Behav. Pharmacol., 2011, 22(5 and 6), 390-404.
[http://dx.doi.org/10.1097/FBP.0b013e328349aae4] [PMID: 21808193]
[2]
Heijmans, L.; Mons, M.R.; Joosten, E.A. A systematic review on descending serotonergic projections and modulation of spinal nociception in chronic neuropathic pain and after spinal cord stimulation. Mol. Pain, 2021, 17.
[http://dx.doi.org/10.1177/17448069211043965] [PMID: 34662215]
[3]
Tavares, I.; Costa-Pereira, J.T.; Martins, I. Monoaminergic and opioidergic modulation of brainstem circuits: New insights into the clinical challenges of pain treatment? Frontiers in Pain Research, 2021, 2, 696515.
[http://dx.doi.org/10.3389/fpain.2021.696515] [PMID: 35295506]
[4]
Guseva, D.; Wirth, A.; Ponimaskin, E. Cellular mechanisms of the 5-HT7 receptor-mediated signaling. Front. Behav. Neurosci., 2014, 8, 306.
[http://dx.doi.org/10.3389/fnbeh.2014.00306] [PMID: 25324743]
[5]
Kvachnina, E.; Liu, G.; Dityatev, A.; Renner, U.; Dumuis, A.; Richter, D.W.; Dityateva, G.; Schachner, M.; Voyno-Yasenetskaya, T.A.; Ponimaskin, E.G. 5-HT7 receptor is coupled to G alpha subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology. J. Neurosci., 2005, 25(34), 7821-7830.
[http://dx.doi.org/10.1523/JNEUROSCI.1790-05.2005] [PMID: 16120784]
[6]
Kobe, F.; Guseva, D.; Jensen, T.P.; Wirth, A.; Renner, U.; Hess, D.; Müller, M.; Medrihan, L.; Zhang, W.; Zhang, M.; Braun, K.; Westerholz, S.; Herzog, A.; Radyushkin, K.; El-Kordi, A.; Ehrenreich, H.; Richter, D.W.; Rusakov, D.A.; Ponimaskin, E. 5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. J. Neurosci., 2012, 32(9), 2915-2930.
[http://dx.doi.org/10.1523/JNEUROSCI.2765-11.2012] [PMID: 22378867]
[7]
Heidmann, D.E.A.; Metcalf, M.A.; Kohen, R.; Hamblin, M.W. Four 5-hydroxytryptamine7 (5-HT7) receptor isoforms in human and rat produced by alternative splicing: species differences due to altered intron-exon organization. J. Neurochem., 1997, 68(4), 1372-1381.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68041372.x] [PMID: 9084407]
[8]
Guthrie, C.R.; Murray, A.T.; Franklin, A.A.; Hamblin, M.W. Differential agonist-mediated internalization of the human 5-hydroxytryptamine 7 receptor isoforms. J. Pharmacol. Exp. Ther., 2005, 313(3), 1003-1010.
[http://dx.doi.org/10.1124/jpet.104.081919] [PMID: 15716386]
[9]
Krobert, K.; Bach, T.; Syversveen, T.; Kvingedal, A.; Levy, F. The cloned human 5-HT 7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn Schmiedebergs Arch. Pharmacol., 2001, 363(6), 620-632.
[http://dx.doi.org/10.1007/s002100000369] [PMID: 11414657]
[10]
Renner, U.; Zeug, A.; Woehler, A.; Niebert, M.; Dityatev, A.; Dityateva, G.; Gorinski, N.; Guseva, D.; Abdel-Galil, D.; Fröhlich, M.; Döring, F.; Wischmeyer, E.; Richter, D.W.; Neher, E.; Ponimaskin, E.G. Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J. Cell Sci., 2012, 125(Pt 10), jcs.101337.
[http://dx.doi.org/10.1242/jcs.101337] [PMID: 22357950]
[11]
Crispino, M.; Volpicelli, F.; Perrone-Capano, C. Role of the serotonin receptor 7 in brain plasticity: From development to disease. Int. J. Mol. Sci., 2020, 21(2), 505.
[http://dx.doi.org/10.3390/ijms21020505] [PMID: 31941109]
[12]
To, Z.P.; Bonhaus, D.W.; Eglen, R.M.; Jakeman, L.B. Characterization and distribution of putative 5-ht7 receptors in guinea-pig brain. Br. J. Pharmacol., 1995, 115(1), 107-116.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb16327.x] [PMID: 7647964]
[13]
Tsou, A.; Kosaka, A.; Bach, C.; Zuppan, P.; Yee, C.; Tom, L.; Alvarez, R.; Ramsey, S.; Bonhaus, D.W.; Stefanich, E.; Jakeman, L.; Eglen, R.M.; Chan, H.W. Cloning and expression of a 5-hydroxytryptamine7 receptor positively coupled to adenylyl cyclase. J. Neurochem., 1994, 63(2), 456-464.
[http://dx.doi.org/10.1046/j.1471-4159.1994.63020456.x] [PMID: 7518496]
[14]
Ciranna, L.; Catania, M.V. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: Physiological role and possible implications in autism spectrum disorders. Front. Cell. Neurosci., 2014, 8, 1250.
[15]
Goaillard, J.M.; Vincent, P. Serotonin suppresses the slow afterhyperpolarization in rat intralaminar and midline thalamic neurones by activating 5‐HT 7 receptors. J. Physiol., 2002, 541(2), 453-465.
[http://dx.doi.org/10.1113/jphysiol.2001.013896] [PMID: 12042351]
[16]
Siwiec, M.; Kusek, M.; Sowa, J.E.; Tokarski, K.; Hess, G. 5-HT7 receptors increase the excitability of hippocampal CA1 pyramidal neurons by inhibiting the A-type potassium current. Neuropharmacology, 2020, 177108248.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108248] [PMID: 32736087]
[17]
Chapin, E.M.; Andrade, R. A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. II. Involvement of the hyperpolarization-activated current I(h). J. Pharmacol. Exp. Ther., 2001, 297(1), 403-409.
[PMID: 11259569]
[18]
Bickmeyer, U.; Heine, M.; Manzke, T.; Richter, D.W. Differential modulation of Ih by 5-HT receptors in mouse CA1 hippocampal neurons. Eur. J. Neurosci., 2002, 16(2), 209-218.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02072.x] [PMID: 12169103]
[19]
Tang, Z.Q.; Trussell, L.O. Serotonergic regulation of excitability of principal cells of the dorsal cochlear nucleus. J. Neurosci., 2015, 35(11), 4540-4551.
[http://dx.doi.org/10.1523/JNEUROSCI.4825-14.2015] [PMID: 25788672]
[20]
Lenglet, S.; Louiset, E.; Delarue, C.; Vaudry, H.; Contesse, V. Activation of 5-HT(7) receptor in rat glomerulosa cells is associated with an increase in adenylyl cyclase activity and calcium influx through T-type calcium channels. Endocrinology, 2002, 143(5), 1748-1760.
[http://dx.doi.org/10.1210/endo.143.5.8817] [PMID: 11956157]
[21]
Andreetta, F.; Carboni, L.; Grafton, G.; Jeggo, R.; Whyment, A.D.; van den Top, M.; Hoyer, D.; Spanswick, D.; Barnes, N.M. Hippocampal 5-HT7 receptors signal phosphorylation of the GluA1 subunit to facilitate AMPA receptor mediated-neurotransmission in vitro and in vivo. Br. J. Pharmacol., 2016, 173(9), 1438-1451.
[http://dx.doi.org/10.1111/bph.13432] [PMID: 26773257]
[22]
Vasefi, M.S.; Yang, K.; Li, J.; Kruk, J.S.; Heikkila, J.J.; Jackson, M.F.; MacDonald, J.F.; Beazely, M.A. Acute 5-HT7 receptor activation increases NMDA-evoked currents and differentially alters NMDA receptor subunit phosphorylation and trafficking in hippocampal neurons. Mol. Brain, 2013, 6(1), 24.
[http://dx.doi.org/10.1186/1756-6606-6-24] [PMID: 23672716]
[23]
Matott, M.P.; Kline, D.D. Activation of 5-hydroxytriptamine 7 receptors within the rat nucleus tractus solitarii modulates synaptic properties. Brain Res., 2016, 1635, 12-26.
[http://dx.doi.org/10.1016/j.brainres.2016.01.017] [PMID: 26779891]
[24]
Tokarski, K.; Kusek, M.; Hess, G. 5-HT7 receptors modulate GABAergic transmission in rat hippocampal CA1 area. J. Physiol. Pharmacol., 2011, 62(5), 535-540.
[PMID: 22204801]
[25]
Kusek, M.; Siwiec, M.; Sowa, J.E.; Bobula, B.; Bilecki, W.; Ciurej, I.; Kaczmarczyk, M.; Kowalczyk, T.; Maćkowiak, M.; Hess, G.; Tokarski, K. 5-HT7 receptors enhance inhibitory synaptic input to principal neurons in the mouse basal amygdala. Neuropharmacology, 2021, 198108779.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108779] [PMID: 34481835]
[26]
Kawahara, F.; Saito, H.; Katsuki, H. Inhibition by 5-HT7 receptor stimulation of GABAA receptor-activated current in cultured rat suprachiasmatic neurones. J. Physiol., 1994, 478(1), 67-73.
[http://dx.doi.org/10.1113/jphysiol.1994.sp020230] [PMID: 7965836]
[27]
Costa, L.; Spatuzza, M.; D’Antoni, S.; Bonaccorso, C.M.; Trovato, C.; Musumeci, S.A.; Leopoldo, M.; Lacivita, E.; Catania, M.V.; Ciranna, L. Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X syndrome. Biol. Psychiatry, 2012, 72(11), 924-933.
[http://dx.doi.org/10.1016/j.biopsych.2012.06.008] [PMID: 22817866]
[28]
Costa, L.; Sardone, L.M.; Lacivita, E.; Leopoldo, M.; Ciranna, L. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome. Front. Behav. Neurosci., 2015, 9, 65.
[http://dx.doi.org/10.3389/fnbeh.2015.00065] [PMID: 25814945]
[29]
Lippiello, P.; Hoxha, E.; Speranza, L.; Volpicelli, F.; Ferraro, A.; Leopoldo, M.; Lacivita, E.; Perrone-Capano, C.; Tempia, F.; Miniaci, M.C. The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK. Neuropharmacology, 2016, 101, 426-438.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.019] [PMID: 26482421]
[30]
Bardoni, R. Serotonergic modulation of nociceptive circuits in spinal cord dorsal horn. Curr. Neuropharmacol., 2019, 17(12), 1133-1145.
[http://dx.doi.org/10.2174/1570159X17666191001123900] [PMID: 31573888]
[31]
Liu, Q.Q.; Yao, X.X.; Gao, S.H.; Li, R.; Li, B.J.; Yang, W.; Cui, R.J. Role of 5-HT receptors in neuropathic pain: potential therapeutic implications. Pharmacol. Res., 2020, 159104949.
[http://dx.doi.org/10.1016/j.phrs.2020.104949] [PMID: 32464329]
[32]
Brenchat, A.; Rocasalbas, M.; Zamanillo, D.; Hamon, M.; Vela, J.M.; Romero, L. Assessment of 5-HT7 receptor agonists selectivity using nociceptive and thermoregulation tests in knockout versus wild-type mice. Adv. Pharmacol. Sci., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/312041] [PMID: 22761612]
[33]
Yesilyurt, O.; Seyrek, M.; Tasdemir, S.; Kahraman, S.; Deveci, M.S.; Karakus, E.; Halici, Z.; Dogrul, A. The critical role of spinal 5-HT7 receptors in opioid and non-opioid type stress-induced analgesia. Eur. J. Pharmacol., 2015, 762, 402-410.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.020] [PMID: 25917322]
[34]
Meuser, T.; Pietruck, C.; Gabriel, A.; Xie, G.X.; Lim, K.J.; Pierce Palmer, P. 5-HT7 receptors are involved in mediating 5-HT-induced activation of rat primary afferent neurons. Life Sci., 2002, 71(19), 2279-2289.
[http://dx.doi.org/10.1016/S0024-3205(02)02011-8] [PMID: 12215375]
[35]
Brenchat, A.; Zamanillo, D.; Hamon, M.; Romero, L.; Vela, J.M. Role of peripheral versus spinal 5-HT7 receptors in the modulation of pain undersensitizing conditions. Eur. J. Pain, 2012, 16(1), 72-81.
[http://dx.doi.org/10.1016/j.ejpain.2011.07.004] [PMID: 21843960]
[36]
Yuan, X.C.; Yan, X.J.; Tian, L.X.; Guo, Y.X.; Zhao, Y.L.; Baba, S.S.; Wang, Y.Y.; Liang, L.L.; Jia, H.; Xu, L.P.; Li, L.; Lin, H.; Huo, F.Q. 5-HT7 Receptor is involved in electroacupuncture inhibition of chronic pain in the spinal cord. Front. Neurosci., 2021, 15733779.
[http://dx.doi.org/10.3389/fnins.2021.733779] [PMID: 34602973]
[37]
Brenchat, A.; Romero, L.; García, M.; Pujol, M.; Burgueño, J.; Torrens, A.; Hamon, M.; Baeyens, J.M.; Buschmann, H.; Zamanillo, D.; Vela, J.M. 5-HT7 receptor activation inhibits mechanical hypersensitivity secondary to capsaicin sensitization in mice. Pain, 2009, 141(3), 239-247.
[http://dx.doi.org/10.1016/j.pain.2008.11.009] [PMID: 19118950]
[38]
Brenchat, A.; Nadal, X.; Romero, L.; Ovalle, S.; Muro, A.; Sánchez-Arroyos, R.; Portillo-Salido, E.; Pujol, M.; Montero, A.; Codony, X.; Burgueño, J.; Zamanillo, D.; Hamon, M.; Maldonado, R.; Vela, J.M. Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity. Pain, 2010, 149(3), 483-494.
[http://dx.doi.org/10.1016/j.pain.2010.03.007] [PMID: 20399562]
[39]
Viguier, F.; Michot, B.; Kayser, V.; Bernard, J.F.; Vela, J.M.; Hamon, M.; Bourgoin, S. GABA, but not opioids, mediates the anti-hyperalgesic effects of 5-HT7 receptor activation in rats suffering from neuropathic pain. Neuropharmacology, 2012, 63(6), 1093-1106.
[http://dx.doi.org/10.1016/j.neuropharm.2012.07.023] [PMID: 22820553]
[40]
Ulugol, A.; Oltulu, C.; Gunduz, O.; Citak, C.; Carrara, R.; Shaqaqi, M.R.; Sanchez, A.M.; Dogrul, A. 5-HT7 receptor activation attenuates thermal hyperalgesia in streptozocin-induced diabetic mice. Pharmacol. Biochem. Behav., 2012, 102(2), 344-348.
[http://dx.doi.org/10.1016/j.pbb.2012.05.006] [PMID: 22609798]
[41]
Yang, J.; Bae, H.B.; Ki, H.G.; Oh, J.M.; Kim, W.M.; Lee, H.G.; Yoon, M.H.; Choi, J.I. Different role of spinal 5-HT (hydroxytryptamine)7 receptors and descending serotonergic modulation in inflammatory pain induced in formalin and carrageenan rat models. Br. J. Anaesth., 2014, 113(1), 138-147.
[http://dx.doi.org/10.1093/bja/aet336] [PMID: 24129596]
[42]
Hogendorf, A.S.; Hogendorf, A.; Popiołek-Barczyk, K.; Ciechanowska, A.; Mika, J.; Satała, G.; Walczak, M.; Latacz, G.; Handzlik, J.; Kieć-Kononowicz, K.; Ponimaskin, E.; Schade, S.; Zeug, A.; Bijata, M.; Kubicki, M.; Kurczab, R.; Lenda, T.; Staroń, J.; Bugno, R.; Duszyńska, B.; Pilarski, B.; Bojarski, A.J. Fluorinated indole-imidazole conjugates: Selective orally bioavailable 5-HT7 receptor low-basicity agonists, potential neuropathic painkillers. Eur. J. Med. Chem., 2019, 170, 261-275.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.017] [PMID: 30904783]
[43]
Rocha-González, H.I.; Meneses, A.; Carlton, S.M.; Granados-Soto, V. Pronociceptive role of peripheral and spinal 5-HT7 receptors in the formalin test. Pain, 2005, 117(1), 182-192.
[http://dx.doi.org/10.1016/j.pain.2005.06.011] [PMID: 16098671]
[44]
Amaya-Castellanos, E.; Pineda-Farias, J.B.; Castañeda-Corral, G.; Vidal-Cantú, G.C.; Murbartián, J.; Rocha-González, H.I.; Granados-Soto, V. Blockade of 5-HT7 receptors reduces tactile allodynia in the rat. Pharmacol. Biochem. Behav., 2011, 99(4), 591-597.
[http://dx.doi.org/10.1016/j.pbb.2011.06.005] [PMID: 21693130]
[45]
Dogrul, A.; Seyrek, M. Systemic morphine produce antinociception mediated by spinal 5-HT7, but not 5-HT1A and 5-HT2 receptors in the spinal cord. Br. J. Pharmacol., 2006, 149(5), 498-505.
[http://dx.doi.org/10.1038/sj.bjp.0706854] [PMID: 16921395]
[46]
Seyrek, M.; Kahraman, S.; Deveci, M.S.; Yesilyurt, O.; Dogrul, A. Systemic cannabinoids produce CB1-mediated antinociception by activation of descending serotonergic pathways that act upon spinal 5-HT7 and 5-HT2A receptors. Eur. J. Pharmacol., 2010, 649(1-3), 183-194.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.039] [PMID: 20868676]
[47]
Dogrul, A.; Seyrek, M.; Akgul, E.O.; Cayci, T.; Kahraman, S.; Bolay, H. Systemic paracetamol-induced analgesic and antihyperalgesic effects through activation of descending serotonergic pathways involving spinal 5-HT7 receptors. Eur. J. Pharmacol., 2012, 677(1-3), 93-101.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.016] [PMID: 22206817]
[48]
Lin, H.; Heo, B.H.; Kim, W.M.; Kim, Y.C.; Yoon, M.H. Antiallodynic effect of tianeptine via modulation of the 5-HT7 receptor of GABAergic interneurons in the spinal cord of neuropathic rats. Neurosci. Lett., 2015, 598, 91-95.
[http://dx.doi.org/10.1016/j.neulet.2015.05.013] [PMID: 25982324]
[49]
Sommer, C. Serotonin in pain and analgesia: actions in the periphery. Mol. Neurobiol., 2004, 30(2), 117-126.
[http://dx.doi.org/10.1385/MN:30:2:117] [PMID: 15475622]
[50]
Kayser, V.; Elfassi, I.E.; Aubel, B.; Melfort, M.; Julius, D.; Gingrich, J.A.; Hamon, M.; Bourgoin, S. Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A−/−, 5-HT1B−/−, 5-HT2A−/−, 5-HT3A−/− and 5-HTT−/− knock-out male mice. Pain, 2007, 130(3), 235-248.
[http://dx.doi.org/10.1016/j.pain.2006.11.015] [PMID: 17250964]
[51]
Bautista, D.M.; Wilson, S.R.; Hoon, M.A. Why we scratch an itch: the molecules, cells and circuits of itch. Nat. Neurosci., 2014, 17(2), 175-182.
[http://dx.doi.org/10.1038/nn.3619] [PMID: 24473265]
[52]
Hoon, M.A. Molecular dissection of itch. Curr. Opin. Neurobiol., 2015, 34, 61-66.
[http://dx.doi.org/10.1016/j.conb.2015.01.017] [PMID: 25700248]
[53]
Pierce, P.A.; Xie, G.X.; Levine, J.D.; Peroutka, S.J. 5-hydroxytryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: A polymerase chain reaction study. Neuroscience, 1996, 70(2), 553-559.
[http://dx.doi.org/10.1016/0306-4522(95)00329-0] [PMID: 8848158]
[54]
Pierce, P.A.; Xie, G.X.; Meuser, T.; Peroutka, S.J. 5-hydroxytryptamine receptor subtype messenger RNAs in human dorsal root ganglia: a polymerase chain reaction study. Neuroscience, 1997, 81(3), 813-819.
[http://dx.doi.org/10.1016/S0306-4522(97)00235-2] [PMID: 9316030]
[55]
Cardenas, C.G.; Mar, L.P.D.; Vysokanov, A.V.; Arnold, P.B.; Cardenas, L.M.; Surmeier, D.J.; Scroggs, R.S. Serotonergic modulation of hyperpolarization‐activated current in acutely isolated rat dorsal root ganglion neurons. J. Physiol., 1999, 518(2), 507-523.
[http://dx.doi.org/10.1111/j.1469-7793.1999.0507p.x] [PMID: 10381596]
[56]
Wu, S.X.; Zhu, M.; Wang, W.; Wang, Y.Y.; Li, Y.Q.; Yew, D.T. Changes of the expression of 5-HT receptor subtype mRNAs in rat dorsal root ganglion by complete Freund’s adjuvant-induced inflammation. Neurosci. Lett., 2001, 307(3), 183-186.
[http://dx.doi.org/10.1016/S0304-3940(01)01946-2] [PMID: 11438394]
[57]
Doly, S.; Fischer, J.; Brisorgueil, M.J.; Vergé, D.; Conrath, M. Pre and postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal cord: Immunocytochemical evidence. J. Comp. Neurol., 2005, 490(3), 256-269.
[http://dx.doi.org/10.1002/cne.20667] [PMID: 16082681]
[58]
Liu, X.Y.; Wu, S.X.; Wang, Y.Y.; Wang, W.; Zhou, L.; Li, Y.Q. Changes of 5-HT receptor subtype mRNAs in rat dorsal root ganglion by bee venom-induced inflammatory pain. Neurosci. Lett., 2005, 375(1), 42-46.
[http://dx.doi.org/10.1016/j.neulet.2004.10.064] [PMID: 15664120]
[59]
Ohta, T.; Ikemi, Y.; Murakami, M.; Imagawa, T.; Otsuguro, K.; Ito, S. Potentiation of transient receptor potential V1 functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons. J. Physiol., 2006, 576(3), 809-822.
[http://dx.doi.org/10.1113/jphysiol.2006.112250] [PMID: 16901936]
[60]
Morita, T.; McClain, S.P.; Batia, L.M.; Pellegrino, M.; Wilson, S.R.; Kienzler, M.A.; Lyman, K.; Olsen, A.S.B.; Wong, J.F.; Stucky, C.L.; Brem, R.B.; Bautista, D.M. HTR7 mediates serotonergic acute and chronic itch. Neuron, 2015, 87(1), 124-138.
[http://dx.doi.org/10.1016/j.neuron.2015.05.044] [PMID: 26074006]
[61]
Garraway, S.M.; Hochman, S. Pharmacological characterization of serotonin receptor subtypes modulating primary afferent input to deep dorsal horn neurons in the neonatal rat. Br. J. Pharmacol., 2001, 132(8), 1789-1798.
[http://dx.doi.org/10.1038/sj.bjp.0703983] [PMID: 11309251]
[62]
Bannister, K.; Lockwood, S.; Goncalves, L.; Patel, R.; Dickenson, A.H. An investigation into the inhibitory function of serotonin in diffuse noxious inhibitory controls in the neuropathic rat. Eur. J. Pain, 2017, 21(4), 750-760.
[http://dx.doi.org/10.1002/ejp.979] [PMID: 27891703]
[63]
Comitato, A.; Lacivita, E.; Leopoldo, M.; Bardoni, R. 5-HT7 Receptors regulate excitatory-inhibitory balance in mouse spinal cord dorsal horn. Front. Mol. Neurosci., 2022, 15946159.
[http://dx.doi.org/10.3389/fnmol.2022.946159] [PMID: 35875663]
[64]
Betelli, C.; MacDermott, A.B.; Bardoni, R. Transient, activity dependent inhibition of transmitter release from low threshold afferents mediated by GABAA receptors in spinal cord lamina III/IV. Mol. Pain, 2015, 11s12990-015-0067.
[http://dx.doi.org/10.1186/s12990-015-0067-5] [PMID: 26463733]
[65]
Terrón, J.A.; Bouchelet, I.; Hamel, E. 5-HT7 receptor mRNA expression in human trigeminal ganglia. Neurosci. Lett., 2001, 302(1), 9-12.
[http://dx.doi.org/10.1016/S0304-3940(01)01617-2] [PMID: 11278099]
[66]
Wang, X.; Hu, R.; Liang, J.; Li, Z.; Sun, W.; Pan, X. 5-HT7 Receptors are not involved in neuropeptide release in primary cultured rat trigeminal ganglion neurons. J. Mol. Neurosci., 2016, 59(2), 251-259.
[http://dx.doi.org/10.1007/s12031-016-0727-6] [PMID: 26892478]
[67]
Yang, E.J.; Han, S.K.; Park, S.J. Functional expression of 5-HT7 receptor on the substantia gelatinosa neurons of the trigeminal subnucleus caudalis in mice. Brain Res., 2014, 1543, 73-82.
[http://dx.doi.org/10.1016/j.brainres.2013.10.041] [PMID: 24516875]
[68]
Béïque, J.C.; Campbell, B.; Perring, P.; Hamblin, M.W.; Walker, P.; Mladenovic, L.; Andrade, R. Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J. Neurosci., 2004, 24(20), 4807-4817.
[http://dx.doi.org/10.1523/JNEUROSCI.5113-03.2004] [PMID: 15152041]
[69]
Demirkaya, K.; Akgün, Ö. M.; Şenel, B.; Öncel Torun, Z.; Seyrek, M.; Lacivita, E.; Leopoldo, M.; Doğrul, A. poldo, M.; Doğrul, A. Selective 5-HT7 receptor agonists LP 44 and LP 211 elicit an analgesic effect on formalin-induced orofacial pain in mice. J. Appl. Oral Sci., 2016, 24(3), 218-222.
[http://dx.doi.org/10.1590/1678-775720150563] [PMID: 27383702]
[70]
Terrón, J.A. Is the 5-HT7 receptor involved in the pathogenesis and prophylactic treatment of migraine? Eur. J. Pharmacol., 2002, 439(1-3), 1-11.
[http://dx.doi.org/10.1016/S0014-2999(02)01436-X] [PMID: 11937086]
[71]
Wang, X.; Fang, Y.; Liang, J.; Yan, M.; Hu, R.; Pan, X. 5-HT7 receptors are involved in neurogenic dural vasodilatation in an experimental model of migraine. J. Mol. Neurosci., 2014, 54(2), 164-170.
[http://dx.doi.org/10.1007/s12031-014-0268-9] [PMID: 24584680]
[72]
Wang, X.; Fang, Y.; Liang, J.; Yin, Z.; Miao, J.; Luo, N. Selective inhibition of 5-HT7 receptor reduces CGRP release in an experimental model for migraine. Headache, 2010, 50(4), 579-587.
[http://dx.doi.org/10.1111/j.1526-4610.2010.01632.x] [PMID: 20236348]
[73]
Cucchiaro, G.; Chaijale, N.; Commons, K.G. The dorsal raphe nucleus as a site of action of the antinociceptive and behavioral effects of the alpha4 nicotinic receptor agonist epibatidine. J. Pharmacol. Exp. Ther., 2005, 313(1), 389-394.
[http://dx.doi.org/10.1124/jpet.104.079368] [PMID: 15608080]
[74]
Kusek, M.; Sowa, J.; Kamińska, K.; Gołembiowska, K.; Tokarski, K.; Hess, G. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin. Front. Cell. Neurosci., 2015, 9, 324.
[http://dx.doi.org/10.3389/fncel.2015.00324] [PMID: 26347612]
[75]
Li, S.F.; Zhang, Y.Y.; Li, Y.Y.; Wen, S.; Xiao, Z. Antihyperalgesic effect of 5-HT7 receptor activation on the midbrain periaqueductal gray in a rat model of neuropathic pain. Pharmacol. Biochem. Behav., 2014, 127, 49-55.
[http://dx.doi.org/10.1016/j.pbb.2014.10.007] [PMID: 25450118]
[76]
Neumaier, J.F.; Sexton, T.J.; Yracheta, J.; Diaz, A.M.; Brownfield, M. Localization of 5-HT7 receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. J. Chem. Neuroanat., 2001, 21(1), 63-73.
[http://dx.doi.org/10.1016/S0891-0618(00)00092-2] [PMID: 11173221]
[77]
Pazos, A.; Palacios, J.M. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res., 1985, 346(2), 205-230.
[http://dx.doi.org/10.1016/0006-8993(85)90856-X] [PMID: 4052776]
[78]
Harte, S.E.; Kender, R.G.; Borszcz, G.S. Activation of 5-HT1A and 5-HT7 receptors in the parafascicular nucleus suppresses the affective reaction of rats to noxious stimulation. Pain, 2005, 113(3), 405-415.
[http://dx.doi.org/10.1016/j.pain.2004.11.023] [PMID: 15661450]
[79]
Xu, W.J.; Zhao, Y.; Huo, F.Q.; Du, J.Q.; Tang, J.S. Involvement of ventrolateral orbital cortex 5-HT1-7 receptors in 5-HT induced depression of spared nerve injury allodynia. Neuroscience, 2013, 238, 252-257.
[http://dx.doi.org/10.1016/j.neuroscience.2013.02.036] [PMID: 23485814]
[80]
Blom, S.M.; Pfister, J.P.; Santello, M.; Senn, W.; Nevian, T. Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex. J. Neurosci., 2014, 34(17), 5754-5764.
[http://dx.doi.org/10.1523/JNEUROSCI.3667-13.2014] [PMID: 24760836]
[81]
Li, X.Y.; Ko, H.G.; Chen, T.; Descalzi, G.; Koga, K.; Wang, H.; Kim, S.S.; Shang, Y.; Kwak, C.; Park, S.W.; Shim, J.; Lee, K.; Collingridge, G.L.; Kaang, B.K.; Zhuo, M. Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science, 2010, 330(6009), 1400-1404.
[http://dx.doi.org/10.1126/science.1191792] [PMID: 21127255]
[82]
Kuner, R.; Kuner, T. Cellular circuits in the brain and their modulation in acute and chronic pain. Physiol. Rev., 2021, 101(1), 213-258.
[http://dx.doi.org/10.1152/physrev.00040.2019] [PMID: 32525759]
[83]
Santello, M.; Nevian, T. Dysfunction of cortical dendritic integration in neuropathic pain reversed by serotoninergic neuromodulation. Neuron, 2015, 86(1), 233-246.
[http://dx.doi.org/10.1016/j.neuron.2015.03.003] [PMID: 25819610]
[84]
Santello, M.; Bisco, A.; Nevian, N.E.; Lacivita, E.; Leopoldo, M.; Nevian, T. The brain-penetrant 5-HT7 receptor agonist LP-211 reduces the sensory and affective components of neuropathic pain. Neurobiol. Dis., 2017, 106, 214-221.
[http://dx.doi.org/10.1016/j.nbd.2017.07.005] [PMID: 28690143]
[85]
Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Williams, B.; Riley, J.L., III Sex, gender, and pain: a review of recent clinical and experimental findings. J. Pain, 2009, 10(5), 447-485.
[http://dx.doi.org/10.1016/j.jpain.2008.12.001] [PMID: 19411059]
[86]
Mogil, J.S. Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat. Rev. Neurosci., 2020, 21(7), 353-365.
[http://dx.doi.org/10.1038/s41583-020-0310-6] [PMID: 32440016]
[87]
El Khamlichi, C.; Reverchon, F.; Hervouet-Coste, N.; Robin, E.; Chopin, N.; Deau, E.; Madouri, F.; Guimpied, C.; Colas, C.; Menuet, A.; Inoue, A.; Bojarski, A.J.; Guillaumet, G.; Suzenet, F.; Reiter, E.; Morisset-Lopez, S. Serodolin, a β-arrestin–biased ligand of 5-HT 7 receptor, attenuates pain-related behaviors. Proc. Natl. Acad. Sci. USA, 2022, 119(21), e2118847119.
[http://dx.doi.org/10.1073/pnas.2118847119] [PMID: 35594393]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy