Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Expediting Molecular Translational Approach of Mesenchymal Stem Cells in COVID-19 Treatment

Author(s): Vignesh Balaji Easwaran, Sairaj Satarker, Tanvi V Gujaran, Jeena John, Anuranjana Putiya Veedu, Krupa Thankam George, Divya Kunhi Purayil, Fathima Beegum, Anna Mathew, RJA Vibhavari, Sneha Sunil Chaudhari and K Sreedhara Ranganath Pai*

Volume 18, Issue 5, 2023

Published on: 29 December, 2022

Page: [653 - 675] Pages: 23

DOI: 10.2174/1574888X18666221124122113

Price: $65

conference banner
Abstract

Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 with severe respiratory failure and organ damage that later appeared as a pandemic disease. Worldwide, people’s mental and physical health and socioeconomic have been affected. Currently, with no promising treatment for COVID-19, the existing anti-viral drugs and vaccines are the only hope to boost the host immune system to reduce morbidity and mortality rate. Unfortunately, several reports show that people who are partially or fully vaccinated are still susceptible to COVID-19 infection. Evidence suggests that COVID-19 immunopathology may include dysregulation of macrophages and monocytes, reduced type 1 interferons (IFN-1), and enhanced cytokine storm that results in hypersecretion of proinflammatory cytokines, capillary leak syndrome, intravascular coagulation, and acute respiratory distress syndrome (ARDS) ultimately leading to the worsening of patient’s condition and death in most cases. The recent use of cell-based therapies such as mesenchymal stem cells (MSCs) for critically ill COVID-19 patients has been authorized by the Food and Drug Administration (FDA) to alleviate cytokine release syndrome. It protects the alveolar epithelial cells by promoting immunomodulatory action and secreting therapeutic exosomes to improve lung function and attenuate respiratory failure. As a result, multiple clinical trials have been registered using MSCs that aim to use various cell sources, and dosages to promote safety and efficacy against COVID-19 infection. In this review, the possibility of using MSCs in COVID-19 treatment and its associated challenges in their use have been briefly discussed.

Keywords: Mesenchymal stem cells, COVID-19, tissue regeneration, immunomodulation, cytokine storm, exosomes.

Graphical Abstract
[1]
Tufan A, Avanoğlu GA, Matucci CM. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk J Med Sci 2020; 50(SI-1): 620-32.
[http://dx.doi.org/10.3906/sag-2004-168] [PMID: 32299202]
[2]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[3]
Satarker S, Nampoothiri M. Involvement of the nervous system in COVID-19: The bell should toll in the brain. Life Sci 2020; 262: 118568.
[http://dx.doi.org/10.1016/j.lfs.2020.118568] [PMID: 33035589]
[4]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[5]
Zhou P, Yang XL, Wang XG, et al. Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 588(7836): E6.
[http://dx.doi.org/10.1038/s41586-020-2951-z] [PMID: 33199918]
[6]
Ashraf MU, Sharif S, Ahmad MU, Zahid MN, Mukhtar H. A review on clinical, pathological characteristics and drug designing for COVID-19. Arab J Basic Appl Sci 2021; 28(1): 172-86.
[http://dx.doi.org/10.1080/25765299.2020.1836812]
[7]
Monari C, Gentile V, Camaioni C, Marino G, Coppola N, Vanvitelli CG. A focus on the nowadays potential antiviral strategies in early phase of Coronavirus Disease 2019 (COVID-19): A narrative review. Life 2020; 10(8): 146.
[http://dx.doi.org/10.3390/life10080146] [PMID: 32784922]
[8]
Sood S, Aggarwal V, Aggarwal D, et al. COVID-19 pandemic: From molecular biology, pathogenesis, detection, and treatment to global societal impact. Curr Pharmacol Rep 2020; 6(5): 212-27.
[http://dx.doi.org/10.1007/s40495-020-00229-2] [PMID: 32837855]
[9]
Mauad T, Duarte NAN, Da Silva LFF, et al. Tracking the time course of pathological patterns of lung injury in severe COVID-19. Respir Res 2021; 22(1): 32.
[http://dx.doi.org/10.1186/s12931-021-01628-9] [PMID: 33514373]
[10]
Cui X, Chen W, Zhou H, et al. Pulmonary edema in COVID-19 patients: Mechanisms and treatment potential. Front Pharmacol 2021; 12: 664349.
[http://dx.doi.org/10.3389/fphar.2021.664349] [PMID: 34163357]
[11]
Cai Q, Huang D, Yu H, et al. COVID-19: Abnormal liver function tests. J Hepatol 2020; 73(3): 566-74.
[http://dx.doi.org/10.1016/j.jhep.2020.04.006] [PMID: 32298767]
[12]
Khoury M, Ikonomou L, Dominici M, LeBlanc K, Levine BL, Weiss DJ. The coronavirus pandemic: A pitfall or a fast track for validating cell therapy products? Stem Cells Dev 2021; 30(3): 119-27.
[http://dx.doi.org/10.1089/scd.2020.0122] [PMID: 33307968]
[13]
Liu A, Zhang X, He H, et al. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opin Biol Ther 2020; 20(2): 125-40.
[http://dx.doi.org/10.1080/14712598.2020.1689954] [PMID: 31701782]
[14]
Chang C, Yan J, Yao Z, Zhang C, Li X, Mao HQ. Effects of mesenchymal stem cell‐derived paracrine signals and their delivery strategies. Adv Healthc Mater 2021; 10(7): 2001689.
[http://dx.doi.org/10.1002/adhm.202001689] [PMID: 33433956]
[15]
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019; 4(1): 22.
[http://dx.doi.org/10.1038/s41536-019-0083-6] [PMID: 31815001]
[16]
Choudhery MS, Harris DT. Stem cell therapy for COVID‐19: Possibilities and challenges. Cell Biol Int 2020; 44(11): 2182-91.
[http://dx.doi.org/10.1002/cbin.11440] [PMID: 32767687]
[17]
Almuraikhi N. Mesenchymal stem cell infusion as a promising therapeutic approach to treat coronavirus disease 2019 patients. J Nat Sci Med 2020; 3: 322-8.
[http://dx.doi.org/10.4103/JNSM.JNSM]
[18]
Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 2011; 1(6): 519-25.
[http://dx.doi.org/10.1016/j.coviro.2011.10.008] [PMID: 22328912]
[19]
Bailey CC, Zhong G, Huang IC, Farzan M. IFITM-family proteins: The cell’s first line of antiviral defense. Annu Rev Virol 2014; 1(1): 261-83.
[http://dx.doi.org/10.1146/annurev-virology-031413-085537] [PMID: 25599080]
[20]
Huang R, Qin C, Wang J, et al. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging 2019; 11(18): 7996-8014.
[http://dx.doi.org/10.18632/aging.102314] [PMID: 31575829]
[21]
Mezey É, Nemeth K. Mesenchymal stem cells and infectious diseases: Smarter than drugs. Immunol Lett 2015; 168(2): 208-14.
[http://dx.doi.org/10.1016/j.imlet.2015.05.020] [PMID: 26051681]
[22]
Li Y, Xu J, Shi W, et al. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice. Stem Cell Res Ther 2016; 7(1): 159.
[http://dx.doi.org/10.1186/s13287-016-0395-z] [PMID: 27793190]
[23]
Klimczak A, Kozlowska U. Mesenchymal stromal cells and tissue-specific progenitor cells: Their role in tissue homeostasis. Stem Cells Int 2016; 2016: 4285215.
[http://dx.doi.org/10.1155/2016/4285215] [PMID: 26823669]
[24]
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726-36.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[25]
Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet 2008; 371(9624): 1579-86.
[http://dx.doi.org/10.1016/S0140-6736(08)60690-X] [PMID: 18468541]
[26]
Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human Mesenchymal Stem Cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9(1): 12.
[http://dx.doi.org/10.1186/1478-811X-9-12] [PMID: 21569606]
[27]
Karp JM, Leng Teo GS. Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell 2009; 4(3): 206-16.
[http://dx.doi.org/10.1016/j.stem.2009.02.001] [PMID: 19265660]
[28]
Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98(5): 1076-84.
[http://dx.doi.org/10.1002/jcb.20886] [PMID: 16619257]
[29]
Harrell CR, Markovic BS, Fellabaum C, Arsenijevic N, Djonov V, Volarevic V. The role of interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. Biofactors 2019; 46(2): 263-75.
[http://dx.doi.org/10.1002/biof.1587] [PMID: 31755595]
[30]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[31]
Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and oxidative stress. Biochemistry 2020; 85(12-13): 1543-53.
[http://dx.doi.org/10.1134/S0006297920120068] [PMID: 33705292]
[32]
Maria ATJ, Toupet K, Bony C, et al. Antifibrotic, antioxidant, and immunomodulatory effects of mesenchymal stem cells in HOCl-induced systemic sclerosis. Arthritis Rheumatol 2016; 68(4): 1013-25.
[http://dx.doi.org/10.1002/art.39477] [PMID: 26474311]
[33]
Prockop DJ. The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy 2017; 19(1): 1-8.
[http://dx.doi.org/10.1016/j.jcyt.2016.09.008] [PMID: 27769637]
[34]
Wang S, Wu J, Liu GH. First stem cell transplantation to regenerate human lung. Protein Cell 2018; 9(3): 244-5.
[http://dx.doi.org/10.1007/s13238-017-0498-z] [PMID: 29302861]
[35]
Han J, Liu Y, Liu H, Li Y. Genetically modified mesenchymal stem cell therapy for acute respiratory distress syndrome. Stem Cell Res Ther 2019; 10: 386.
[http://dx.doi.org/10.1186/s13287-019-1518-0]
[36]
Dham SKGCS. Immunomodulation - clinical applications. Med J Armed Forces India 1995; 51(3): 149-50.
[http://dx.doi.org/10.1016/S0377-1237(17)30954-1] [PMID: 28769276]
[37]
Beeken LJ, Ting DSJ, Sidney LE. Potential of mesenchymal stem cells as topical immunomodulatory cell therapies for ocular surface inflammatory disorders. Stem Cells Transl Med 2021; 10(1): 39-49.
[http://dx.doi.org/10.1002/sctm.20-0118] [PMID: 32896982]
[38]
Yadav P, Vats R, Bano A, Bhardwaj R. Mesenchymal stem cell immunomodulation and regeneration therapeutics as an ameliorative approach for COVID-19 pandemics. Life Sci 2020; 263: 118588.
[http://dx.doi.org/10.1016/j.lfs.2020.118588] [PMID: 33049279]
[39]
Kavianpour M, Saleh M, Verdi J. The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm. Stem Cell Res Ther 2020; 11(1): 404.
[http://dx.doi.org/10.1186/s13287-020-01849-7] [PMID: 32948252]
[40]
Radmanesh F, Mahmoudi M, Yazdanpanah E, et al. The immunomodulatory effects of mesenchymal stromal cell‐based therapy in human and animal models of systemic lupus erythematosus. IUBMB Life 2020; 72(11): 2366-81.
[http://dx.doi.org/10.1002/iub.2387] [PMID: 33006813]
[41]
Rajarshi K, Chatterjee A, Ray S. Combating COVID-19 with mesenchymal stem cell therapy. Biotechnol Rep 2020; 26: e00467.
[http://dx.doi.org/10.1016/j.btre.2020.e00467] [PMID: 32420049]
[42]
Lei J, Wang Z, Hui D, et al. Ligation of TLR2 and TLR4 on murine bone marrow-derived mesenchymal stem cells triggers differential effects on their immunosuppressive activity. Cell Immunol 2011; 271(1): 147-56.
[http://dx.doi.org/10.1016/j.cellimm.2011.06.014] [PMID: 21757189]
[43]
Majumdar MK, Keane MM, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 2003; 10(2): 228-41.
[http://dx.doi.org/10.1007/BF02256058] [PMID: 12595759]
[44]
Dayan V, Yannarelli G, Billia F, et al. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol 2011; 106(6): 1299-310.
[http://dx.doi.org/10.1007/s00395-011-0221-9] [PMID: 21901289]
[45]
Yagi H, Soto GA, Parekkadan B, et al. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant 2010; 19(6-7): 667-79.
[http://dx.doi.org/10.3727/096368910X508762] [PMID: 20525442]
[46]
Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46-7.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[47]
Teijaro JR, Walsh KB, Rice S, Rosen H, Oldstone MBA. Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc Natl Acad Sci USA 2014; 111(10): 3799-804.
[http://dx.doi.org/10.1073/pnas.1400593111] [PMID: 24572573]
[48]
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012; 76(1): 16-32.
[http://dx.doi.org/10.1128/MMBR.05015-11] [PMID: 22390970]
[49]
Para O, D’Agostino M, Mezzasalma F. Pulmonary involvement and cytochemical storm: beyond SARS-CoV-2 pneumoniae. Ital J Med 2020; 14(4): 207-9.
[http://dx.doi.org/10.4081/itjm.2020.1401]
[50]
Wang J, Yang X, Li Y, Huang J, Jiang J, Su N. Specific cytokines in the inflammatory cytokine storm of patients with COVID-19-associated acute respiratory distress syndrome and extrapulmonary multiple-organ dysfunction. Virol J 2021; 18(1): 117.
[http://dx.doi.org/10.1186/s12985-021-01588-y] [PMID: 34088317]
[51]
Sayah W, Berkane I, Guermache I, et al. Interleukin-6, procalcitonin and neutrophil-to-lymphocyte ratio: Potential immune-inflammatory parameters to identify severe and fatal forms of COVID-19. Cytokine 2021; 141: 155428.
[http://dx.doi.org/10.1016/j.cyto.2021.155428] [PMID: 33550165]
[52]
Zawawi A, Naser AY, Alwafi H, Minshawi F. Profile of circulatory cytokines and chemokines in human coronaviruses: A systematic review and meta-analysis. Front Immunol 2021; 12: 666223.
[http://dx.doi.org/10.3389/fimmu.2021.666223] [PMID: 34046036]
[53]
Fara A, Mitrev Z, Rosalia RA, Assas BM. Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines. Open Biol 2020; 10(9): 200160.
[http://dx.doi.org/10.1098/rsob.200160] [PMID: 32961074]
[54]
Dhama K, Patel SK, Pathak M, et al. An update on SARS-CoV-2/COVID-19 with particular reference to its clinical pathology, pathogenesis, immunopathology and mitigation strategies. Travel Med Infect Dis 2020; 37: 101755.
[http://dx.doi.org/10.1016/j.tmaid.2020.101755] [PMID: 32479816]
[55]
Croce L, Gangemi D, Ancona G, et al. The cytokine storm and thyroid hormone changes in COVID-19. J Endocrinol Invest 2021; 44(5): 891-904.
[http://dx.doi.org/10.1007/s40618-021-01506-7] [PMID: 33559848]
[56]
Reghunathan R, Jayapal M, Hsu LY, et al. Expression profile of immune response genes in patients with severe acute respiratory syndrome. BMC Immunol 2005; 6(1): 2.
[http://dx.doi.org/10.1186/1471-2172-6-2] [PMID: 15655079]
[57]
Olejnik J, Hume AJ, Mühlberger E. Toll-like receptor 4 in acute viral infection: Too much of a good thing. PLoS Pathog 2018; 14(12): e1007390.
[http://dx.doi.org/10.1371/journal.ppat.1007390] [PMID: 30571771]
[58]
Satarker S, Tom AA, Shaji RA, Alosious A, Luvis M, Nampoothiri M. JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgrad Med 2021; 133(5): 489-507.
[http://dx.doi.org/10.1080/00325481.2020.1855921] [PMID: 33245005]
[59]
Coperchini F, Chiovato L, Ricci G, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved. Cytokine Growth Factor Rev 2021; 58: 82-91.
[http://dx.doi.org/10.1016/j.cytogfr.2020.12.005] [PMID: 33573850]
[60]
Rabaan AA, Al-Ahmed SH, Garout MA, et al. Diverse immunological factors influencing pathogenesis in patients with COVID-19: A review on viral dissemination, immunotherapeutic options to counter cytokine storm and inflammatory responses. Pathogens 2021; 10(5): 565.
[http://dx.doi.org/10.3390/pathogens10050565] [PMID: 34066983]
[61]
Rabaan AA, Al-Ahmed SH, Muhammad J, et al. Role of inflammatory cytokines in COVID-19 patients: A review on molecular mechanisms, immune functions, immunopathology and immunomodulatory drugs to counter cytokine storm. Vaccines 2021; 9(5): 436.
[http://dx.doi.org/10.3390/vaccines9050436] [PMID: 33946736]
[62]
Shen WX, Luo RC, Wang JQ, Chen ZS. Features of cytokine storm identified by distinguishing clinical manifestations in COVID-19. Front Public Health 2021; 9: 671788.
[http://dx.doi.org/10.3389/fpubh.2021.671788] [PMID: 34109148]
[63]
Jeyaraman M, John A, Koshy S, et al. Fostering mesenchymal stem cell therapy to halt cytokine storm in COVID-19. BBA - Mol BasisDis 2021; 1867(2): 166014.
[http://dx.doi.org/10.1016/j.bbadis.2020.166014]
[64]
Metcalfe SM. Mesenchymal stem cells and management of COVID-19 pneumonia. Med Drug Disc 2020; 5: 100019.
[http://dx.doi.org/10.1016/j.medidd.2020.100019] [PMID: 32296777]
[65]
Moradinasab S, Pourbagheri SA, Zafari P, Ghaffari SH, Bashash D. mesenchymal Stromal/Stem Cells (MSCs) and MSC-derived extracellular vesicles in COVID-19-induced ARDS: Mechanisms of action, research progress, challenges, and opportunities. Int Immunopharmacol 2021; 97: 107694.
[http://dx.doi.org/10.1016/j.intimp.2021.107694] [PMID: 33932694]
[66]
Ley K. M1 Means Kill; M2 Means Heal. J Immunol 2017; 199(7): 2191-3.
[http://dx.doi.org/10.4049/jimmunol.1701135] [PMID: 28923980]
[67]
Borges RC, Hohmann MS, Borghi SM. Dendritic cells in COVID-19 immunopathogenesis: Insights for a possible role in determining disease outcome. Int Rev Immunol 2021; 40(1-2): 108-25.
[http://dx.doi.org/10.1080/08830185.2020.1844195] [PMID: 33191813]
[68]
Iglesias M, Butrón P, Torre VI, et al. Mesenchymal stem cells for the compassionate treatment of severe acute respiratory distress syndrome due to COVID 19. Aging Dis 2021; 12(2): 360-70.
[http://dx.doi.org/10.14336/AD.2020.1218] [PMID: 33815870]
[69]
Ciferri MC, Quarto R, Tasso R. Extracellular vesicles as biomarkers and therapeutic tools: From pre-clinical to clinical applications. Biology 2021; 10: 359.
[70]
Abbasi MZ, Roushandeh AM, Kuwahara Y, Roudkenar MH. Mesenchymal stem cells on horizon: A new arsenal of therapeutic agents. Stem Cell Rev 2018; 14(4): 484-99.
[http://dx.doi.org/10.1007/s12015-018-9817-x] [PMID: 29687338]
[71]
Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun Signal 2021; 19(1): 47.
[http://dx.doi.org/10.1186/s12964-021-00730-1] [PMID: 33892745]
[72]
Shetty AK. Mesenchymal stem cell infusion shows promise for combating Coronavirus (COVID-19)- induced pneumonia. Aging Dis 2020; 11(2): 462-4.
[http://dx.doi.org/10.14336/AD.2020.0301] [PMID: 32257554]
[73]
Burnouf T, Agrahari V, Agrahari V. Extracellular vesicles as nanomedicine: Hopes and hurdles in clinical translation. Int J Nanomed 2019; 14: 8847-59.
[http://dx.doi.org/10.2147/IJN.S225453] [PMID: 32009783]
[74]
Ovchinnikova LA, Terekhov SS, Ziganshin RH, et al. Reprogramming extracellular vesicles for protein therapeutics delivery. Pharmaceutics 2021; 13(6): 768.
[http://dx.doi.org/10.3390/pharmaceutics13060768] [PMID: 34064144]
[75]
Butreddy A, Kommineni N, Dudhipala N. Exosomes as naturally occurring vehicles for delivery of biopharmaceuticals: Insights from drug delivery to clinical perspectives. Nanomaterials 2021; 11(6): 1481.
[http://dx.doi.org/10.3390/nano11061481]
[76]
Altanerova U, Jakubechova J, Repiska V, Altaner C. Exosomes of human mesenchymal stem/stromal/medicinal signaling cells. Neoplasma 2017; 64(6): 809-15.
[http://dx.doi.org/10.4149/neo_2017_601] [PMID: 28895404]
[77]
Shi J, Zhao YC, Niu ZF, et al. Mesenchymal stem cell-derived small extracellular vesicles in the treatment of human diseases: Progress and prospect. World J Stem Cells 2021; 13(1): 49-63.
[http://dx.doi.org/10.4252/wjsc.v13.i1.49]
[78]
Khalaj K, Figueira RL, Antounians L, Lauriti G, Zani A. Systematic review of extracellular vesicle‐based treatments for lung injury: Are EVs a potential therapy for COVID‐19? J Extracell Vesicles 2020; 9(1): 1795365.
[http://dx.doi.org/10.1080/20013078.2020.1795365] [PMID: 32944185]
[79]
Zhang C, Guo F, Chang M, et al. Exosome-delivered syndecan-1 rescues acute lung injury via a FAK/p190RhoGAP/RhoA/ROCK/NF-κB signaling axis and glycocalyx enhancement. Exp Cell Res 2019; 384(1): 111596.
[http://dx.doi.org/10.1016/j.yexcr.2019.111596] [PMID: 27756608]
[80]
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2(1): 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 27718095]
[81]
Matthay MA, Pati S, Jae WS, Lee M. Mesenchymal stem (stromal) cells: Biology and preclinical evidence for therapeutic po ‐ tential for organ dysfunction following Trau ‐ Ma or sepsis. Stem Cells 2017; 35(2): 316-24.
[http://dx.doi.org/10.1002/stem.2551]
[82]
Lee BC, Kang I, Yu KR. Therapeutic features and updated clinical trials of Mesenchymal Stem Cell (MSC)-derived exosomes. J Clin Med 2021; 10(4): 711.
[http://dx.doi.org/10.3390/jcm10040711] [PMID: 33670202]
[83]
Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev 2020; 29(12): 747-54.
[http://dx.doi.org/10.1089/scd.2020.0080] [PMID: 32380908]
[84]
Kong M, Zhang H, Cao X, Mao X, Lu Z. Higher level of neutrophil-to-lymphocyte is associated with severe COVID-19. Epidemiol Infect 2020; 148: e139.
[http://dx.doi.org/10.1017/S0950268820001557] [PMID: 32641174]
[85]
Qun S, Wang Y, Chen J, et al. Neutrophil-to-lymphocyte ratios are closely associated with the severity and course of non-mild COVID-19. Front Immunol 2020; 11: 2160.
[http://dx.doi.org/10.3389/fimmu.2020.02160] [PMID: 32983180]
[86]
Mirtaleb MS, Mirtaleb AH, Nosrati H, Heshmatnia J, Falak R, Zolfaghari ER. Potential therapeutic agents to COVID-19: An update review on antiviral therapy, immunotherapy, and cell therapy. Biomed Pharmacother 2021; 138: 111518.
[http://dx.doi.org/10.1016/j.biopha.2021.111518] [PMID: 33774315]
[87]
Balaji EV, Kumar N, Satarker S, Nampoothiri M. Zinc as a plausible epigenetic modulator of glioblastoma multiforme. Eur J Pharmacol 2020; 887: 173549.
[http://dx.doi.org/10.1016/j.ejphar.2020.173549] [PMID: 32926916]
[88]
Mottaqi MS, Mohammadipanah F, Sajedi H. Contribution of machine learning approaches in response to SARS-CoV-2 infection. Inform Med Unlocked 2021; 23: 100526.
[http://dx.doi.org/10.1016/j.imu.2021.100526] [PMID: 33869730]
[89]
Prasad K, Kumar V. Artificial intelligence-driven drug repurposing and structural biology for SARS-CoV-2. Curr Res Pharmacol Drug Discov 2021; 2: 100042.
[http://dx.doi.org/10.1016/j.crphar.2021.100042] [PMID: 34870150]
[90]
Abdulla A, Wang B, Qian F, et al. Project IDentif.AI: Harnessing artificial intelligence to rapidly optimize combination therapy development for infectious disease intervention. Adv Ther 2020; 3(7): 2000034.
[http://dx.doi.org/10.1002/adtp.202000034] [PMID: 32838027]
[91]
Jin C, Chen W, Cao Y, et al. Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat Commun 2020; 11(1): 5088.
[http://dx.doi.org/10.1038/s41467-020-18685-1] [PMID: 33037212]
[92]
Kwon YJF, Toussie D, Finkelstein M, et al. Combining initial radiographs and clinical variables improves deep learning prognostication in patients with COVID-19 from the emergency department. Radiol Artif Intell 2021; 3(2): e200098.
[http://dx.doi.org/10.1148/ryai.2020200098] [PMID: 33928257]
[93]
Marklein RA, Klinker MW, Drake KA, Polikowsky HG, Lessey MEC, Bauer SR. Morphological profiling using machine learning reveals emergent subpopulations of interferon-γ–stimulated mesenchymal stromal cells that predict immunosuppression. Cytotherapy 2019; 21(1): 17-31.
[http://dx.doi.org/10.1016/j.jcyt.2018.10.008] [PMID: 30503100]
[94]
Rolandsson ES, Krasnodembskaya AD, English K, Dos Santos CC, Weiss DJ. Research progress on strategies that can enhance the therapeutic benefits of mesenchymal stromal cells in respiratory diseases with a specific focus on acute respiratory distress syndrome and other inflammatory lung diseases. Front Pharmacol 2021; 12: 647652.
[http://dx.doi.org/10.3389/fphar.2021.647652]
[95]
Zhou H, Huang D, Wu X, et al. AI-assisted quantitative lung CT evaluation following umbilical cord mesenchymal stem cell treatment in severe covid-19 patients. Res Sq 2021; 1: 1-17.
[http://dx.doi.org/10.21203/rs.3.rs-370545/v1]
[96]
Hwang JJ, Rim YA, Nam Y, Ju JH. Recent developments in clinical applications of mesenchymal stem cells in the treatment of rheumatoid arthritis and osteoarthritis. Front Immunol 2021; 12: 631291.
[http://dx.doi.org/10.3389/fimmu.2021.631291] [PMID: 33763076]
[97]
Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int 2018; 2018: 3057624.
[http://dx.doi.org/10.1155/2018/3057624] [PMID: 30013600]
[98]
Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or future. Stem Cell Rev Rep 2020; 16(3): 427-33.
[http://dx.doi.org/10.1007/s12015-020-09973-w] [PMID: 32281052]
[99]
Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490-6.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[100]
Peng H, Gong T, Huang X, et al. A synergistic role of convalescent plasma and mesenchymal stem cells in the treatment of severely ill COVID-19 patients: A clinical case report. Stem Cell Res Ther 2020; 11(1): 291.
[http://dx.doi.org/10.1186/s13287-020-01802-8] [PMID: 32678017]
[101]
Afarid M, Sanie JF. Mesenchymal stem cells and COVID-19: Cure, prevention, and vaccination. Stem Cells Int 2021; 2021: 6666370.
[http://dx.doi.org/10.1155/2021/6666370] [PMID: 34035820]
[102]
Harrell CR, Jovicic BP, Djonov V, Volarevic V. Therapeutic potential of mesenchymal stem cells and their secretome in the treatment of SARS-CoV-2-induced acute respiratory distress syndrome. Anal Cell Pathol 2020; 2020: 1939768.
[http://dx.doi.org/10.1155/2020/1939768] [PMID: 33274176]
[103]
Xiao K, Hou F, Huang X, Li B, Qian ZR, Xie L. Mesenchymal stem cells: Current clinical progress in ARDS and COVID-19. Stem Cell Res Ther 2020; 11(1): 305.
[http://dx.doi.org/10.1186/s13287-020-01804-6] [PMID: 32698898]
[104]
Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: From basic to clinics. Protein Cell 2020; 11(10): 707-22.
[http://dx.doi.org/10.1007/s13238-020-00738-2] [PMID: 32519302]
[105]
Hamdan H, Hashmi SK, Lazarus H, Gale RP, Qu W, El Fakih R. Promising role for mesenchymal stromal cells in Coronavirus Infectious Disease-19 (COVID-19)-related severe acute respiratory syndrome? Blood Rev 2021; 46: 100742.
[http://dx.doi.org/10.1016/j.blre.2020.100742] [PMID: 32854985]
[106]
Xiong J, Chen L, Zhang L, Bao L, Shi Y. Mesenchymal stromal cell-based therapy: A promising approach for severe COVID-19. Cell Transplant 2021; 30.
[http://dx.doi.org/10.1177/0963689721995455] [PMID: 33650894]
[107]
Moll G, Drzeniek N, Kamhieh MJ, Geissler S, Volk HD, Reinke P. MSC therapies for COVID-19: Importance of patient coagulopathy, thromboprophylaxis, cell product quality and mode of delivery for treatment safety and efficacy. Front Immunol 2020; 11: 1091.
[http://dx.doi.org/10.3389/fimmu.2020.01091] [PMID: 32574263]
[108]
Harrell CR, Sadikot R, Pascual J, et al. Mesenchymal stem cell-based therapy of inflammatory lung diseases: Current understanding and future perspectives. Stem Cells Int 2019; 2019: 4236973.
[http://dx.doi.org/10.1155/2019/4236973] [PMID: 31191672]
[109]
DiMarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol 2013; 4: 201.
[http://dx.doi.org/10.3389/fimmu.2013.00201] [PMID: 24027567]
[110]
Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 2010; 12(1): 87-117.
[http://dx.doi.org/10.1146/annurev-bioeng-070909-105309] [PMID: 20415588]
[111]
Levy O, Kuai R, Siren EMJ, et al. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv 2020; 6(30): eaba6884.
[http://dx.doi.org/10.1126/sciadv.aba6884] [PMID: 32832666]
[112]
Zhou T, Yuan Z, Weng J, et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol 2021; 14(1): 24.
[http://dx.doi.org/10.1186/s13045-021-01037-x] [PMID: 33579329]
[113]
Salvadori M, Cesari N, Murgia A, Puccini P, Riccardi B, Dominici M. Dissecting the pharmacodynamics and pharmacokinetics of MSCs to overcome limitations in their clinical translation. Mol Ther Methods Clin Dev 2019; 14: 1-15.
[http://dx.doi.org/10.1016/j.omtm.2019.05.004] [PMID: 31236426]
[114]
Kurtz A. Mesenchymal stem cell delivery routes and fate. Int J Stem Cells 2008; 1(1): 1-7.
[http://dx.doi.org/10.15283/ijsc.2008.1.1.1] [PMID: 24855503]
[115]
Caplan H, Olson SD, Kumar A, et al. Mesenchymal stromal cell therapeutic delivery: Translational challenges to clinical application. Front Immunol 2019; 10: 1645.
[http://dx.doi.org/10.3389/fimmu.2019.01645] [PMID: 31417542]
[116]
Moll G, Ankrum JA, Kamhieh MJ, et al. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines. Trends Mol Med 2019; 25(2): 149-63.
[http://dx.doi.org/10.1016/j.molmed.2018.12.006] [PMID: 30711482]
[117]
Panasiuk A, Zak J, Panasiuk B, Prokopowicz D. Increase in expression of monocytic tissue factor (CD142) with monocytes and blood platelet activation in liver cirrhosis. Blood Coagul Fibrinolysis 2007; 18(8): 739-44.
[http://dx.doi.org/10.1097/MBC.0b013e3282ef99f6] [PMID: 17982314]
[118]
Cheung TS, Bertolino GM, Giacomini C, Bornhäuser M, Dazzi F, Galleu A. Mesenchymal stromal cells for graft versus host disease: Mechanism-based biomarkers. Front Immunol 2020; 11: 1338.
[http://dx.doi.org/10.3389/fimmu.2020.01338] [PMID: 32670295]
[119]
Berebichez FR, Montero OPR. Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos Univ Med J 2018; 18(3): 264.
[http://dx.doi.org/10.18295/squmj.2018.18.03.002] [PMID: 30607265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy