Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Neonatal Anemia

Author(s): Kendell R. German and Sandra E. Juul*

Volume 19, Issue 4, 2023

Published on: 15 December, 2022

Page: [388 - 394] Pages: 7

DOI: 10.2174/1573396319666221121140627

Price: $65

conference banner
Abstract

All neonates experience a downtrend in their hematocrit values immediately following the birth through normal falls in erythropoietin (Epo) production, transition to adult hemoglobin, and hemodilution with somatic growth. However, this drop is more pronounced in critically ill and preterm neonates and can lead to potentially pathologic anemia that impairs tissue oxygen delivery. In this review, we highlight the mechanisms underlying physiologic anemia and anemia of prematurity and briefly review the evidence for the treatment of anemia in the neonatal population, including the use of red blood cell transfusions, erythropoietic stimulating agents, and iron supplementation.

Keywords: Anemia, neonate, anemia of prematurity, erythropoietin, iron, transfusions.

Graphical Abstract
[1]
Jopling J, Henry E, Wiedmeier SE, Christensen RD. Reference ranges for hematocrit and blood hemoglobin concentration during the neo-natal period: Data from a multihospital health care system. Pediatrics 2009; 123(2): e333-7.
[http://dx.doi.org/10.1542/peds.2008-2654] [PMID: 19171584]
[2]
Christensen RD, Henry E, Jopling J, Wiedmeier SE. The CBC: Reference ranges for neonates. Semin Perinatol 2009; 33(1): 3-11.
[http://dx.doi.org/10.1053/j.semperi.2008.10.010] [PMID: 19167576]
[3]
Juul SE, Vu PT, Comstock BA, et al. Effect of high-dose erythropoietin on blood transfusions in extremely low gestational age neonates. JAMA Pediatr 2020; 174(10): 933-43.
[http://dx.doi.org/10.1001/jamapediatrics.2020.2271] [PMID: 32804205]
[4]
Yoshimoto M, Yoder MC. Birth of the blood cell. Nature 2009; 457(7231): 801-3.
[http://dx.doi.org/10.1038/457801a] [PMID: 19212393]
[5]
Palis J. Primitive and definitive erythropoiesis in mammals. Front Physiol 2014; 5: 3.
[http://dx.doi.org/10.3389/fphys.2014.00003] [PMID: 24478716]
[6]
Kumar R, Sinha S. Book Review-Avery’s Diseases of the Newborn.In: Gleason CA, Juul SE Eds Avery’s Diseases of the Newborn 10th ed Philadelphia: Elsevier. 2018; p. 1627.
[7]
Neubauer H, Cumano A, Müller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in defin-itive hematopoiesis. Cell 1998; 93(3): 397-409.
[http://dx.doi.org/10.1016/S0092-8674(00)81168-X] [PMID: 9590174]
[8]
Dieterlen-Lièvre F. Intraembryonic hematopoietic stem cells. Hematol Oncol Clin North Am 1997; 11(6): 1149-71.
[http://dx.doi.org/10.1016/S0889-8588(05)70486-X] [PMID: 9443049]
[9]
Lin CS, Lim SK, D’Agati V, Costantini F. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev 1996; 10(2): 154-64.
[http://dx.doi.org/10.1101/gad.10.2.154] [PMID: 8566749]
[10]
Christensen RD, Jopling J, Henry E, Wiedmeier SE. The erythrocyte indices of neonates, defined using data from over 12 000 patients in a multihospital health care system. J Perinatol 2008; 28(1): 24-8.
[http://dx.doi.org/10.1038/sj.jp.7211852] [PMID: 17972890]
[11]
Pearson HA, Vertrees KM. Site of binding of chromium-51 to haemoglobin. Nature 1961; 189(4769): 1019-20.
[http://dx.doi.org/10.1038/1891019a0] [PMID: 13733788]
[12]
Kuruvilla DJ, Widness JA, Nalbant D, et al. Estimation of adult and neonatal RBC lifespans in anemic neonates using RBCs labeled at several discrete biotin densities. Pediatr Res 2017; 81(6): 905-10.
[http://dx.doi.org/10.1038/pr.2017.14] [PMID: 28099421]
[13]
Ohls RK, Harcum J, Li Y, Davila G, Christensen RD. Serum erythropoietin concentrations fail to increase after significant phlebotomy losses in ill preterm infants. J Perinatol 1997; 17(6): 465-7.
[PMID: 9447534]
[14]
Keir AK, Yang J, Harrison A, Pelausa E, Shah PS, Network CN. Temporal changes in blood product usage in preterm neonates born at less than 30 weeks’ gestation in Canada. Transfusion 2015; 55(6): 1340-6.
[http://dx.doi.org/10.1111/trf.12998] [PMID: 25652740]
[15]
Bell EF, Strauss RG, Widness JA, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics 2005; 115(6): 1685-91.
[http://dx.doi.org/10.1542/peds.2004-1884] [PMID: 15930233]
[16]
Kirpalani H, Bell EF, Hintz SR, et al. Higher or Lower Hemoglobin Transfusion Thresholds for Preterm Infants. N Engl J Med 2020; 383(27): 2639-51.
[http://dx.doi.org/10.1056/NEJMoa2020248] [PMID: 33382931]
[17]
Kirpalani H, Whyte RK, Andersen C, et al. The premature infants in need of transfusion (pint) study: A randomized, controlled trial of a restrictive (LOW) versus liberal (HIGH) transfusion threshold for extremely low birth weight infants. J Pediatr 2006; 149(3): 301-307.e3.
[http://dx.doi.org/10.1016/j.jpeds.2006.05.011] [PMID: 16939737]
[18]
Bell EF. Red cell transfusion thresholds for preterm infants: Finally some answers. Arch Dis Child Fetal Neonatal Ed 2021; 102(7): 126-30.
[PMID: 33906941]
[19]
Franz AR, Engel C, Bassler D, et al. Effects of liberal vs. restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants. JAMA 2020; 324(6): 560-70.
[http://dx.doi.org/10.1001/jama.2020.10690] [PMID: 32780138]
[20]
Santos AMNd, Guinsburg R, Almeida MFBd, Procianoy RS, Leone CR, Marba STM, et al. Red blood cell transfusions are independently associated with intra-hospital mortality in very low birth weight preterm infants. J Pediatrics 2011; 159(3): 371-76-e1-3.
[21]
Mohamed A, Shah PS. Transfusion associated necrotizing enterocolitis: a meta-analysis of observational data. Pediatrics 2012; 129(3): 529-40.
[http://dx.doi.org/10.1542/peds.2011-2872] [PMID: 22351894]
[22]
Patel RM, Knezevic A, Shenvi N, et al. Association of red blood cell transfusion, anemia, and necrotizing enterocolitis in very low-birth-weight infants. JAMA 2016; 315(9): 889-97.
[http://dx.doi.org/10.1001/jama.2016.1204] [PMID: 26934258]
[23]
Paul DA, Mackley A, Novitsky A, Zhao Y, Brooks A, Locke RG. Increased odds of necrotizing enterocolitis after transfusion of red blood cells in premature infants. Pediatrics 2011; 127(4): 635-41.
[http://dx.doi.org/10.1542/peds.2010-3178] [PMID: 21402638]
[24]
Song J, Dong H, Xu F, et al. The association of severe anemia, red blood cell transfusion and necrotizing enterocolitis in neonates. PLoS One 2021; 16(7), e0254810.
[http://dx.doi.org/10.1371/journal.pone.0254810] [PMID: 34283868]
[25]
Slidsborg C, Jensen A, Forman JL, et al. Neonatal risk factors for treatment-demanding retinopathy of prematurity. Ophthalmology 2016; 123(4): 796-803.
[http://dx.doi.org/10.1016/j.ophtha.2015.12.019] [PMID: 26854038]
[26]
Sharma A, Xin Y, Chen X, Sood BG. Early prediction of moderate to severe bronchopulmonary dysplasia in extremely premature infants. Pediatr Neonatol 2020; 61(3): 290-9.
[http://dx.doi.org/10.1016/j.pedneo.2019.12.001] [PMID: 32217025]
[27]
Baer VL, Lambert DK, Henry E, Snow GL, Butler A, Christensen RD. Among very-low-birth-weight neonates is red blood cell transfusion an independent risk factor for subsequently developing a severe intraventricular hemorrhage? Transfusion 2011; 51(6): 1170-8.
[http://dx.doi.org/10.1111/j.1537-2995.2010.02980.x] [PMID: 21166684]
[28]
Del Vecchio A, Henry E, D’Amato G, et al. Instituting a program to reduce the erythrocyte transfusion rate was accompanied by reduc-tions in the incidence of bronchopulmonary dysplasia, retinopathy of prematurity and necrotizing enterocolitis. J Matern Fetal Neonatal Med 2013; 26 (Suppl. 2): 77-9.
[http://dx.doi.org/10.3109/14767058.2013.830836] [PMID: 24059559]
[29]
Dani C, Poggi C, Gozzini E, et al. Red blood cell transfusions can induce proinflammatory cytokines in preterm infants. Transfusion 2017; 57(5): 1304-10.
[http://dx.doi.org/10.1111/trf.14080] [PMID: 28295397]
[30]
Stark MJ, Keir AK, Andersen CC. Does non-transferrin bound iron contribute to transfusion related immune-modulation in preterms? Arch Dis Child Fetal Neonatal Ed 2013; 98(5): F424-9.
[http://dx.doi.org/10.1136/archdischild-2012-303353] [PMID: 23475935]
[31]
Whyte RK, Kirpalani H, Asztalos EV, et al. Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. Pediatrics 2009; 123(1): 207-13.
[http://dx.doi.org/10.1542/peds.2008-0338] [PMID: 19117884]
[32]
Shah P, Cannon DC, Lowe JR, et al. Effect of blood transfusions on cognitive development in very low birth weight infants. J Perinatol 2021; 41(6): 1412-8.
[http://dx.doi.org/10.1038/s41372-021-00997-9] [PMID: 33911186]
[33]
Vu PT, Ohls RK, Mayock DE, et al. Transfusions and neurodevelopmental outcomes in extremely low gestation neonates enrolled in the PENUT Trial: a randomized clinical trial. Pediatr Res 2021; 90(1): 109-16.
[http://dx.doi.org/10.1038/s41390-020-01273-w] [PMID: 33432157]
[34]
Hébert PC, Wells G, Tweeddale M, et al. Does transfusion practice affect mortality in critically ill patients? Transfusion Requirements in Critical Care (TRICC) Investigators and the Canadian Critical Care Trials Group. Am J Respir Crit Care Med 1997; 155(5): 1618-23.
[http://dx.doi.org/10.1164/ajrccm.155.5.9154866] [PMID: 9154866]
[35]
Niu MT, Knippen M, Simmons L, Holness LG. Transfusion-transmitted Klebsiella pneumoniae fatalities, 1995 to 2004. Transfus Med Rev 2006; 20(2): 149-57.
[http://dx.doi.org/10.1016/j.tmrv.2005.11.007] [PMID: 16565027]
[36]
Popovsky MA. Pulmonary consequences of transfusion: TRALI and TACO. Transfus Apheresis Sci 2006; 34(3): 243-4.
[http://dx.doi.org/10.1016/j.transci.2006.01.005] [PMID: 16872902]
[37]
Vamvakas EC, Blajchman MA. Transfusion-related immunomodulation (TRIM): An update. Blood Rev 2007; 21(6): 327-48.
[http://dx.doi.org/10.1016/j.blre.2007.07.003] [PMID: 17804128]
[38]
Baer VL, Henry E, Lambert DK, et al. Implementing a program to improve compliance with neonatal intensive care unit transfusion guide-lines was accompanied by a reduction in transfusion rate: a pre-post analysis within a multihospital health care system. Transfusion 2011; 51(2): 264-9.
[http://dx.doi.org/10.1111/j.1537-2995.2010.02823.x] [PMID: 20723168]
[39]
Baer VL, Lambert DK, Schmutz N, et al. Adherence to NICU transfusion guidelines: data from a multihospital healthcare system. J Perinatol 2008; 28(7): 492-7.
[http://dx.doi.org/10.1038/jp.2008.23] [PMID: 18337739]
[40]
Chen HL, Tseng HI, Lu CC, Yang SN, Fan HC, Yang RC. Effect of blood transfusions on the outcome of very low body weight preterm infants under two different transfusion criteria. Pediatr Neonatol 2009; 50(3): 110-6.
[http://dx.doi.org/10.1016/S1875-9572(09)60045-0] [PMID: 19579757]
[41]
Koury MJ, Bondurant MC, Atkinson JB. Erythropoietin control of terminal erythroid differentiation: maintenance of cell viability, produc-tion of hemoglobin, and development of the erythrocyte membrane. Blood Cells 1987; 13(1-2): 217-26.
[PMID: 3478108]
[42]
Koury MJ, Bondurant MC. The mechanism of erythropoietin action. Am J Kidney Dis 1991; 18(4) (Suppl. 1): 20-3.
[PMID: 1656733]
[43]
Yoshimura A, Misawa H. Physiology and function of the erythropoietin receptor. Curr Opin Hematol 1998; 5(3): 171-6.
[http://dx.doi.org/10.1097/00062752-199805000-00004] [PMID: 9664155]
[44]
Silva M, Grillot D, Benito A, Richard C, Nuñez G, Fernández-Luna JL. Erythropoietin can promote erythroid progenitor survival by re-pressing apoptosis through Bcl-XL and Bcl-2. Blood 1996; 88(5): 1576-82.
[http://dx.doi.org/10.1182/blood.V88.5.1576.1576] [PMID: 8781412]
[45]
Fahnenstich H, Dame C. Erythropoietin concentrations and erythropoiesis in newborns suffering from renal agenesis and congenital kid-ney diseases. Eur J Pediatr 1996; 155(3): 185-8.
[http://dx.doi.org/10.1007/BF01953935] [PMID: 8929725]
[46]
Ascensao JL, Bilgrami S, Zanjani ED. Erythropoietin. Biology and clinical applications. J Pediatr Hematol Oncol 1991; 13(4): 376-87.
[http://dx.doi.org/10.1097/00043426-199124000-00002] [PMID: 1785666]
[47]
Juul S. Erythropoietin in anemia of prematurity. J Matern Fetal Neonatal Med 2012; 25 (Suppl. 5): 80-4.
[http://dx.doi.org/10.3109/14767058.2012.716987] [PMID: 23025776]
[48]
Batchelor EK, Kapitsinou P, Pergola PE, Kovesdy CP, Jalal DI. Iron deficiency in chronic kidney disease: Updates on pathophysiology, diagnosis, and treatment. J Am Soc Nephrol 2020; 31(3): 456-68.
[http://dx.doi.org/10.1681/ASN.2019020213] [PMID: 32041774]
[49]
Smith R. Applications of darbepoietin-α, a novel erythropoiesis-stimulating protein, in oncology. Curr Opin Hematol 2002; 9(3): 228-33.
[http://dx.doi.org/10.1097/00062752-200205000-00009] [PMID: 11953669]
[50]
Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer 2001; 84 (Suppl. 1): 3-10.
[http://dx.doi.org/10.1054/bjoc.2001.1746] [PMID: 11308268]
[51]
Patel S, Ohls RK. Darbepoetin administration in term and preterm neonates. Clin Perinatol 2015; 42(3): 557-66.
[http://dx.doi.org/10.1016/j.clp.2015.04.016] [PMID: 26250917]
[52]
Warwood TL, Ohls RK, Wiedmeier SE, et al. Single-dose darbepoetin administration to anemic preterm neonates. J Perinatol 2005; 25(11): 725-30.
[http://dx.doi.org/10.1038/sj.jp.7211387] [PMID: 16151471]
[53]
Ohlsson A, Aher SM. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Libr 2020; 2(2), CD004863.
[http://dx.doi.org/10.1002/14651858.CD004863.pub6] [PMID: 32048730]
[54]
Garcia MG, Hutson AD, Christensen RD. Effect of recombinant erythropoietin on “late” transfusions in the neonatal intensive care unit: a meta-analysis. J Perinatol 2002; 22(2): 108-11.
[http://dx.doi.org/10.1038/sj.jp.7210677] [PMID: 11896514]
[55]
Aher SM, Ohlsson A. Late erythropoiesis-stimulating agents to prevent red blood cell transfusion in preterm or low birth weight infants. Cochrane Libr 2019; 2(2), CD004868.
[http://dx.doi.org/10.1002/14651858.CD004868.pub5] [PMID: 30776084]
[56]
Ohlsson A, Aher SM. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev 2006; 3(3), CD004863.
[PMID: 16856062]
[57]
Mayock DE, Xie Z, Comstock BA, Heagerty PJ, Juul SE, Consortium PENPT. High-dose erythropoietin in extremely low gestational age neonates does not alter risk of retinopathy of prematurity. Neonatology 2020; 117(5): 650-7.
[http://dx.doi.org/10.1159/000511262] [PMID: 33113526]
[58]
Juul SE. Nonerythropoietic roles of erythropoietin in the fetus and neonate. Clin Perinatol 2000; 27(3): 527-41.
[http://dx.doi.org/10.1016/S0095-5108(05)70037-3] [PMID: 10986627]
[59]
Juul SE, Yachnis AT, Rojiani AM, Christensen RD. Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr Dev Pathol 1999; 2(2): 148-58.
[http://dx.doi.org/10.1007/s100249900103] [PMID: 9949221]
[60]
Juul SE, Stallings SA, Christensen RD. Erythropoietin in the cerebrospinal fluid of neonates who sustained CNS injury. Pediatr Res 1999; 46(5): 543-7.
[http://dx.doi.org/10.1203/00006450-199911000-00009] [PMID: 10541316]
[61]
Juul SE, Yachnis AT, Christensen RD. Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev 1998; 52(3): 235-49.
[http://dx.doi.org/10.1016/S0378-3782(98)00030-9] [PMID: 9808074]
[62]
Diao M, Qu Y, Liu H, Ma Y, Lin X. Effect of carbamylated erythropoietin on neuronal apoptosis in fetal rats during intrauterine hypoxic-ischemic encephalopathy. Biol Res 2019; 52(1): 28.
[http://dx.doi.org/10.1186/s40659-019-0234-7] [PMID: 31084604]
[63]
Villa P, Bigini P, Mennini T, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 2003; 198(6): 971-5.
[http://dx.doi.org/10.1084/jem.20021067] [PMID: 12975460]
[64]
Tamura T, Aoyama M, Ukai S, Kakita H, Sobue K, Asai K. Neuroprotective erythropoietin attenuates microglial activation, including mor-phological changes, phagocytosis, and cytokine production. Brain Res 2017; 1662: 65-74.
[http://dx.doi.org/10.1016/j.brainres.2017.02.023] [PMID: 28257780]
[65]
Bailey DM, Lundby C, Berg RMG, et al. On the antioxidant properties of erythropoietin and its association with the oxidative-nitrosative stress response to hypoxia in humans. Acta Physiol (Oxf) 2014; 212(2): 175-87.
[http://dx.doi.org/10.1111/apha.12313] [PMID: 24811856]
[66]
Fischer HS, Reibel NJ, Bührer C, Dame C. Prophylactic early erythropoietin for neuroprotection in preterm infants: A meta-analysis. Pediatrics 2017; 139(5), e20164317.
[http://dx.doi.org/10.1542/peds.2016-4317] [PMID: 28557760]
[67]
Juul SE, Comstock BA, Wadhawan R, et al. A randomized trial of erythropoietin for neuroprotection in preterm infants. N Engl J Med 2020; 382(3): 233-43.
[http://dx.doi.org/10.1056/NEJMoa1907423] [PMID: 31940698]
[68]
Malla RR, Asimi R, Teli MA, Shaheen F, Bhat MA. Erythropoietin monotherapy in perinatal asphyxia with moderate to severe encephalo-pathy: a randomized placebo-controlled trial. J Perinatol 2017; 37(5): 596-601.
[http://dx.doi.org/10.1038/jp.2017.17] [PMID: 28277490]
[69]
Juul SE, Comstock BA, Heagerty PJ, et al. High-Dose Erythropoietin for Asphyxia and Encephalopathy (HEAL): A Randomized Con-trolled Trial – Background, Aims, and Study Protocol. Neonatology 2018; 113(4): 331-8.
[http://dx.doi.org/10.1159/000486820] [PMID: 29514165]
[70]
Zamora TG, Guiang SF III, Widness JA, Georgieff MK. Iron is prioritized to red blood cells over the brain in phlebotomized anemic new-born lambs. Pediatr Res 2016; 79(6): 922-8.
[http://dx.doi.org/10.1038/pr.2016.20] [PMID: 26866907]
[71]
Widdowson EM, Spray CM. Chemical development in utero. Arch Dis Child 1951; 26(127): 205-14.
[http://dx.doi.org/10.1136/adc.26.127.205] [PMID: 14857788]
[72]
American Academy of Pediatrics CoFaN. Gynecologists TACoOa. Guidelines for perinatal care, 7th Ed. 2014; Available from: http://simponline.it/wp-content/uploads/2014/11/GuidelinesforPerinatalCare.pdf
[73]
German KR, Vu PT, Comstock BA, et al. Enteral iron supplementation in infants born extremely preterm and its positive correlation with neurodevelopment; post hoc analysis of the preterm erythropoietin neuroprotection trial randomized controlled trial. The Journal of pediatrics 2021; S0022-3476(21): 00686-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy