Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Systematic Review Article

Neuronutrients and Central Nervous System: A Systematic Review

Author(s): Carlos Alberto Nogueira-de-Almeida, Idiberto José Zotarelli-Filho*, Maria Eduarda Nogueirade- Almeida, Caio Gonçalves Souza, Vitorio Luis Kemp and Williams Santos Ramos

Volume 23, Issue 1, 2023

Published on: 26 December, 2022

Page: [1 - 12] Pages: 12

DOI: 10.2174/1871524923666221121123937

open access plus

Abstract

Introduction: The brain is the most complex organ in the human body, with a high and constant demand for inputs. Adequate nutrition is essential for the complete functioning of the brain, not only due to the energy supply, mainly from carbohydrates, but also due to the adequate supply of other macronutrients and micronutrients for the synthesis of neurotransmitters and protein components. Vitamins, minerals, and other components of the diet also constitute the so-called “neuro-nutrients”.

Objective: It was to develop a systematic review to highlight key neuro-nutrients and clinical studies that direct strategies for adequate nutritional status.

Methods: The rules of the Systematic Review-PRISMA Platform were followed. The research was carried out from October 2021 to February 2022 and developed based on Scopus, PubMed, Science Direct, Scielo, and Google Scholar. The quality of the studies was based on the GRADE instrument and the risk of bias was analyzed according to the Cochrane instrument.

Results: A total of 234 articles were found and 167 articles were evaluated in full, and 118 were included and evaluated in the present study. According to the GRADE instrument, most studies (>50%) followed a controlled clinical study model and had a good methodological design. The overall assessment resulted in 54 studies with a high risk of bias to the small sample size. The most important macronutrients in neuro-nutrition are phosphatidylserine and tryptophan. Micronutrients are methyl folate, vitamins B6 and B12, magnesium, arginine, choline, and niacin.

Conclusion: The areas of neurology and psychiatry have shown great advances regarding the deepening of knowledge in prophylaxis and pathophysiology, as well as in the treatment of established diseases. The recognition of the role of nutrition as an adjunct to these processes is currently growing. The search in scientific bases for neuro nutrients reveals a great growth of publications related to this theme. In the present text, some of these nutrients were explored to verify the current state of knowledge.

Keywords: Micronutrients, macronutrients, neuronutrients, neuronutrition, central nervous system, clinical trials, brain health.

Next »
Graphical Abstract
[1]
Bourre, J.M. [The role of nutritional factors on the structure and function of the brain: an update on dietary requirements]. Rev. Neurol. (Paris), 2004, 160(8-9), 767-792.
[http://dx.doi.org/10.1016/S0035-3787(04)71032-2] [PMID: 15454864]
[2]
Hernández-Rodriguez, J.; Manjarrez-Gutiárrez, G. Macronutrients and neurotransmitter formation during brain development. Nutr. Rev., 2001, 59(8), S49-S59.
[http://dx.doi.org/10.1111/j.1753-4887.2001.tb05501.x] [PMID: 11519668]
[3]
De Masi, D. Ozio creativo; Sextante: Rio De Janeiro, 2000.
[4]
Wang, Y; Pan, Y; Li, H What is brain health and why is it important? BMJ., 2020, 371(m3683) .
[http://dx.doi.org/10.1136/bmj.m3683]
[5]
Mozzi, R.; Buratta, S.; Goracci, G. Metabolism and functions of phosphatidylserine in mammalian brain. Neurochem. Res., 2003, 28(2), 195-214.
[http://dx.doi.org/10.1023/A:1022412831330] [PMID: 12608694]
[6]
Kim, H.-Y.; Huang, B.X.; Spector, A. Phosphatidylserine in the brain: Metabolism and function. Prog. Lipid Res., 2014, 56, 1-18.
[7]
Schreiber, S.; Kampf-Sherf, O.; Gorfine, M.; Kelly, D.; Oppenheim, Y.; Lerer, B. An open trial of plant-source derived phosphatydilserine for treatment of age-related cognitive decline. Isr. J. Psychiatry Relat. Sci., 2000, 37(4), 302-307.
[PMID: 11201936]
[8]
Jorissen, B.L.; Brouns, F.; Van Boxtel, M.P.J.; Riedel, W.J. Safety of soy-derived phosphatidylserine in elderly people. Nutr. Neurosci., 2002, 5(5), 337-343.
[http://dx.doi.org/10.1080/1028415021000033802] [PMID: 12385596]
[9]
Schroeder, F. Role of membrane lipid asymmetry in aging. Neurobiol. Aging, 1984, 5(4), 323-333.
[http://dx.doi.org/10.1016/0197-4580(84)90010-1] [PMID: 6397694]
[10]
Nunzi, M.G.; Milan, F.; Guidolin, D.; Zanotti, A.; Toffano, G. Therapeutic Properties of Phosphatidylserine in the Aging Brain. In: Phospholipids: Biochemical, Pharmaceutical, and Analytical Considerations; Hanin, I.; Pepeu, G., Eds.; Springer US: Boston, MA, 1990; pp. 213-218.
[http://dx.doi.org/10.1007/978-1-4757-1364-0_17]
[11]
Toffano, G.; Bruni, A. Pharmacological properties of phospholipid liposomes. Pharmacol. Res. Commun., 1980, 12(9), 829-845.
[http://dx.doi.org/10.1016/S0031-6989(80)80046-4] [PMID: 6108574]
[12]
Glade, M.J.; Smith, K. Phosphatidylserine and the human brain. Nutrition, 2015, 31(6), 781-786.
[http://dx.doi.org/10.1016/j.nut.2014.10.014] [PMID: 25933483]
[13]
Nishizuka, Y. Turnover of inositol phospholipids and signal transduction. Science, 1984, 225(4668), 1365-1370.
[http://dx.doi.org/10.1126/science.6147898] [PMID: 6147898]
[14]
Toffano, G. The therapeutic value of phosphatidylserine effect in the aging brain. Lecithin; Springer, 1987, pp. 137-146.
[15]
Vannucchi, M.G.; Pepeu, G. Effect of phosphatidylserine on acetylcholine release and content in cortical slices from aging rats. Neurobiol. Aging, 1987, 8(5), 403-407.
[http://dx.doi.org/10.1016/0197-4580(87)90034-0] [PMID: 3683721]
[16]
Furushiro, M.; Suzuki, S.; Shishido, Y.; Sakai, M.; Yamatoya, H.; Kudo, S.; Hashimoto, S.; Yokokura, T. Effects of oral administration of soybean lecithin transphosphatidylated phosphatidylserine on impaired learning of passive avoidance in mice. Jpn. J. Pharmacol., 1997, 75(4), 447-450.
[http://dx.doi.org/10.1254/jjp.75.447] [PMID: 9469653]
[17]
Zanotti, A.; Valzelli, L.; Toffano, G. Reversal of scopolamine-induced amnesia by phosphatidylserine in rats. Psychopharmacology (Berl.), 1986, 90(2), 274-275.
[http://dx.doi.org/10.1007/BF00181257] [PMID: 3097711]
[18]
White, D. The phospholipid composition of mammalian tissues. In: Form and function of phospholipids; , 1973; pp. 441-482.
[19]
Cohen, S.A.; Mu¨ller, W.E. Age-related alterations of NMDA-receptor properties in the mouse forebrain: partial restoration by chronic phosphatidylserune treatment. Brain Res., 1992, 584(1-2), 174-180.
[http://dx.doi.org/10.1016/0006-8993(92)90892-D] [PMID: 1355390]
[20]
Borghese, C.M.; Go´mez, R.A.; Rami´rez, O.A. Phosphatidylserine increases hippocampal synaptic efficacy. Brain Res. Bull., 1993, 31(6), 697-700.
[http://dx.doi.org/10.1016/0361-9230(93)90143-Y] [PMID: 8100181]
[21]
Kugaya, A.; Sanacora, G. Beyond monoamines: Glutamatergic function in mood disorders. CNS Spectr., 2005, 10(10), 808-819.
[http://dx.doi.org/10.1017/S1092852900010403] [PMID: 16400244]
[22]
Sun, A.Y.; Sun, G.Y. Neurochemical Aspects of the Membrane Hypothesis of Aging. In: CNS Aging and its Neuropharmacology; Basel: Karger, 1979; vol. 15, pp. 34-53.
[http://dx.doi.org/10.1159/000402896]
[23]
Amaducci, L. Phosphatidylserine in the treatment of Alzheimer’s disease: results of a multicenter study. Psychopharmacol. Bull., 1988, 24(1), 130-134.
[PMID: 3290936]
[24]
Caylak, E. Biochemical and genetic analyses of childhood attention deficit/hyperactivity disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2012, 159B(6), 613-627.
[http://dx.doi.org/10.1002/ajmg.b.32077] [PMID: 22825876]
[25]
Caylak, E. The genetics of sleep disorders in humans: Narcolepsy, restless legs syndrome, and obstructive sleep apnea syndrome. Am. J. Med. Genet. A., 2009, 149A(11), 2612-2626.
[http://dx.doi.org/10.1002/ajmg.a.33087] [PMID: 19876894]
[26]
Crook, T; Bahar, H; Sudilovsky, A. Age-associated memory impairment: Diagnostic criteria and treatment strategies. Int J Neurol., 1987, 21-22, 73-82.
[27]
Crook, T.H.; Tinklenberg, J.; Yesavage, J.; Petrie, W.; Nunzi, M.G.; Massari, D.C. Effects of phosphatidylserine in age-associated memory impairment. Neurology, 1991, 41(5), 644-649.
[http://dx.doi.org/10.1212/WNL.41.5.644] [PMID: 2027477]
[28]
Kato-Kataoka, A.; Sakai, M.; Ebina, R.; Nonaka, C.; Asano, T.; Miyamori, T. Soybean-derived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints. J. Clin. Biochem. Nutr., 2010, 47(3), 246-255.
[http://dx.doi.org/10.3164/jcbn.10-62] [PMID: 21103034]
[29]
Maggioni, M.; Picotti, G.B.; Bondiolotti, G.P.; Panerai, A.; Cenacchi, T.; Nobile, P.; Brambilla, F. Effects of phosphatidylserine therapy in geriatric patients with depressive disorders. Acta Psychiatr. Scand., 1990, 81(3), 265-270.
[http://dx.doi.org/10.1111/j.1600-0447.1990.tb06494.x] [PMID: 1693032]
[30]
Palmieri, G.; Palmieri, R.; Inzoli, M.R. Double-blind controlled trial of phosphatidylserine in patients with senile mental deterioration. Clin. Trials J., 1987, 24, 73-83.
[31]
Richter, Y.; Herzog, Y.; Lifshitz, Y.; Hayun, R.; Zchut, S. The effect of soybean-derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: a pilot study. Clin. Interv. Aging., 2013, 8, 557-563.
[32]
Zhang, Y.Y.; Yang, L.Q.; Guo, L.M. Effect of phosphatidylserine on memory in patients and rats with Alzheimer’s disease. Genet. Mol. Res., 2015, 14(3), 9325-9333.
[http://dx.doi.org/10.4238/2015.August.10.13] [PMID: 26345866]
[33]
Fünfgeld, E.W.; Baggen, M.; Nedwidek, P.; Richstein, B.; Mistlberger, G. Double-blind study with phosphatidylserine (PS) in parkinsonian patients with senile dementia of Alzheimer's type (SDAT). Prog. Clin. Biol. Res., 1989, 317, 1235-1246.
[34]
Partoazar, A.; Seyyedian, Z.; Zamanian, G.; Saffari, P.M.; Muhammadnejad, A.; Dehpour, A.R.; Goudarzi, R. Neuroprotective phosphatidylserine liposomes alleviate depressive-like behavior related to stroke through neuroinflammation attenuation in the mouse hippocampus. Psychopharmacology (Berl.), 2021, 238(6), 1531-1539.
[http://dx.doi.org/10.1007/s00213-021-05783-1] [PMID: 33569644]
[35]
Baumeister, J.; Barthel, T.; Geiss, K.R.; Weiss, M. Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutr. Neurosci., 2008, 11(3), 103-110.
[http://dx.doi.org/10.1179/147683008X301478] [PMID: 18616866]
[36]
Monteleone, P.; Beinat, L.; Tanzillo, C.; Maj, M.; Kemali, D. Effects of phosphatidylserine on the neuroendocrine response to physical stress in humans. Neuroendocrinology, 1990, 52(3), 243-248.
[http://dx.doi.org/10.1159/000125593] [PMID: 2170852]
[37]
Monteleone, P.; Maj, M.; Beinat, L.; Natale, M.; Kemali, D. Blunting by chronic phosphatidylserine administration of the stress-induced activation of the hypothalamo-pituitary-adrenal axis in healthy men. Eur. J. Clin. Pharmacol., 1992, 42(4), 385-388.
[http://dx.doi.org/10.1007/BF00280123] [PMID: 1325348]
[38]
Moré, M.I.; Freitas, U.; Rutenberg, D. Positive effects of soy lecithin-derived phosphatidylserine plus phosphatidic acid on memory, cognition, daily functioning, and mood in elderly patients with Alzheimer’s disease and dementia. Adv. Ther., 2014, 31(12), 1247-1262.
[http://dx.doi.org/10.1007/s12325-014-0165-1] [PMID: 25414047]
[39]
Hirayama, S.; Terasawa, K.; Rabeler, R.; Hirayama, T.; Inoue, T.; Tatsumi, Y.; Purpura, M.; Jäger, R. The effect of phosphatidylserine administration on memory and symptoms of attention‐deficit hyperactivity disorder: A randomised, double‐blind, placebo‐controlled clinical trial. J. Hum. Nutr. Diet., 2014, 27(Suppl. 2), 284-291.
[http://dx.doi.org/10.1111/jhn.12090] [PMID: 23495677]
[40]
Food and Drug Administration (FDA). Letter Updating the Phosphatidylserine and Cognitive Function and Dementia Qualified Health Claim., 2004.
[41]
Comai, S.; Bertazzo, A.; Brughera, M.; Crotti, S. Tryptophan in health and disease. Adv. Clin. Chem., 2020, 95, 165-218.
[http://dx.doi.org/10.1016/bs.acc.2019.08.005]
[42]
Lucki, I. The spectrum of behaviors influenced by serotonin. Biol. Psychiatry, 1998, 44(3), 151-162.
[http://dx.doi.org/10.1016/S0006-3223(98)00139-5] [PMID: 9693387]
[43]
Chu, A.; Wadhwa, R. Selective Serotonin Reuptake Inhibitors. In: StatPearls; StatPearls Publishing: Treasure Island (FL), 2021.
[44]
Schwarcz, R.; Bruno, J.P.; Muchowski, P.J.; Wu, H.Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci., 2012, 13(7), 465-477.
[http://dx.doi.org/10.1038/nrn3257] [PMID: 22678511]
[45]
Ogawa, S.; Fujii, T.; Koga, N.; Hori, H.; Teraishi, T.; Hattori, K.; Noda, T.; Higuchi, T.; Motohashi, N.; Kunugi, H. Plasma Ltryptophan concentration in major depressive disorder: new data and meta-analysis. J. Clin. Psychiatry, 2014, 75(9), e906-e915.
[http://dx.doi.org/10.4088/JCP.13r08908] [PMID: 25295433]
[46]
Bradley, K.A.L.; Case, J.A.C.; Khan, O.; Ricart, T.; Hanna, A.; Alonso, C.M.; Gabbay, V. The role of the kynurenine pathway in suicidality in adolescent major depressive disorder. Psychiatry Res., 2015, 227(2-3), 206-212.
[http://dx.doi.org/10.1016/j.psychres.2015.03.031] [PMID: 25865484]
[47]
Sarris, J.; Murphy, J.; Mischoulon, D.; Papakostas, G.I.; Fava, M.; Berk, M.; Ng, C.H. Adjunctive nutraceuticals for depression: A systematic review and meta-analyses. Am. J. Psychiatry, 2016, 173(6), 575-587.
[http://dx.doi.org/10.1176/appi.ajp.2016.15091228] [PMID: 27113121]
[48]
Bravo, R.; Matito, S.; Cubero, J.; Paredes, S.D.; Franco, L.; Rivero, M.; Rodríguez, A.B.; Barriga, C. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age (Omaha), 2013, 35(4), 1277-1285.
[http://dx.doi.org/10.1007/s11357-012-9419-5] [PMID: 22622709]
[49]
Cominetti, C.; Cozzolino, S.M.F. Bases Bioquímicas e Fisiológicas da Nutrição. 2a; Manole: Barueri, 2020.
[50]
Nogueira-deAlmeida, C.A.; Pimentel, C.; Fonseca, E.B. Beyond nutrition – The impact of maternal nutrition on the health of future generations: Luiz Martins Editorial, 2019.
[51]
Moreira de Sá, R.A. Folic acid, vitamin B12 and other B-complex vitamins.Além da nutrição – The impact of maternal nutrition on the health of future generations:Luiz Martins Editorial; Nogueira-deAlmeida, C.A.; Pimentel, C.; Fonseca, E.B., Eds.; , 2019.
[52]
Lamers, Y.; Prinz-Langenohl, R.; Moser, R.; Pietrzik, K. Supplementation with [6S]-5-methyltetrahydrofolate or folic acid equally reduces plasma total homocysteine concentrations in healthy women. Am. J. Clin. Nutr., 2004, 79(3), 473-478.
[http://dx.doi.org/10.1093/ajcn/79.3.473] [PMID: 14985224]
[53]
Prinz-Langenohl, R.; Brämswig, S.; Tobolski, O.; Smulders, Y.M.; Smith, D.E.C.; Finglas, P.M.; Pietrzik, K. [6S]-5-methyltetrahydrofolate increases plasma folate more effectively than folic acid in women with the homozygous or wild-type 677C→T polymorphism of methylenetetrahydrofolate reductase. Br. J. Pharmacol., 2009, 158(8), 2014-2021.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00492.x] [PMID: 19917061]
[54]
Lamers, Y.; Prinz-Langenohl, R.; Brämswig, S.; Pietrzik, K. Red blood cell folate concentrations increase more after supplementation with [6 S]-5-methyltetrahydrofolate than with folic acid in women of childbearing age. Am. J. Clin. Nutr., 2006, 84(1), 156-161.
[http://dx.doi.org/10.1093/ajcn/84.1.156] [PMID: 16825690]
[55]
Vannucchi, H.; Monteiro, T.H. Fully recognized functions of nutrients: Folic Acid; ILSI, , Ed.; São Paulo: ILSI Brasil, 2010, p. 22.
[56]
Morris, M.S. Folate, homocysteine, and neurological function. Nutr. Clin. Care, 2002, 5(3), 124-132.
[http://dx.doi.org/10.1046/j.1523-5408.2002.t01-1-00006.x] [PMID: 12134567]
[57]
Brito, A.; Hertrampf, E.; Olivares, M.; Gaitán, D.; Sánchez, H.; Allen, L.H. Folate and vitamin B12 in human health. Chilean Med. J., 2012, 140(11), 1464-1475.
[58]
de Benoist, B. Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food Nutr. Bull., 2008, 29(Suppl. 2), S238-S244.
[http://dx.doi.org/10.1177/15648265080292S129] [PMID: 18709899]
[59]
Yeum, T.S.; Maggiolo, N.S.; Gupta, C.T.; Davis, B.J.; Nierenberg, A.A.; Sylvia, L.G. Adjunctive nutrition therapy for depression. Psychiatr. Ann., 2019, 49(1), 21-25.
[http://dx.doi.org/10.3928/00485713-20181205-02]
[60]
Sampaio, J.C.; Cabral, H.B.; Teixeira, F.L.F.; Almeida, M.Z.T. Major psychiatric disorders in contemporary times; Multicultural: Rio de Janeiro, 2019.
[61]
Jain, R.; Manning, S.; Cutler, A.J. Good, better, best: clinical scenarios for the use of L-methylfolate in patients with MDD. CNS Spectr., 2020, 25(6), 750-764.
[http://dx.doi.org/10.1017/S1092852919001469] [PMID: 31833826]
[62]
Coppen, A.; Bailey, J. Enhancement of the antidepressant action of fluoxetine by folic acid: a randomised, placebo controlled trial. J. Affect. Disord., 2000, 60(2), 121-130.
[http://dx.doi.org/10.1016/S0165-0327(00)00153-1] [PMID: 10967371]
[63]
Karakuła, H.; Opolska, A.; Kowal, A.; Domański, M.; Płotka, A.; Perzyński, J. Does diet affect our mood? The significance of folic acid and homocysteine. Pol. Merkuriusz Lek., 2009, 26(152), 136-141.
[64]
Reynolds, E.H. Methylfolate as adjunctive treatment in major depression. Am. J. Psychiatry, 2013, 170(5), 560.
[http://dx.doi.org/10.1176/appi.ajp.2013.13010084] [PMID: 23632839]
[65]
Papakostas, G.I.; Shelton, R.C.; Zajecka, J.M.; Etemad, B.; Rickels, K.; Clain, A.; Baer, L.; Dalton, E.D.; Sacco, G.R.; Schoenfeld, D.; Pencina, M.; Meisner, A.; Bottiglieri, T.; Nelson, E.; Mischoulon, D.; Alpert, J.E.; Barbee, J.G.; Zisook, S.; Fava, M. L-methylfolate as adjunctive therapy for SSRI-resistant major depression: Results of two randomized, double-blind, parallel-sequential trials. Am. J. Psychiatry, 2012, 169(12), 1267-1274.
[http://dx.doi.org/10.1176/appi.ajp.2012.11071114] [PMID: 23212058]
[66]
Kose, S.; Sayar, K. L-methylfolate in patients with treatment resistant depression: Fulfilling the goals of personalized psychopharmacological therapy. Psychiatry Clin. Psychopharmacol., 2018, 28(4), 359-362.
[http://dx.doi.org/10.1080/24750573.2018.1552401]
[67]
Hoepner, C.; McIntyre, R.; Papakostas, G. Impact of supplementation and nutritional interventions on pathogenic processes of mood disorders: A review of the evidence. Nutrients, 2021, 13(3), 767.
[http://dx.doi.org/10.3390/nu13030767] [PMID: 33652997]
[68]
Bell, I.R.; Edman, J.S.; Selhub, J.; Morrow, F.D.; Marby, D.W.; Kayne, H.L.; Cole, J.O. Plasma homocysteine in vascular disease and in nonvascular dementia of depressed elderly people. Acta Psychiatr. Scand., 1992, 86(5), 386-390.
[http://dx.doi.org/10.1111/j.1600-0447.1992.tb03285.x] [PMID: 1485529]
[69]
Clarke, R.; Smith, A.D.; Jobst, K.A.; Refsum, H.; Sutton, L.; Ueland, P.M. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol., 1998, 55(11), 1449-1455.
[http://dx.doi.org/10.1001/archneur.55.11.1449] [PMID: 9823829]
[70]
McCaddon, A.; Davies, G.; Hudson, P.; Tandy, S.; Cattell, H. Total serum homocysteine in senile dementia of Alzheimer type. Int. J. Geriatr. Psychiatry, 1998, 13(4), 235-239.
[http://dx.doi.org/10.1002/(SICI)1099-1166(199804)13:4<235::AID-GPS761>3.0.CO;2-8] [PMID: 9646150]
[71]
Snowdon, D.A.; Tully, C.L.; Smith, C.D.; Riley, K.P.; Markesbery, W.R. Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun Study. Am. J. Clin. Nutr., 2000, 71(4), 993-998.
[http://dx.doi.org/10.1093/ajcn/71.4.993] [PMID: 10731508]
[72]
Goodwin, J.S.; Goodwin, J.M.; Garry, P.J. Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA, 1983, 249(21), 2917-2921.
[http://dx.doi.org/10.1001/jama.1983.03330450047024] [PMID: 6842805]
[73]
Morris, M.S.; Jacques, P.F.; Rosenberg, I.H.; Selhub, J. Hyperhomocysteinemia associated with poor recall in the third National Health and Nutrition Examination Survey. Am. J. Clin. Nutr., 2001, 73(5), 927-933.
[http://dx.doi.org/10.1093/ajcn/73.5.927] [PMID: 11333847]
[74]
Lindeman, R.D.; Romero, L.J.; Koehler, K.M.; Liang, H.C.; LaRue, A.; Baumgartner, R.N.; Garry, P.J. Serum vitamin B12, C and folate concentrations in the New Mexico elder health survey: correlations with cognitive and affective functions. J. Am. Coll. Nutr., 2000, 19(1), 68-76.
[http://dx.doi.org/10.1080/07315724.2000.10718916] [PMID: 10682878]
[75]
Tucker, D.M.; Penland, J.G.; Sandstead, H.H.; Milne, D.B.; Heck, D.G.; Klevay, L.M. Nutrition status and brain function in aging. Am. J. Clin. Nutr., 1990, 52(1), 93-102.
[http://dx.doi.org/10.1093/ajcn/52.1.93] [PMID: 2360555]
[76]
Riggs, K.M.; Spiro, A., III; Tucker, K.; Rush, D. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am. J. Clin. Nutr., 1996, 63(3), 306-314.
[http://dx.doi.org/10.1093/ajcn/63.3.306] [PMID: 8602585]
[77]
Lehmann, M.; Regland, B.; Blennow, K.; Gottfries, C.G. Vitamin B12-B6-folate treatment improves blood-brain barrier function in patients with hyperhomocysteinaemia and mild cognitive impairment. Dement. Geriatr. Cogn. Disord., 2003, 16(3), 145-150.
[http://dx.doi.org/10.1159/000071002] [PMID: 12826740]
[78]
Coursin, D.B. Vitamin B6 and brain function in animals and man. Ann. N. Y. Acad. Sci., 1969, 166(Vitamin B6 in), 7-15.
[http://dx.doi.org/10.1111/j.1749-6632.1969.tb46369.x] [PMID: 5262034]
[79]
Moorthy, D.; Peter, I.; Scott, T.M.; Parnell, L.D.; Lai, C.Q.; Crott, J.W.; Ordovás, J.M.; Selhub, J.; Griffith, J.; Rosenberg, I.H.; Tucker, K.L.; Troen, A.M. Status of vitamins B-12 and B-6 but not of folate, homocysteine, and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults. J. Nutr., 2012, 142(8), 1554-1560.
[http://dx.doi.org/10.3945/jn.112.161828] [PMID: 22739363]
[80]
Jannusch, K.; Jockwitz, C.; Bidmon, H.J.; Moebus, S.; Amunts, K.; Caspers, S. A complex interplay of Vitamin B1 and B6 metabolism with cognition, brain structure, and functional connectivity in older adults. Front. Neurosci., 2017, 11, 596.
[81]
Berkins, S.; Schiöth, H.B.; Rukh, G. Depression and Vegetarians: Association between Dietary Vitamin B6, B12 and folate intake and global and subcortical brain volumes. Nutrients, 2021, 13(6), 1790.
[http://dx.doi.org/10.3390/nu13061790] [PMID: 34073949]
[82]
Streck, E.L.; Martins, J.T.; Carvalho-Silva, M. Effects of vitamin B12 deficiency on the brain. Inova Saúde., 2017, 6(1), S126-S131.
[83]
Vasconcellos, L.F.R.; Corrêa, R.B.; Chimelli, L.; Nascimento, F.; Fonseca, AB.; Nagel, J. Vitamin B12 deficiency myelopathy presenting as transverse myelitis. Arch. Neuro-Psychiatry, 2002, 60, 150-154.
[84]
Rosenberg, I.H. Effects of folate and vitamin B12 on cognitive function in adults and the elderly. Food Nutr. Bull., 2008, 29(Suppl. 2), S132-S142.
[http://dx.doi.org/10.1177/15648265080292S118] [PMID: 18709888]
[85]
Fábregas, B.C.; Vitorino, F.D.; Teixeira, A.L. Vitamin B12 deficiency and refractory depressive disorder. Brazil. J. Psychiatry, 2011, 60, 141-143.
[86]
Gröber, U.; Kisters, K.; Schmidt, J. Neuroenhancement with vitamin B12-underestimated neurological significance. Nutrients, 2013, 5(12), 5031-5045.
[http://dx.doi.org/10.3390/nu5125031] [PMID: 24352086]
[87]
Sen, A.P.; Gulati, A. Use of magnesium in traumatic brain injury. Neurotherapeutics, 2010, 7(1), 91-99.
[http://dx.doi.org/10.1016/j.nurt.2009.10.014] [PMID: 20129501]
[88]
Westermaier, T.; Stetter, C.; Kunze, E.; Willner, N.; Raslan, F.; Vince, G.H.; Ernestus, R.I. Magnesium treatment for neuroprotection in ischemic diseases of the brain. Exp. Transl. Stroke Med., 2013, 5(1), 6.
[http://dx.doi.org/10.1186/2040-7378-5-6] [PMID: 23618347]
[89]
Slutsky, I.; Abumaria, N.; Wu, L.J.; Huang, C.; Zhang, L.; Li, B.; Zhao, X.; Govindarajan, A.; Zhao, M.G.; Zhuo, M.; Tonegawa, S.; Liu, G. Enhancement of learning and memory by elevating brain magnesium. Neuron, 2010, 65(2), 165-177.
[http://dx.doi.org/10.1016/j.neuron.2009.12.026] [PMID: 20152124]
[90]
Zhu, D.; Su, Y.; Fu, B.; Xu, H. Magnesium reduces blood-brain barrier permeability and regulates Amyloid-β. Transcytosis. Mol. Neurobiol., 2018, 55(9), 7118-7131.
[http://dx.doi.org/10.1007/s12035-018-0896-0] [PMID: 29383689]
[91]
Billard, J.M. Brain free magnesium homeostasis as a target for reducing cognitive aging. In: Magnesium in the Central Nervous System; Vink, R; Nechifor, M, Eds.; University of Adelaide Press©2011 The Authors: Adelaide (AU), 2011.
[92]
Alam, A.B.; Thomas, D.S.; Lutsey, P.L.; Shrestha, S.; Alonso, A. Associations of serum magnesium with brain morphology and subclinical cerebrovascular disease: The Atherosclerosis Risk in Communities-Neurocognitive Study. Nutrients, 2021, 13(12), 4496.
[http://dx.doi.org/10.3390/nu13124496] [PMID: 34960048]
[93]
Afsharfar, M.; Shahraki, M.; Shakiba, M.; Asbaghi, O.; Dashipour, A. The effects of magnesium supplementation on serum level of brain derived neurotrophic factor (BDNF) and depression status in patients with depression. Clin. Nutr. ESPEN., 2021, 42, 381-386.
[94]
Boyle, N.B.; Billington, J.; Lawton, C.; Quadt, F.; Dye, L. A combination of green tea, rhodiola, magnesium and B vitamins modulates brain activity and protects against the effects of induced social stress in healthy volunteers. Nutr. Neurosci., 2021, 2021, 1-15.
[http://dx.doi.org/10.1080/1028415x.2021.1909204:1-15] [PMID: 33896388]
[95]
Lameu, C.; de Camargo, A.; Faria, M. L-arginine signalling potential in the brain: The peripheral gets central. Recent Patents CNS Drug Discov., 2009, 4(2), 137-142.
[http://dx.doi.org/10.2174/157488909788453004] [PMID: 19519561]
[96]
Liu, P.; Jing, Y.; Zhang, H. Age-related changes in arginine and its metabolites in memory-associated brain structures. Neuroscience, 2009, 164(2), 611-628.
[http://dx.doi.org/10.1016/j.neuroscience.2009.08.029] [PMID: 19699269]
[97]
Liu, P.; Jing, Y.; Collie, N.D.; Dean, B.; Bilkey, D.K.; Zhang, H. Altered brain arginine metabolism in schizophrenia. Transl. Psychiatry, 2016, 6(8), e871.
[http://dx.doi.org/10.1038/tp.2016.144] [PMID: 27529679]
[98]
Erdélyi-Bótor, S.; Komáromy, H.; Kamson, D.O.; Kovács, N.; Perlaki, G.; Orsi, G.; Molnár, T.; Illes, Z.; Nagy, L.; Kéki, S.; Deli, G.; Bosnyák, E.; Trauninger, A.; Pfund, Z. Serum L-arginine and dimethylarginine levels in migraine patients with brain white matter lesions. Cephalalgia, 2017, 37(6), 571-580.
[http://dx.doi.org/10.1177/0333102416651454] [PMID: 27206959]
[99]
Dong, D; Lei, T; Song, M; Ma, L; Zhao, H The antidepressant effects of l-arginine on chronic mild stress-induced depression by augmenting the expression of brain-derived neurotrophic factor in rats. Brain Res Bull., 2020, 158, 128-134.
[http://dx.doi.org/10.1016/j.brainresbull.2020.02.014]
[100]
Hosseini, M.; Anaeigoudari, A.; Beheshti, F.; Soukhtanloo, M.; Nosratabadi, R. Protective effect against brain tissues oxidative damage as a possible mechanism for beneficial effects of L -arginine on lipopolysaccharide induced memory impairment in rats. Drug Chem. Toxicol., 2018, 41(2), 175-181.
[http://dx.doi.org/10.1080/01480545.2017.1336173] [PMID: 28640652]
[101]
Wei, Y.; Cui, L.; Pen, B. l-Arginine prevents stroke-like episodes but not brain atrophy: a 20-year follow-up of a MELAS patient. Neurol. Sci., 2019, 40(1), 209-211.
[http://dx.doi.org/10.1007/s10072-018-3573-1] [PMID: 30218398]
[102]
Yoneda, M.; Ikawa, M.; Arakawa, K.; Kudo, T.; Kimura, H.; Fujibayashi, Y.; Okazawa, H. In vivo functional brain imaging and a therapeutic trial of l-arginine in MELAS patients. Biochim. Biophys. Acta, Gen. Subj., 2012, 1820(5), 615-618.
[http://dx.doi.org/10.1016/j.bbagen.2011.04.018] [PMID: 21600268]
[103]
Griselda, C.M. d-Arginine action against neurotoxicity induced by glucocorticoids in the brain. Neurosci. Biobehav. Rev., 2011, 35(6), 1353-1362.
[http://dx.doi.org/10.1016/j.neubiorev.2011.02.009] [PMID: 21349287]
[104]
Chiu, L.S.; Anderton, R.S.; Knuckey, N.W.; Meloni, B.P. The neuroprotective potential of arginine-rich peptides for the acute treatment of traumatic brain injury. Expert Rev. Neurother., 2016, 16(4), 361-363.
[http://dx.doi.org/10.1586/14737175.2016.1150180] [PMID: 26840929]
[105]
Zeisel, SH Choline: essential for brain development and function. Adv. Pediatr., 1997, 44, 263-295.
[106]
Tayebati, S.K.; Amenta, F. Choline-containing phospholipids: relevance to brain functional pathways. Clin. Chem. Lab. Med., 2013, 51(3), 513-521.
[http://dx.doi.org/10.1515/cclm-2012-0559] [PMID: 23314552]
[107]
Bekdash, R.A. Choline, the brain and neurodegeneration: Insights from epigenetics. Front. Biosci. (Landmark Ed.), 2018, 23(6), 1113-1143.
[http://dx.doi.org/10.2741/4636]
[108]
Baskin, D.S.; Browning, J.L.; Pirozzolo, F.J.; Korporaal, S.; Baskin, J.A.; Appel, S.H. Brain choline acetyltransferase and mental function in Alzheimer disease. Arch. Neurol., 1999, 56(9), 1121-1123.
[http://dx.doi.org/10.1001/archneur.56.9.1121] [PMID: 10488813]
[109]
Zeisel, S.H. Diet-gene interactions underlie metabolic individuality and influence brain development: implications for clinical practice derived from studies on choline metabolism. Ann Nutr Metab., 2012, 60(Suppl. 3), 19-25.
[http://dx.doi.org/10.1159/000337310]
[110]
Knott, V.; Salle, S.; Smith, D.; Choueiry, J.; Impey, D.; Smith, M. Effects of acute CDP-choline treatment on resting state brain oscillations in healthy volunteers. Neurosci. Lett., 2015, 591, 121-125.
[111]
Babb, S.M.; Ke, Y.; Lange, N.; Kaufman, M.J.; Renshaw, P.F.; Cohen, B.M. Oral choline increases choline metabolites in human brain. Psychiatry Res. Neuroimaging, 2004, 130(1), 1-9.
[http://dx.doi.org/10.1016/S0925-4927(03)00104-5] [PMID: 14972364]
[112]
Charles, H.C.; Lazeyras, F.; Krishnan, K.R.R.; Boyko, O.B.; Payne, M.; Moore, D. Brain choline in depression: In vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1994, 18(7), 1121-1127.
[http://dx.doi.org/10.1016/0278-5846(94)90115-5] [PMID: 7846284]
[113]
Franco-Maside, A.; Caamaño, J.; Gómez, M.J.; Cacabelos, R. Brain mapping activity and mental performance after chronic treatment with CDP-choline in Alzheimer’s disease. Methods Find. Exp. Clin. Pharmacol., 1994, 16(8), 597-607.
[PMID: 7760585]
[114]
Martz, D.M. Acute brain syndrome secondary to niacin deficiency. Am. J. Psychiatry, 1965, 122, 215-216.
[http://dx.doi.org/10.1176/ajp.122.2.215]
[115]
Hoane, M.R.; Akstulewicz, S.L.; Toppen, J. Treatment with vitamin B3 improves functional recovery and reduces GFAP expression following traumatic brain injury in rats. J. Neurotrauma, 2003, 20(11), 1189-1199.
[http://dx.doi.org/10.1089/089771503770802871] [PMID: 14651806]
[116]
Kamat, J.P.; Devasagayam, T.P.A. Nicotinamide (vitamin B3) as an effective antioxidant against oxidative damage in rat brain mitochondria. Redox Rep., 1999, 4(4), 179-184.
[http://dx.doi.org/10.1179/135100099101534882] [PMID: 10658823]
[117]
Sanada, H.; Nakashima, Y.; Utsuki, Y.; Kawada, S. Effect of niacin deficiency on the metabolism of brain amines in rats. J. Nutr. Sci. Vitaminol. (Tokyo), 1978, 24(2), 159-166.
[http://dx.doi.org/10.3177/jnsv.24.159] [PMID: 27594]
[118]
Maiese, K.; Chong, Z.Z. Nicotinamide: Necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol. Sci., 2003, 24(5), 228-232.
[http://dx.doi.org/10.1016/S0165-6147(03)00078-6] [PMID: 12767721]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy