Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Review Article

Application of Functional Bionic Technologies on Micropumps

Author(s): Shang Wei, Lingfeng Shu, Shuyu Gao, Peijian Zhou* and Jiegang Mou

Volume 16, Issue 1, 2023

Published on: 23 December, 2022

Page: [3 - 18] Pages: 16

DOI: 10.2174/2212797616666221107154152

Price: $65

Abstract

Background: Bionics applied to micropumps is the most advanced technology currently accessible. The widespread use of microfluidic transport technology in fields like drug delivery and chemical analysis has made it a current research hotspot. As a core component in the microfluidic transport process, the micropump is a key part of the breakthrough.

Objective: The study aims to summarize the engineering applications of various bionic micropumps in order to serve as a resource for future research in related fields.

Methods: Study the application of bionic technologies that mimic fish tail fin oscillation, female mosquito blood sucking, honeybee nectar ingestion, and plant stomatal transpiration in various micropumps by sorting out typical research results.

Results: This study examines the current state of bionic micropumps research and problems, as well as anticipates the future direction of functional bionic technology in micropumps.

Conclusion: In this paper, we review the functional bionic technology used in micropumps and study some of the physiological processes of specific creatures from a biological perspective. We also show how effectively using bionic design can enhance the overall functionality of micropumps. However, man's knowledge of the natural world is still very limited. Functional bionics technology will shine in the area of engineering application as a result of the investigation of materials, processing technology, and biological principles.

Keywords: MEMS, micropump, biomimetics, biology to engineering, microfluidic transportation, mechanical structure.

[1]
Sun F, Xu H. A review of biomimetic research for erosion wear resistance. Biodes Manuf 2020; 3(4): 331-47.
[http://dx.doi.org/10.1007/s42242-020-00079-3]
[2]
Ruszaj A. Bionic impact on industrial production development. Adv Manufact Sci Technol 2015; 39(4): 5-22.
[3]
Yongxiang L. Significance and progress of bionics. J Bionics Eng 2004; 1(1): 1-3.
[http://dx.doi.org/10.1007/BF03399448]
[4]
Yang H, Tsai TH. Portable valve-less peristaltic micropump design and fabrication. 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS 2008. Apr 9-11, 2008; Nice, France. 273-8.
[5]
Bin P, Yubo Z, Pengcheng Z, Hanif U. Recent advances on the electric vehicle heat pump air conditioning system. Recent Pat Mech Eng 2021; 14(3)
[6]
Bendong Liu, Zhen Zhang, Desheng Li. Review on micro pump for microfluidics. J Beijing Uni Technol 2018; 44(06): 812-24.
[7]
Narasaki T. Layered type bimorph vibrator pump.Proc of 13th Intersociety Energy Conversion Engineering Conference. 1978; 2: p. 005-12.
[8]
Li H, Liu J, Li K, Liu Y. A review of recent studies on piezoelectric pumps and their applications. Mech Syst Signal Process 2021; 151: 107393.
[http://dx.doi.org/10.1016/j.ymssp.2020.107393]
[9]
Pires RF, Vatanabe SL, de Oliveira AR, et al. Water cooling system using a piezoelectrically actuated flow pump for a medical headlight system[C]//Industrial and commercial applications of smart structures technologies 2007.International Society for Optics Photonics. 2007; p. 6527.
[10]
Ma HK, Chen BR, Gao JJ, Lin CY. Development of an OAPCP-micropump liquid cooling system in a laptop. Int Commun Heat Mass Transf 2009; 36(3): 225-32.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.11.014]
[11]
Tandon V, Kang WS, Robbins TA, et al. Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing. Lab Chip 2016; 16(5): 829-46.
[http://dx.doi.org/10.1039/C5LC01396H] [PMID: 26778829]
[12]
Kaçar A, Özer MB. Taşcıoğlu Y. A novel artificial pancreas: Energy efficient valveless piezoelectric actuated closed-loop insulin pump for T1DM. Appl Sci 2020; 10(15): 5294.
[http://dx.doi.org/10.3390/app10155294]
[13]
Li H, Liu J, Li K, et al. A review of recent studies on piezoelectric pumps and their applications. Mech Syst Signal Process 2021; 151: 107393.
[14]
Park JH, Seo MY, Ham YB, Yun SN, Kim DI. A study on high-output piezoelectric micropumps for application in DMFC. J Electroceram 2013; 30(1-2): 102-7.
[http://dx.doi.org/10.1007/s10832-012-9740-5]
[15]
Zhang M, Fan X, Wang F, Gan J. The performance analysis and motor design of electronic water pump based on pumplinx and maxwell. Recent Pat Mech Eng 2021; 14(3): 412-22.
[http://dx.doi.org/10.2174/2212797614666210111143707]
[16]
Zhang J, Wang D, Wang S, et al. Research on piezoelectric pump-lagging of valve. Jixie Gongcheng Xuebao 2003; 39(5): 107-10.
[http://dx.doi.org/10.3901/JME.2003.05.107]
[17]
Hu X. Dynamics analysis and experimental study on non-rotating and non-volumetric type valveless piezoelectric-stack pump. PhD Thesis, Nanjing University of Aeronautics and Astronautics 2012.
[18]
Stemme E, Stemme G. A valveless diffuser/nozzle-based fluid pump. Sens Actuators A Phys 1993; 39(2): 159-67.
[http://dx.doi.org/10.1016/0924-4247(93)80213-Z]
[19]
Hu Xiaoqi,, Zhang Jianhui, Yi Huang, Xia Qixiao, Huang Weiqing. A bionic type valveless piezoelectric pump. Vibration Test Diagnosis 2012; 32(S1): 132-5.
[20]
Song Y. A Novel valveless piezoelectric micropump based on coanda effect. Thesis, Jiangsu University 2015.
[21]
Gray J. Studies in animal locomotion: IV. The propulsive powers of the dolphin. J Exp Biol 1936; 13(2): 192-9.
[http://dx.doi.org/10.1242/jeb.13.2.192]
[22]
Breder CM Jr. The locomotion of fishes. Zoologica 1926; 4: 159-291.
[23]
Webb PW. Form and function in fish swimming. Sci Am 1984; 251(1): 72-82.
[http://dx.doi.org/10.1038/scientificamerican0784-72]
[24]
Blake RW. Fish functional design and swimming performance. J Fish Biol 2004; 65(5): 1193-222.
[http://dx.doi.org/10.1111/j.0022-1112.2004.00568.x]
[25]
Vatanabe SL, Pires RF, Nakasone PH, et al. New configurations of oscillatory flow pumps using bimorph piezoelectric actuators[C]//Industrial and Commercial Applications of Smart Structures Technologies 2008.International Society for Optics and Photonics. 2008; p. 6930.
[26]
Song J, Zhong Y, Du R, Yin L, Ding Y. Tail shapes lead to different propulsive mechanisms in the body/caudal fin undulation of fish. Proc Inst Mech Eng, C J Mech Eng Sci 2021; 235(2): 351-64.
[http://dx.doi.org/10.1177/0954406220967687]
[27]
Sfakiotakis M, Lane DM, Davies JBC. Review of fish swimming modes for aquatic locomotion. IEEE J Oceanic Eng 1999; 24(2): 237-52.
[http://dx.doi.org/10.1109/48.757275]
[28]
Sun W. Research and design of robot fish tail fin propulsion system. Thesis, Yanshan University 2009.
[29]
Lu Gao, Jianhui Zhang, Xiaoqi Hu. Improvement on the piezoelectric bimorphs structure based fish tailing type of valveless piezoelectric pump. Proceedings of the 10th National Conference on Vibration Theory and Application 2011; 494-500.
[30]
Wang L, Zhang J, Hu X, et al. Research on the relationship between the oscillating vibrator parameter and the working ability of caudal-fin-type valveless piezoelectric pump. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). Dec 11-14, 2012; Guangzhou, China. 2012; pp. 1170-5.
[31]
de Lima CR, Vatanabe SL, Choi A, Nakasone PH, Pires RF, Nelli Silva EC. A biomimetic piezoelectric pump: Computational and experimental characterization. Sens Actuators A Phys 2009; 152(1): 110-8.
[http://dx.doi.org/10.1016/j.sna.2009.02.038]
[32]
Vatanabe SL, Choi A, de Lima CR, Nelli Silva EC. Design and characterization of a biomimetic piezoelectric pump inspired on group fish swimming effect. J Intell Mater Syst Struct 2010; 21(2): 133-47.
[http://dx.doi.org/10.1177/1045389X09352820]
[33]
Xiaoqi HU, Jianhui Z, Yi H. Simulation and testing of a tailfin-like piezoelectric dual-chip valveless pump. Vibration Test and Diagnosis 2011; 31(2): 193-7.
[34]
Hu X, Jianhui Z, Qixiao X, Jun H, Shouyin W, Chunsheng Z. Influence from length of flexible caudal-fin for caudal-fin-type piezoelectric pump. Jixie Gongcheng Xuebao 2012; 48(8): 167-73.
[http://dx.doi.org/10.3901/JME.2012.08.167]
[35]
Xiao-qi H, Jian-hui Z, Yi H, Qi-xiao X, Wei-qing H. Structure design of caudal-fin-type piezoelectric-stack pump with variable cross-section oscillating vibrator. Optics Prec Eng 2011; 19(6): 1334-43.
[http://dx.doi.org/10.3788/OPE.20111906.1334]
[36]
Zhentao GE, Jing JI, Yubin LAN, Xiaoqi HU, Tingting QIN, Caiqi HU. Analysis and test on influence of caudal-fin on performance of valveless piezoelectric pump. Paiguan Jixie Gongcheng Xuebao 2017; 35(01): 87-92.
[37]
De Duve C. The beginnings of life on earth. Am Sci 1995; 83(5): 428-37.
[38]
Kang L, Song J, Zhou S, Sheng L. Insect metamorphosis: Nature, history, evolution and regulation -A review of the book insect metamorphosis: from natural history to regulation of development and evolution. Acta Entomologica Sinica 2021; 64(06): 769-70.
[39]
Smith EH, Kennedy GG. History of entomology. In: Encyclopedia of insects. Academic Press 2009; pp. 449-58.
[40]
Liu C, Liu J, Xu L, Xiang W. Recent achievements in bionic implementations of insect structure and functions. Kybernetes 2014; 43(2): 307-24.
[http://dx.doi.org/10.1108/K-09-2013-0192]
[41]
Yan Z. Insect mouthparts. Bull Biol 2005; (09): 9-12.
[42]
Ming L, Dong R, Tan J. A brief history of insect mouthparts and their evolution. Chinese Bull Entomol 2005; 05: 587-92.
[43]
Knab F. Mosquitoes as flower visitors. J NY Entomol Soc 1907; 15(4): 215-9.
[44]
Chaves LF, Harrington LC, Keogh CL, Nguyen AM, Kitron UD. Blood feeding patterns of mosquitoes: Random or structured? Front Zool 2010; 7(1): 3.
[http://dx.doi.org/10.1186/1742-9994-7-3] [PMID: 20205866]
[45]
Gillett JD. Natural selection and feeding speed in a blood-sucking insect. Proc R Soc Lond B Biol Sci 1967; 167(1008): 316-29.
[http://dx.doi.org/10.1098/rspb.1967.0029] [PMID: 4382782]
[46]
Glenn JD, King JG, Hillyer JF. Structural mechanics of the mosquito heart and its function in bidirectional hemolymph transport. J Exp Biol 2010; 213(4): 541-50.
[http://dx.doi.org/10.1242/jeb.035014] [PMID: 20118304]
[47]
Daniel TL, Kingsolver JG. Feeding strategy and the mechanics of blood sucking in insects. J Theor Biol 1983; 105(4): 661-77.
[http://dx.doi.org/10.1016/0022-5193(83)90226-6] [PMID: 6672475]
[48]
Gurera D, Bhushan B, Kumar N. Lessons from mosquitoes’ painless piercing. J Mech Behav Biomed Mater 2018; 84: 178-87.
[http://dx.doi.org/10.1016/j.jmbbm.2018.05.025] [PMID: 29793155]
[49]
Pappas LG. Stimulation and sequence operation of cibarial and pharyngeal pumps during sugar feeding by mosquitoes (Diptera: Culicidae). Ann Entomol Soc Am 1988; 81(2): 274-7.
[http://dx.doi.org/10.1093/aesa/81.2.274]
[50]
Becker N. Petrić D, Zgomba M, et al. Biology of mosquitoes. In: Mosquitoes. Cham: Springer 2020; pp. 11-27.
[51]
Kikuchi K, Stremler MA, Chatterjee S, Lee WK, Mochizuki O, Socha JJ. Burst mode pumping: A new mechanism of drinking in mosquitoes. Sci Rep 2018; 8(1): 4885.
[http://dx.doi.org/10.1038/s41598-018-22866-w] [PMID: 29559647]
[52]
Kim BH, Kim HK, Lee SJ. Experimental analysis of the blood-sucking mechanism of female mosquitoes. J Exp Biol 2011; 214(7): 1163-9.
[http://dx.doi.org/10.1242/jeb.048793] [PMID: 21389202]
[53]
Kim BH, Seo ES, Lim JH, Lee SJ. Synchrotron X-ray microscopic computed tomography of the pump system of a female mosquito. Microsc Res Tech 2012; 75(8): 1051-8.
[http://dx.doi.org/10.1002/jemt.22030] [PMID: 22419646]
[54]
Clements AN. The biology of mosquitoes. In: Development, nutrition and reproduction. Vol. 1 Chapman & Hall 1992.
[55]
Kikuchi K, Mochizuki O. Mosquito’s sucking blood mechanism. Journal of the Visualization Society of Japan 2004; 24(S1): 133-4.
[http://dx.doi.org/10.3154/jvs.24.Supplement1_133]
[56]
Leu TS, Kao RH. Design and operation of a bio-inspired micropump based on blood-sucking mechanism of mosquitoes. Modern Physics Letters B 2018; 32(12-13): 1840027.
[57]
Winston ML. The Biology of the Honey Bee. Thesis, Harvard University Press 1991.
[58]
Pernal S, Currie R. The influence of pollen quality on foraging behavior in honeybees (Apis mellifera L.). Behav Ecol Sociobiol 2001; 51(1): 53-68.
[http://dx.doi.org/10.1007/s002650100412]
[59]
Cook AJ. The tongue of the honey bee. Am Nat 1880; 14(4): 271-80.
[http://dx.doi.org/10.1086/272534]
[60]
Snodgrass RE. Anatomy of the Honey Bee. London, UK: Cornell University Press 1984.
[61]
Kim W, Gilet T, Bush JWM. Optimal concentrations in nectar feeding. Proc Natl Acad Sci 2011; 108(40): 16618-21.
[http://dx.doi.org/10.1073/pnas.1108642108] [PMID: 21949358]
[62]
Yang H, Wu J, Yan S. Effects of erectable glossal hairs on a honeybee’s nectar-drinking strategy. Appl Phys Lett 2014; 104(26): 263701.
[http://dx.doi.org/10.1063/1.4886115]
[63]
Rico-Guevara A, Fan TH, Rubega MA. Hummingbird tongues are elastic micropumps.Proceedings of the Royal Society B: Biological Sciences 2015; 282(1813): 20151014.
[64]
Kim W, Bush JWM. Natural drinking strategies. J Fluid Mech 2012; 705: 7-25.
[http://dx.doi.org/10.1017/jfm.2012.122]
[65]
Harper CJ, Swartz SM, Brainerd EL. Specialized bat tongue is a hemodynamic nectar mop. Proc Natl Acad Sci 2013; 110(22): 8852-7.
[http://dx.doi.org/10.1073/pnas.1222726110] [PMID: 23650382]
[66]
Wang H, Wu Z, Zhao J, Wu J. Nectar feeding by a honey bee’s hairy tongue: Morphology, dynamics, and energy-saving strategies. Insects 2021; 12(9): 762.
[http://dx.doi.org/10.3390/insects12090762] [PMID: 34564203]
[67]
Li C. Drag Reduction in Honeybee for Drinking Strategy and Biomicropump Conceptual Design. Master Thesis, Beijing: China University of Geosciences 2017.
[68]
Tian D. Modeling of Honeybee feeding and Study on Bio-Microstructure. Master Thesis, Beijing: China University of Geosciences 2018.
[69]
Yue C. Damage compensation mechanism in feeding-nectar Insects and bio-variant structure design. Master Thesis, Beijing: China University of Geosciences 2020.
[http://dx.doi.org/10.27493/d.cnki.gzdzy.2020.001283]
[70]
Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M. A new look at water transport regulation in plants. New Phytol 2014; 204(1): 105-15.
[http://dx.doi.org/10.1111/nph.12912] [PMID: 24985503]
[71]
McElrone AJ, Choat B, Gambetta GA, et al. Water uptake and transport in vascular plants. Nature Education Knowledge 2013; 4(5): 6.
[72]
Zimmermann U, Meinzer F, Bentrup FW. How does water ascend in tall trees and other vascular plants? Ann Bot 1995; 76(6): 545-51.
[http://dx.doi.org/10.1006/anbo.1995.1131]
[73]
Scharwies JD, Dinneny JR. Water transport, perception, and response in plants. J Plant Res 2019; 132(3): 311-24.
[http://dx.doi.org/10.1007/s10265-019-01089-8] [PMID: 30747327]
[74]
Steudle E. The cohesion-tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 2001; 52(1): 847-75.
[http://dx.doi.org/10.1146/annurev.arplant.52.1.847] [PMID: 11337418]
[75]
He C, Li J, Ming G. Research progress of the mechanical of the sap flow in trees. Acta Ecol Sin 2007; (01): 329-37.
[76]
Taiz L, Zeiger E, Møller IM, et al. Plant Physiology and Development. Sinauer Associates Incorporated 2015.
[77]
Leng H, Lu M, Wan X. Variation in embolism occurrence and repair along the stem in drought-stressed and re-watered seedlings of a poplar clone. Physiol Plant 2013; 147(3): 329-39.
[http://dx.doi.org/10.1111/j.1399-3054.2012.01665.x] [PMID: 22686493]
[78]
Yang SJ, Zhang YJ, Sun M, Goldstein G, Cao KF. Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: Embolism refilling by nocturnal root pressure. Tree Physiol 2012; 32(4): 414-22.
[http://dx.doi.org/10.1093/treephys/tps028] [PMID: 22499596]
[79]
Zhouying Zhang, Wen Guo, Shijian Yang. Recent advances in research on root pressure of plants. Guihaia Available from: http://kns.cnki.net/kcms/detail/45.1134.Q.20201104.1338.014.html [2021-11-19].
[80]
Zimmermann MH. Xylem structure and the ascent of SAP. Springer Science & Business Media 2013; p. 283.
[81]
Wheeler TD, Stroock AD. The transpiration of water at negative pressures in a synthetic tree. Nature 2008; 455(7210): 208-12.
[http://dx.doi.org/10.1038/nature07226] [PMID: 18784721]
[82]
Cook GD, Dixon JR, Leopold AC. Transpiration: Its effects on plant leaf temperature. Science 1964; 144(3618): 546-7.
[http://dx.doi.org/10.1126/science.144.3618.546] [PMID: 17836353]
[83]
Gates DM. Transpiration and leaf temperature. Annu Rev Plant Physiol 1968; 19(1): 211-38.
[http://dx.doi.org/10.1146/annurev.pp.19.060168.001235]
[84]
Schreiber L, Riederer M. Ecophysiology of cuticular transpiration: Comparative investigation of cuticular water permeability of plant species from different habitats. Oecologia 1996; 107(4): 426-32.
[http://dx.doi.org/10.1007/BF00333931] [PMID: 28307383]
[85]
Domínguez E, Heredia-Guerrero JA, Heredia A. The plant cuticle: Old challenges, new perspectives. J Exp Bot 2017; 68(19): 5251-5.
[http://dx.doi.org/10.1093/jxb/erx389] [PMID: 29136457]
[86]
Burghardt M, Riederer M. Cuticular transpiration. Annual Plant Reviews. Biology of the Plant Cuticle 2008; 23: 292.
[87]
Haworth M, Elliott-Kingston C, McElwain JC. Stomatal control as a driver of plant evolution. J Exp Bot 2011; 62(8): 2419-23.
[http://dx.doi.org/10.1093/jxb/err086] [PMID: 21576397]
[88]
Lawson T, Vialet-Chabrand S. Speedy stomata, photosynthesis and plant water use efficiency. New Phytol 2019; 221(1): 93-8.
[http://dx.doi.org/10.1111/nph.15330] [PMID: 29987878]
[89]
Meidner H, Mansfield TA. Physiology of stomata. McGraw-Hill 1968.
[90]
Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU. Termination of asymmetric cell division and differentiation of stomata. Nature 2007; 445(7127): 501-5.
[http://dx.doi.org/10.1038/nature05467] [PMID: 17183267]
[91]
Xiufang ZHANG, Dongli SHI. Motive force of stomatal transpiration and marginal effect of stoma. Bulletin of Biology 2002; (03): 22.
[92]
Thomas DS, Eamus D, Bell D. Optimization theory of stomatal behaviour: I. A critical evaluation of five methods of calculation. J Exp Bot 1999; 50(332): 385-92.
[http://dx.doi.org/10.1093/jxb/50.332.385]
[93]
Liu C, Wang L, Li J, et al. Evaporation characteristics of micropores in biomimetic micropump. Micro Nano Lett 2014; 9(1): 41-5.
[http://dx.doi.org/10.1049/mnl.2013.0554]
[94]
Tyree MT, Yianoulis P. The site of water evaporation from sub-stomatal cavities, liquid path resistances and hydroactive stomatal closure. Ann Bot 1980; 46(2): 175-93.
[http://dx.doi.org/10.1093/oxfordjournals.aob.a085906]
[95]
Idso SB. Stomatal regulation of evaporation from well-watered plant canopies: A new synthesis. Agric Meteorol 1983; 29(3): 213-7.
[http://dx.doi.org/10.1016/0002-1571(83)90068-7]
[96]
Wang W. ZU YG, Yan G, FengJian W. Photosynthetic ecophysiological study on the growth of korean pine (Pinus koraiensis) afforested by the edge-effect belt method. Acta Ecol Sin 2003; (11): 2318-26.
[97]
Goedecke N, Eijkel J, Manz A. Evaporation driven pumping for chromatography application. Lab Chip 2002; 2(4): 219-23.
[http://dx.doi.org/10.1039/b208031c] [PMID: 15100814]
[98]
Namasivayam V, Larson RG, Burke DT, Burns MA. Transpiration-based micropump for delivering continuous ultra-low flow rates. J Micromech Microeng 2003; 13(2): 261-71.
[http://dx.doi.org/10.1088/0960-1317/13/2/314]
[99]
Yanx G, Jing D, Zhaolun F. Studies on a micropump based on evaporation and capillary effects. Chin J Anal Chem 2005; (03): 423-7.
[100]
Guan Y, Xu Z, Dai J, Fang Z. The use of a micropump based on capillary and evaporation effects in a microfluidic flow injection chemiluminescence system. Talanta 2006; 68(4): 1384-9.
[http://dx.doi.org/10.1016/j.talanta.2005.08.021] [PMID: 18970476]
[101]
Li J, Liu C, Xu Z, et al. A bio-inspired micropump based on stomatal transpiration in plants. Lab Chip 2011; 11(16): 2785-9.
[http://dx.doi.org/10.1039/c1lc20313d] [PMID: 21725568]
[102]
Jingmin L, Chong L, Zheng X, Kaiping Z, Xue K, Liding W. A microfluidic pump/valve inspired by xylem embolism and transpiration in plants. PLoS One 2012; 7(11): e50320.
[http://dx.doi.org/10.1371/journal.pone.0050320] [PMID: 23209709]
[103]
Kim H, Kim K, Lee SJ. Compact and thermosensitive nature-inspired micropump. Sci Rep 2016; 6(1): 36085.
[http://dx.doi.org/10.1038/srep36085] [PMID: 27796357]
[104]
Kumar P, Gandhi PS, Majumder M. Enhanced capillary pumping through evaporation assisted leaf-mimicking micropumps. arXiv preprint arXiv:180711464 2018.
[105]
Agrawal P, Gandhi PS, Majumder M, Kumar P. Insight into the design and fabrication of a leaf-mimicking micropump. Phys Rev Appl 2019; 12(3): 031002.
[http://dx.doi.org/10.1103/PhysRevApplied.12.031002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy