Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Paliperidone-benzamide Cocrystals: Preparation, Characterization, In Vitro/In Vivo Evaluation

Author(s): Earle Radha Rani* and Gadela Venkata Radha

Volume 12, Issue 6, 2022

Published on: 21 December, 2022

Article ID: e311022210514 Pages: 9

DOI: 10.2174/2210681213666221031150449

Price: $65

Abstract

Background: The current investigation contributes to the development of novel Paliperidone (PPD) co-crystals (CCs) using benzamide (BZ) as a conformer. The CCs were synthesized using the solvent evaporation technique.

Methods: The enhancement in solubility was studied by saturation solubility studies. Structural characterization of CCs was performed by Fourier Transform Infra-Red Spectroscopy (FTIR), powder X-ray diffraction (PXRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Proton Nuclear Magnetic Resonance (1H- FT NMR) to verify CC formation.

Results: CCs exhibited a higher aqueous solubility of 2.067±0.004mg/ml when compared to pure drug 0.473±0.012mg/ml. This designated aqueous solubility enhancement of CCs by 4.36 folds. In vitro dissolution data of the CCs exhibited a drug release of 96.5±1.63% in 60min, while pure drug showed a poor release of 37.8±1.76% in the same time period In vivo studies resulted in enhanced rate and extent of drug absorption from CCs when compared to drug suspension.

Conclusion: CCs formed between PPD and BZ present a novel approach in overcoming the hurdles in the solubility of PPD that exhibits poor aqueous solubility.

Keywords: Paliperidone, coformer, bioavailability, solvent evaporation, structural analysis, drug.

Graphical Abstract
[1]
Ainouz, A.; Authelin, J.R.; Billot, P.; Lieberman, H. Modeling and prediction of cocrystal phase diagrams. Int. J. Pharm., 2009, 374(1-2), 82-89.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.016] [PMID: 19446763]
[2]
Holaň, J.; Ridvan, L.; Billot, P.; Štěpánek, F. Design of co-crystallization processes with regard to particle size distribution. Chem. Eng. Sci., 2015, 128, 36-43.
[http://dx.doi.org/10.1016/j.ces.2015.01.045]
[3]
Korotkova, E.I.; Kratochvíl, B. Pharmaceutical cocrystals. Procedia Chem., 2014, 10, 473-476.
[http://dx.doi.org/10.1016/j.proche.2014.10.079]
[4]
Guo, C.; Zhang, H.; Wang, X.; Xu, J.; Liu, Y.; Liu, X.; Huang, H.; Sun, J. Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J. Mol. Struct., 2013, 1048, 267-273.
[http://dx.doi.org/10.1016/j.molstruc.2013.05.025]
[5]
Eddleston, M.D.; Thakuria, R.; Aldous, B.J.; Jones, W. An investigation of the causes of cocrystal dissociation at high humidity. J. Pharm. Sci., 2014, 103(9), 2859-2864.
[http://dx.doi.org/10.1002/jps.23865] [PMID: 24481664]
[6]
Seefeldt, K.; Miller, J.; Alvarez-Núñez, F.; Rodríguez-Hornedo, N. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies. J. Pharm. Sci., 2007, 96(5), 1147-1158.
[http://dx.doi.org/10.1002/jps.20945] [PMID: 17455346]
[7]
Bavishi, D.D.; Borkhataria, C.H. Spring and parachute: How cocrystals enhance solubility. Prog. Cryst. Growth Charact. Mater., 2016, 62(3), 1-8.
[http://dx.doi.org/10.1016/j.pcrysgrow.2016.07.001]
[8]
Kanuganti, S.; Jukanti, R.; Veerareddy, P.R.; Bandari, S. Paliperidone loaded self-emulsifying drug delivery systems (SEDDS) for improved oral delivery. J. Dispers. Sci. Technol., 2012, 33(4), 506-515.
[http://dx.doi.org/10.1080/01932691.2011.574920]
[9]
Pandey, A.; Rath, B.; Dwivedi, A.K. Dissolution rate and bioavailability enhancement of co-ground mixtures of paliperidone, with different hydrophilic carriers. Int. Curr. Pharm. J., 2013, 2(3), 70-77.
[http://dx.doi.org/10.3329/icpj.v2i3.13632]
[10]
Pandey, A.; Rath, B.; Dwivedi, A.K. Dissolution rate enhancement of BCS class II drug, Paliperidone by spray drying. Res. J. Pharm. Biol. Chem. Sci., 2013, 4(2), 145-155.
[11]
Pandey, A.; Rath, B.; Dwivedi, A.K. Enhancement of dissolution rate and bioavailability of paliperidone by hot melt extrusion technique. J. Sci. Ind. Res. (India), 2014, 73, 680-685.
[12]
Sameer, H.L.; Mangesh, R.B. Properties of solid dispersions of paliperidone in polyethylene glycol, comparison of solid-state properties, implementation of factorial design and dissolution behaviour. Int. J. Pharm. Biol. Sci., 2014, 4(4), 90-99.
[13]
Prabhakar, D.; Divya, A.; Pratyusha, R.; Shravan, K.K. Augmentation of dissolution profile of poorly soluble paliperidone by employing liquisolid technology. Int. J. Pharm. Tech. Res., 2014, 6(2), 710-719.
[14]
Rajkumar, M.; Surendra, G. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of paliperidone using different hydrophilic carriers: In vitro in vivo study. Asian J. Pharm. Clin. Res., 2018, 11(4), 393-408.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i4.24964]
[15]
Thimmasetty, J.; Ghosh, T.; Shashank, N.N.; Raheem, A. Oral bioavailability enhancement of Paliperidone by the use of cocrystallization and precipitation inhibition. J. Pharm. Innov., 2020, 16(2)
[16]
Shete, A.; Murthy, S.; Thorat, B.; Yadav, A.; Sajane, S.; Sakhare, S.; Doijad, R. Studies on effect of hydrophilic polymers on physicochemical properties of itraconazole cocrystals. Future J. Pharm. Sci., 2017, 3(2), 95-102.
[http://dx.doi.org/10.1016/j.fjps.2017.04.005]
[17]
Mohammad, M.A.; Alhalaweh, A.; Velaga, S.P. Hansen solubility parameter as a tool to predict cocrystal formation. Int. J. Pharm., 2011, 407(1-2), 63-71.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.030] [PMID: 21256944]
[18]
Gagnière, E.; Mangin, D.; Puel, F.; Rivoire, A.; Monnier, O.; Garcia, E.; Klein, J.P. Formation of co-crystals: Kinetic and thermodynamic aspects. J. Cryst. Growth, 2009, 311(9), 2689-2695.
[http://dx.doi.org/10.1016/j.jcrysgro.2009.02.040]
[19]
Zhang, T.; Yang, Y.; Zhao, X.; Jia, J.; Su, H.; He, H.; Gu, J.; Zhu, G. Dissolution and pharmacokinetic properties of two paliperidone cocrystals with 4-hydroxybenzoic and 4-aminobenzoic acid. CrystEngComm, 2014, 16(33), 7667-7672.
[http://dx.doi.org/10.1039/C4CE00784K]
[20]
Ammanage, A.; Rodriques, P.; Kempwade, A.; Hiremath, R. Formulation and evaluation of buccal films of piroxicam co-crystals. Future J. Pharm. Sci., 2020, 6(1), 16.
[http://dx.doi.org/10.1186/s43094-020-00033-1]
[21]
Huang, Y.; Zhang, B.; Gao, Y.; Zhang, J.; Shi, L. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. J. Pharm. Sci., 2014, 103(8), 2330-2337.
[http://dx.doi.org/10.1002/jps.24048] [PMID: 24903146]
[22]
Earle, R.R.; Bharathi, V.V.; Lakshmi Usha, A.; Ksheera Bhavani, A.V.S. Cross-linked chitosan-based stomach specific mucoadhesive microspheres loaded with amoxicillin: Preparation and ex vivo characterization. Int. J. Pharm. Investig., 2020, 10(1), 59-63.
[http://dx.doi.org/10.5530/ijpi.2020.1.11]
[23]
da Silva, C.C.P.; de Melo, C.C.; Souza, M.S.; Diniz, L.F.; Carneiro, R.L.; Ellena, J. 5- fluorocytosine/5- fluorouracil drug-drug cocrystal: A new development route based on mechanical synthesis. J. Pharm. Innov., 2019, 14(1), 50-56.
[http://dx.doi.org/10.1007/s12247-018-9333-1]
[24]
Shen, Y.; Zong, S.; Dang, L.; Wei, H. Solubility and thermodynamics of probenecid-4,4′-azopyridine cocrystal in pure and binary solvents. J. Mol. Liq., 2019, 290, 111195.
[http://dx.doi.org/10.1016/j.molliq.2019.111195]
[25]
Dhumal, R.S.; Biradar, S.V.; Paradkar, A.R.; York, P. Ultrasound assisted engineering of lactose crystals. Pharm. Res., 2008, 25(12), 2835-2844.
[http://dx.doi.org/10.1007/s11095-008-9653-9] [PMID: 18592354]
[26]
Bhattacharya, B.; Das, S.; Lal, G.; Soni, S.R.; Ghosh, A.; Reddy, C.M.; Ghosh, S. Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine. J. Mol. Struct., 2020, 1199, 127028.
[http://dx.doi.org/10.1016/j.molstruc.2019.127028]
[27]
Gaikwad, E.R.; Khabade, S.S.; Sutar, T.B.; Santosh, A.P. Preparation and characterization of molecular complexes of fenofibrate cocrystal. Asian J. Pharm., 2017, 11(4), 745-759.
[28]
Dhumal, R.S.; Kelly, A.L.; York, P.; Coates, P.D.; Paradkar, A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm. Res., 2010, 27(12), 2725-2733.
[http://dx.doi.org/10.1007/s11095-010-0273-9] [PMID: 20872053]
[29]
Fael, H.; Barbas, R.; Prohens, R.; Ràfols, C.; Fuguet, E. Synthesis and characterization of a new norfloxacin/resorcinol cocrystal with enhanced solubility and dissolution profile. Pharmaceutics, 2021, 14(1), 49.
[http://dx.doi.org/10.3390/pharmaceutics14010049] [PMID: 35056945]
[30]
Zainab, E.J.; Khalid, K.A.; Zahraa, S.A. Preparation and evaluation of pharmaceutical cocrystals for solubility enhancement of Dextromethorphan HBr. Int. J. Drug Deliv. Technol., 2021, 11(4), 1-8.
[31]
Yamamoto, K.; Tsutsumi, S.; Ikeda, Y. Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals. Int. J. Pharm., 2012, 437(1-2), 162-171.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.038] [PMID: 22871562]
[32]
Sanphui, P.; Goud, N.R.; Khandavilli, U.B.R.; Nangia, A. Fast dissolving curcumin cocrystals. Cryst. Growth Des., 2011, 11(9), 4135-4145.
[http://dx.doi.org/10.1021/cg200704s]
[33]
Dutt, B.; Choudhary, M.; Budhwar, V. Preparation, characterization and evaluation of aspirin: benzoic acid cocrystals with enhanced pharmaceutical properties. Future J. Pharm. Sci., 2020, 6(1), 32.
[http://dx.doi.org/10.1186/s43094-020-00052-y]
[34]
Thenge, R.R.; Patond, V.B.; Ajmire, P.V.; Barde, L.N.; Mahajan, N.M.; Tekade, N.P. Preparation and characterization of co-crystals of diacerein. Indones. J. Pharm., 2017, 28(1), 34-41.
[http://dx.doi.org/10.14499/indonesianjpharm28iss1pp34]
[35]
Zhou, Z.; Li, W.; Sun, W.J.; Lu, T.; Tong, H.H.Y.; Sun, C.C.; Zheng, Y. Resveratrol cocrystals with enhanced solubility and tabletability. Int. J. Pharm., 2016, 509(1-2), 391-399.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.006] [PMID: 27282539]
[36]
Xuan, B.; Chen, Y.C.S.; Wong, K.C.; Chen, R.; Lo, P.S.; Lakerveld, R.; Tong, H.H.Y.; Chow, S.F. Impact of cocrystal solution-state stability on cocrystal dissociation and polymorphic drug recrystallization during dissolution. Int. J. Pharm., 2021, 610, 121239.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121239] [PMID: 34742828]
[37]
Sitaram, P.V.; Srinivas, B.; Dan, B. Norfloxacin saccharinate-saccharin dihydrate cocrystal- a new pharmaceutical cocrystal with an organic counter ion. J. Mol. Liq., 2008, 889, 150-153.
[38]
Napada, W; Manop, Ch Application of box-behnken design for processing of mefenamic acid-paracetamol cocrystals using gas anti-solvent process. J. CO2 Utilization, 2018, 26, 212-220.
[39]
Al-Kazemi, R.; Al-Basarah, Y.; Nada, A. Dissolution enhancement of atorvastatin calcium by cocrystallization. Adv. Pharm. Bull., 2019, 9(4), 559-570.
[http://dx.doi.org/10.15171/apb.2019.064] [PMID: 31857959]
[40]
Kumar, S.; Gupta, A.; Mishra, C.K.; Singh, S. Synthesis, Characterization and performance evaluation of aceclofenac-urea cocrystals. Indian J. Pharm. Sci., 2020, 82(5), 881-890.
[41]
Serrano, D.R.; Walsh, D.; O’Connell, P.; Mugheirbi, N.A.; Worku, Z.A.; Bolas-Fernandez, F.; Galiana, C.; Dea-Ayuela, M.A.; Healy, A.M. Optimising the in vitro and in vivo performance of oral cocrystal formulations via spray coating. Eur. J. Pharm. Biopharm., 2018, 124, 13-27.
[http://dx.doi.org/10.1016/j.ejpb.2017.11.015] [PMID: 29196273]
[42]
Garbacz, P.; Wesolowski, M. Benzodiazepines co-crystals screening using FTIR and Raman spectroscopy supported by differential scanning calorimetry. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234, 118242.
[http://dx.doi.org/10.1016/j.saa.2020.118242] [PMID: 32179462]
[43]
Lee, C.C.; Cho, A.Y.; Yoon, W.; Yun, H.; Kang, J.W.; Lee, J. Cocrystal formation via resorcinol-urea interactions: Naringenin and carbamazepine. Cryst. Growth Des., 2019, 19(7), 3807-3814.
[http://dx.doi.org/10.1021/acs.cgd.9b00269]
[44]
Anastasiya, V.M.; Svetlana, A.M.; Natalia, V.B.; Konstantin, B.G.; Svetlana, A.K.; Tatyana, P.S. Screening and characterization of cocrystal formation between botulin and terephthalic acid. Mater. Today Proc., 2020, 25(3), 381-383.
[45]
Chaves Júnior, J.V.; dos Santos, J.A.B.; Lins, T.B.; de Araújo Batista, R.S.; de Lima Neto, S.A.; de Santana Oliveira, A.; Nogueira, F.H.A.; Gomes, A.P.B.; de Sousa, D.P.; de Souza, F.S.; Aragão, C.F.S. A new ferulic acid- nicotinamide cocrystal with improved solubility and dissolution performance. J. Pharm. Sci., 2020, 109(3), 1330-1337.
[http://dx.doi.org/10.1016/j.xphs.2019.12.002] [PMID: 31821823]
[46]
Omori, M.; Uekusa, T.; Oki, J.; Inoue, D.; Sugano, K. Solution-mediated phase transformation at particle surface during cocrystal dissolution. J. Drug Deliv. Sci. Technol., 2020, 56, 101566.
[http://dx.doi.org/10.1016/j.jddst.2020.101566]
[47]
Liu, F.; Wang, L.Y.; Yu, M.C.; Li, Y.T.; Wu, Z.Y.; Yan, C.W. A new cocrystal of isoniazid-quercetin with hepatoprotective effect: The design, structure, and in vitro/in vivo performance evaluation. Eur. J. Pharm. Sci., 2020, 144, 105216.
[http://dx.doi.org/10.1016/j.ejps.2020.105216] [PMID: 31945451]
[48]
Chhajed, S.S.; Rajderkar, Y.R.; Tajanpure, A.B.; Sangshetti, J.N.; Mahapatra, D.K.; Kshirsagar, S.J. Solvent drop grinding approach assisted development of glimepiride co-crystals: Solubility enhancement journey of BCS class II product. Indian J. Pharm. Educ. Res., 2020, 54(3), 602-609.
[http://dx.doi.org/10.5530/ijper.54.3.109]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy