Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

A Review on the Various Mechanisms of Green Synthesis of Metal Nanoparticles for Biomedical Applications

Author(s): Sonal Jaiswal, Nimisha Roy, Amar Dhwaj, Deepti Verma* and Amit Prabhakar*

Volume 9, Issue 2, 2022

Published on: 16 November, 2022

Page: [62 - 73] Pages: 12

DOI: 10.2174/2213346110666221028143409

Price: $65

conference banner
Abstract

Due to the hazardous effects of chemicals used, Green chemistry replaces the conventional techniques involved in nanotechnology. Green chemistry is a branch of science dealing with microbiology, phytology, and chemical engineering with the development of products by manipulating these three domains. Green synthesis is an interdisciplinary domain that relies on the use of non-toxic, bio-safe reagents, which are eco-friendly and safe to use in bio-nanotechnology and provide environmental benefits as an option other than the conventional physical and chemical methods for developing technology. This article will critically present the various approaches and methods for nanoparticle synthesis using microorganisms like bacteria, fungi, yeasts, archaea, viruses, algae, etc. By optimizing with laboratory conditions, nanoparticles of different ranges of physical characteristics can be synthesized. Nanoparticles with well-defined properties have been reported to be synthesized by green chemistry, for many biomedical applications. Green synthesis of nanoparticles is non-toxic, eco-friendly, and compatible to be used for medical procedures, and the rate of nanoparticle formation and their size could be regulated by various controlling factors like pH, temperature, concentration, time exposure, etc. The use of microbes for nanoparticle synthesis can be broadly divided into intracellular and extracellular based on their being produced from the extracts of microorganisms, which can be employed either as reducing agents or protective agents for the synthesis either extracellular or intracellular in the presence of enzymes generated by cells. This review aims to summarize nanoparticles of Au, P, Ag, Pt, CdS, Pt ZnO, etc as the primary focus. Additionally, a short glimpse often hybrid chemical-biological methods have also been presented.

Keywords: Biogenic-reduction, bio-reagents, enzymes, green synthesis, micro-organisms, nanoparticles.

Graphical Abstract
[1]
Zahin, N.; Anwar, R.; Tewari, D.; Kabir, M.T.; Sajid, A.; Mathew, B.; Uddin, M.S.; Aleya, L.; Abdel, D.M.M. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery. Environ. Sci. Pollut. Res. Int., 2020, 27(16), 19151-19168.
[http://dx.doi.org/10.1007/s11356-019-05211-0] [PMID: 31079299]
[2]
Bahrulolum, H.; Nooraei, S.; Javanshir, N.; Tarrahimofrad, H.; Mirbagheri, V.S.; Easton, A.J.; Ahmadian, G. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol., 2021, 19(1), 86.
[http://dx.doi.org/10.1186/s12951-021-00834-3] [PMID: 33771172]
[3]
Im, S.W.; Ahn, H.Y.; Kim, R.M.; Cho, N.H.; Kim, H.; Lim, Y.C.; Lee, H.E.; Nam, K.T. Chiral surface and geometry of metal nanocrystals. Adv. Mater., 2020, 32(41), 1905758.
[http://dx.doi.org/10.1002/adma.201905758] [PMID: 31834668]
[4]
Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 53, 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[5]
Salem, S.S.; Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace Elem. Res., 2021, 199(1), 344-370.
[http://dx.doi.org/10.1007/s12011-020-02138-3] [PMID: 32377944]
[6]
Gahlawat, G.; Choudhury, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances, 2019, 9(23), 12944-12967.
[http://dx.doi.org/10.1039/C8RA10483B] [PMID: 35520790]
[7]
Saravanan, A.; Kumar, P.S.; Karishma, S.; Vo, D.V.N.; Jeevanantham, S.; Yaashikaa, P.R.; George, C.S. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere, 2021, 264(Pt 2), 128580.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128580] [PMID: 33059285]
[8]
Fang, X.; Wang, Y.; Wang, Z.; Jiang, Z.; Dong, M. Microorganism assisted synthesized nanoparticles for catalytic applications. Energies, 2019, 12(1), 190.
[http://dx.doi.org/10.3390/en12010190]
[9]
Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev., 2020, 13(3), 223-245.
[http://dx.doi.org/10.1080/17518253.2020.1802517]
[10]
Grasso, G.; Zane, D.; Dragone, R. Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials, 2019, 10(1), 11.
[http://dx.doi.org/10.3390/nano10010011] [PMID: 31861471]
[11]
Tamayo, L; Palza, H; Bejarano, J; Zapata, PA Polymer composites with metal nanoparticles: synthesis, properties, and applications. In: Polymer composites with functionalized nanoparticles; Elsevier: Berlin, Germany, 2019; pp. 249-286.
[http://dx.doi.org/10.1016/B978-0-12-814064-2.00008-1]
[12]
Purohit, J.; Chattopadhyay, A.; Singh, N.K. Green synthesis of microbial nanoparticle: approaches to application. In: Microbial Nanobionics; Springer: Cham, 2019; pp. 35-60.
[http://dx.doi.org/10.1007/978-3-030-16534-5_3]
[13]
Marooufpour, N.; Alizadeh, M.; Hatami, M.; Asgari Lajayer, B. Biological synthesis of nanoparticles by different groups of bacteria. In: Microbial Nanobionics; Springer: Cham, 2019; pp. 63-85.
[http://dx.doi.org/10.1007/978-3-030-16383-9_3]
[14]
Iravani, S.; Varma, R.S. Bacteria in heavy metal remediation and nanoparticle biosynthesis. ACS Sustain. Chem. Eng., 2020, 8(14), 5395-5409.
[http://dx.doi.org/10.1021/acssuschemeng.0c00292]
[15]
Gomez, B.J.; Mikheenko, I.P.; Macaskie, L.E.; Merroun, M.L. Characterization of palladium nanoparticles produced by healthy and microwave-injured cells of Desulfovibrio desulfuricans and Escherichia coli. Nanomaterials, 2019, 9(6), 857.
[http://dx.doi.org/10.3390/nano9060857] [PMID: 31195655]
[16]
Deng, X.; Dohmae, N.; Kaksonen, A.H.; Okamoto, A. Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate‐reducing bacteria. Angew. Chem. Int. Ed., 2020, 59(15), 5995-5999.
[http://dx.doi.org/10.1002/anie.201915196] [PMID: 31875491]
[17]
Wang, H.; Le, Y.; Sun, J. Consolidated bioprocessing of biomass and synthetic cadmium wastewater substrates for enhancing hydrogen production by Clostridium thermocellum-CdS complex. Fuel, 2022, 316, 123207.
[http://dx.doi.org/10.1016/j.fuel.2022.123207]
[18]
Pan, Z.; Bártová, B.; LaGrange, T.; Butorin, S.M.; Hyatt, N.C.; Stennett, M.C.; Kvashnina, K.O.; Bernier, L.R. Nanoscale mechanism of UO2 formation through uranium reduction by magnetite. Nat. Commun., 2020, 11(1), 4001.
[http://dx.doi.org/10.1038/s41467-020-17795-0] [PMID: 32778661]
[19]
Naseer, M.; Ramadan, R.; Xing, J.; Samak, N.A. Facile green synthesis of copper oxide nanoparticles for the eradication of multidrug resistant Klebsiella pneumonia and Helicobacter pylori biofilms. Int. Biodeterior. Biodegradation, 2021, 159, 105201.
[http://dx.doi.org/10.1016/j.ibiod.2021.105201]
[20]
Rana, A.; Yadav, K.; Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean. Prod., 2020, 272, 122880.
[http://dx.doi.org/10.1016/j.jclepro.2020.122880]
[21]
Gupta, R.; Padmanabhan, P. Biogenic synthesis and characterization of gold nanoparticles by a novel marine bacteria Marinobacter algicola: Progression from nanospheres to various geometrical shapes. J. Microbiol. Biotechnol. Food Sci., 2018, 8(1), 732-737.
[http://dx.doi.org/10.15414/jmbfs.2018.8.1.732-737]
[22]
Das, K.R.; Tiwari, A.K.; Kerkar, S. Psychrotolerant Antarctic bacteria biosynthesize gold nanoparticles active against sulphate reducing bacteria. Prep. Biochem. Biotechnol., 2020, 50(5), 438-444.
[http://dx.doi.org/10.1080/10826068.2019.1706559] [PMID: 31876438]
[23]
Ameen, F.; AlYahya, S.; Govarthanan, M. ALjahdali, N.; Al-Enazi, N.; Alsamhary, K.; Alshehri, W.A.; Alwakeel, S.S.; Alharbi, S.A. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J. Mol. Struct., 2020, 1202, 127233.
[http://dx.doi.org/10.1016/j.molstruc.2019.127233]
[24]
Amor, M.; Mathon, F.P.; Monteil, C.L.; Busigny, V.; Lefevre, C.T. Iron‐biomineralizing organelle in magnetotactic bacteria: Function, synthesis and preservation in ancient rock samples. Environ. Microbiol., 2020, 22(9), 3611-3632.
[http://dx.doi.org/10.1111/1462-2920.15098] [PMID: 32452098]
[25]
Furubayashi, M.; Wallace, A.K.; González, L.M.; Jahnke, J.P.; Hanrahan, B.M.; Payne, A.L.; Stratis, C.D.N.; Gray, M.T.; Liu, H.; Rhoads, M.K.; Voigt, C.A. Genetic tuning of iron oxide nanoparticle size, shape, and surface properties in Magnetospirillum magneticum. Adv. Funct. Mater., 2021, 31(4), 2004813.
[http://dx.doi.org/10.1002/adfm.202004813]
[26]
Mahapatra, D.K.; Bharti, S.K. Research progress and new insights in biosynthesis of silver nanoparticles with particular applications. Chem. Nanosci. Nanotechnol., 2019, 195-240.
[http://dx.doi.org/10.1201/9780429398254-11]
[27]
Sharma, S.; Gothalwal, R. Green biosynthesis of metallic nanoparticle for medical diagnostic. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 2019, 5(2), 63-82.
[http://dx.doi.org/10.26479/2019.0502.05]
[28]
Das, M.; Chatterjee, S. Green synthesis of metal/metal oxide nanoparticles toward biomedical applications: Boon or bane. In: Green synthesis, characterization and applications of nanoparticles; Elsevier: Amsterdam, Netherlands, 2019; pp. 265-301.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00011-3]
[29]
Ali, J.; Ali, N.; Wang, L.; Waseem, H.; Pan, G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods, 2019, 159, 18-25.
[http://dx.doi.org/10.1016/j.mimet.2019.02.010] [PMID: 30797020]
[30]
Ashraf, N.; Ahmad, F.; Jing Jie, C.; Tuo Di, Z.; Feng-Zhu, Z.; Yin, D.C. Optimization of Enterobacter cloacae mediated synthesis of extracellular silver nanoparticles by response surface methodology and their characterization. Particul. Sci. Technol., 2020, 38(8), 931-943.
[http://dx.doi.org/10.1080/02726351.2019.1636915]
[31]
Singh, R.; Shedbalkar, U.U.; Wadhwani, S.A.; Chopade, B.A. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol., 2015, 99(11), 4579-4593.
[http://dx.doi.org/10.1007/s00253-015-6622-1] [PMID: 25952110]
[32]
Zhang, D.; Ma, X.; Gu, Y.; Huang, H.; Zhang, G. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem., 2020, 8, 799.
[http://dx.doi.org/10.3389/fchem.2020.00799] [PMID: 33195027]
[33]
Qamar, S.U.R.; Ahmad, J.N. Nanoparticles: Mechanism of biosynthesis using plant extracts, bacteria, fungi, and their applications. J. Mol. Liq., 2021, 334, 116040.
[http://dx.doi.org/10.1016/j.molliq.2021.116040]
[34]
Kaplan, Ö.; Gökşen, T.N.; Özgür, A.; Erden, T.S.; Bilgin, S.; Türkekul, İ.; Gökce, İ. Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: Characterization, anticancer, antimicrobial and wound healing activities. J. Drug Deliv. Sci. Technol., 2021, 64, 102641.
[http://dx.doi.org/10.1016/j.jddst.2021.102641]
[35]
Santos, T.S.; Silva, T.M.; Cardoso, J.C.; Albuquerque, Jr. R.L.C.; Zielinska, A.; Souto, E.B.; Severino, P.; Mendonça, M.C. Biosynthesis of silver nanoparticles mediated by entomopathogenic fungi: Antimicrobial resistance, nanopesticides, and toxicity. Antibiotics, 2021, 10(7), 852.
[http://dx.doi.org/10.3390/antibiotics10070852] [PMID: 34356773]
[36]
Salifu, E.; El Mountassir, G.; Minto, J.M.; Tarantino, A. Hydraulic behaviour of fungal treated sand. Geomech. Energy Environ., 2022, 30, 100258.
[http://dx.doi.org/10.1016/j.gete.2021.100258]
[37]
Qin, W.; Wang, C.; Ma, Y.; Shen, M.; Li, J.; Jiao, K.; Tay, F.R.; Niu, L. Microbe‐mediated extracellular and intracellular mineralization: Environmental, industrial, and biotechnological applications. Adv. Mater., 2020, 32(22), 1907833.
[http://dx.doi.org/10.1002/adma.201907833] [PMID: 32270552]
[38]
Yadav, A.; Kon, K.; Kratosova, G.; Duran, N.; Ingle, A.P.; Rai, M. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol. Lett., 2015, 37(11), 2099-2120.
[http://dx.doi.org/10.1007/s10529-015-1901-6] [PMID: 26164702]
[39]
Graily-Moradi, F.; Maadani Mallak, A.; Ghorbanpour, M. Biogenic synthesis of gold nanoparticles and their potential application in agriculture. In: Biogenic nano-particles and their use in agro-ecosystems; Springer: Singapore, 2020; pp. 187-204.
[http://dx.doi.org/10.1007/978-981-15-2985-6_11]
[40]
Kalimuthu, K.; Cha, B.S.; Kim, S.; Park, K.S. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchem. J., 2020, 152, 104296.
[http://dx.doi.org/10.1016/j.microc.2019.104296]
[41]
Chhipa, H. Mycosynthesis of nanoparticles for smart agricultural practice: A green and eco-friendly approach. In: Green synthesis, characterization and applications of nanoparticles; Elsevier: Amsterdam, Netherlands, 2019; pp. 87-109.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00005-8]
[42]
Rajeshkumar, S.; Sivapriya, D. Fungus-mediated nanoparticles: Characterization and biomedical advances. In: Nanoparticles in Medicine; Springer: Singapore, 2020; pp. 185-199.
[http://dx.doi.org/10.1007/978-981-13-8954-2_7]
[43]
Deniz, F.; Adigüzel, A.O.; Mazmanci, M.A. The biosynthesis of silver nanoparticles by cytoplasmic fluid of Coriolus versicolor. Turk. J. Eng., 2019, 3(2), 92-96.
[http://dx.doi.org/10.31127/tuje.429072]
[44]
Koul, B.; Poonia, A.K.; Yadav, D.; Jin, J.O. Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects. Biomolecules, 2021, 11(6), 886.
[http://dx.doi.org/10.3390/biom11060886] [PMID: 34203733]
[45]
Nwoko, K.C.; Liang, X.; Perez, M.A.M.J.; Krupp, E.; Gadd, G.M.; Feldmann, J. Characterisation of selenium and tellurium nanoparticles produced by Aureobasidium pullulans using a multi-method approach. J. Chromatogr. A, 2021, 1642, 462022.
[http://dx.doi.org/10.1016/j.chroma.2021.462022] [PMID: 33714080]
[46]
Edison, L.K.; Pradeep, N.S. Actinobacterial nanoparticles: green synthesis, evaluation and applications. In: Green Nanoparticles; Springer: Cham, 2020; pp. 371-384.
[http://dx.doi.org/10.1007/978-3-030-39246-8_20]
[47]
Nasrollahzadeh, M.; Sajadi, SM; Issaabadi, Z.; Sajjadi, M. Biological sources used in green nanotechnology. Interface Sci. Technol., 2019, 28, 81-111.
[http://dx.doi.org/10.1016/B978-0-12-813586-0.00003-1]
[48]
Rauf, A.; Ahmad, T.; Khan, A.; Maryam; Uddin, G.; Ahmad, B.; Mabkhot, Y.N.; Bawazeer, S.; Riaz, N.; Malikovna, B.K.; Almarhoon, Z.M.; Al-Harrasi, A. Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 194-203.
[http://dx.doi.org/10.1080/21691401.2021.1890099] [PMID: 33629627]
[49]
Naimi, S.N.; Pourali, P.; Dolatabadi, S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J. Mycol. Med., 2019, 29(1), 7-13.
[http://dx.doi.org/10.1016/j.mycmed.2019.01.005] [PMID: 30709721]
[50]
Golnaraghi, G.A.R.; Mohammadi, K.M.; Vahidi, H.; Kobarfard, F.; Ameri, S.R.M.; Barabadi, H. Fungus-mediated extracellular biosynthesis and characterization of zirconium nanoparticles using standard penicillium species and their preliminary bactericidal potential: A novel biological approach to nanoparticle synthesis. Iranian journal of pharmaceutical research. Iran. J. Pharm. Res., 2019, 18(4), 2101-2110.
[http://dx.doi.org/10.22037/2Fijpr.2019.112382.13722] [PMID: 32184873]
[51]
Maliszewska, I.; Wanarska, E.; Tylus, W. Sulfonated hydroxyaluminum phthalocyanine-biogenic Au/Ag alloy nanoparticles mixtures for effective photo-eradication of Candida albicans. Photodiagn. Photodyn. Ther., 2020, 32, 102016.
[http://dx.doi.org/10.1016/j.pdpdt.2020.102016] [PMID: 33045412]
[52]
Shukla, H.; Shukla, S. Extremophilic Fungi for the Synthesis of Nanomolecules. In: Extremophilic Fungi; Springer: Singapore, 2022; pp. 615-649.
[http://dx.doi.org/10.1007/978-981-16-4907-3_26]
[53]
Shalaby, M.G.; Al-Hossainy, A.F.; Abo, Z.A.M.; Mobark, H.; Darwesh, O.M.; Mahmoud, Y.A.G. Geotrichum candidum mediated [Cu8O7 + P2O5] nanocomposite bio-fabrication, characterization, physicochemical properties, and its in-vitro biocompatibility evaluation. J. Inorg. Organomet. Polym. Mater., 2022, 32(7), 2398-2415.
[http://dx.doi.org/10.1007/s10904-022-02252-w]
[54]
Hirpara, D.G.; Gajera, H.P. Green synthesis and antifungal mechanism of silver nanoparticles derived from chitin‐ induced exometabolites of Trichoderma interfusant. Appl. Organomet. Chem., 2020, 34(3), e5407.
[http://dx.doi.org/10.1002/aoc.5407]
[55]
Hefny, M.; El-Zamek, F.; Abd El-Fattah, H.; Mahgoub, S. Biosynthesis of zinc nanoparticles using culture filtrates of aspergillus, fusarium and penicillium fungal species and their antibacterial properties against gram-positive and gram-negative bacteria. Zagazig J. Agric. Res., 2019, 46(6), 2009-2021.
[http://dx.doi.org/10.21608/zjar.2019.51920]
[56]
Ottoni, C.A.; Maria, D.A.; Gonçalves, P.J.R.O.; De Araújo, W.L.; De Souza, A.O. Biogenic Aspergillus tubingensis silver nanoparticles’ in vitro effects on human umbilical vein endothelial cells, normal human fibroblasts, HEPG2, and Galleria mellonella. Toxicol. Res., 2019, 8(6), 789-801.
[http://dx.doi.org/10.1039/c9tx00091g] [PMID: 32206300]
[57]
Khleifat, K.; Alqaraleh, M.; Al-limoun, M.; Alfarrayeh, I.; Khatib, R.; Qaralleh, H.; Alsarayreh, A.; Al Qaisi, Y.; Abu, H.M. The ability of rhizopus stolonifer MR11 to biosynthesize silver nanoparticles in response to various culture media components and optimization of process parameters required at each stage of biosynthesis. J. Ecol. Eng., 2022, 23(8), 89-99.
[http://dx.doi.org/10.12911/22998993/150673]
[58]
Gupta, K.; Chundawat, T.S. Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: Its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Mater. Res. Express, 2019, 6(10), 1050d6.
[http://dx.doi.org/10.1088/2053-1591/ab4219]
[59]
Abu, T.M.A.; Ghareib, M.; Abdallah, W.E. Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities. Process Biochem., 2020, 95, 1-11.
[http://dx.doi.org/10.1016/j.procbio.2020.04.015]
[60]
Danaraj, J.; Periakaruppan, R.; Usha, R.; Venil, C.K.; Shami, A. Mycogenic nanoparticles: Synthesis, characterizations and applications. In: Agri-Waste and Microbes for Production of Sustainable Nanomaterials; Elsevier: Amsterdam, Netherlands, 2022; pp. 357-373.
[http://dx.doi.org/10.1016/B978-0-12-823575-1.00005-6]
[61]
Taha, Z.K.; Hawar, S.N.; Sulaiman, G.M. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol. Lett., 2019, 41(8-9), 899-914.
[http://dx.doi.org/10.1007/s10529-019-02699-x] [PMID: 31201601]
[62]
Shivashankarappa, A.; Sanjay, K.R. Escherichia coli-based synthesis of cadmium sulfide nanoparticles, characterization, antimicrobial and cytotoxicity studies. Braz. J. Microbiol., 2020, 51(3), 939-948.
[http://dx.doi.org/10.1007/s42770-020-00238-9] [PMID: 32067210]
[63]
Alsaggaf, M.S.; Elbaz, A.F.; El Badawy-, S.; Moussa, S.H. Anticancer and antibacterial activity of cadmium sulfide nanoparticles by Aspergillus niger. Adv. Polym. Technol., 2020, 2020, 4909054.
[http://dx.doi.org/10.1155/2020/4909054]
[64]
Jeevanandam, J.; Kiew, S.F.; Boakye-Ansah, S.; Lau, S.Y.; Barhoum, A.; Danquah, M.K.; Rodrigues, J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 2022, 14(7), 2534-2571.
[http://dx.doi.org/10.1039/D1NR08144F] [PMID: 35133391]
[65]
Qu, Y.; Lian, S.; Shen, W.; Li, Z.; Yang, J.; Zhang, H. Rod-shaped gold nanoparticles biosynthesized using Pb2+-induced fungus Aspergillus sp. WL-Au. Bioprocess Biosyst. Eng., 2020, 43(1), 123-131.
[http://dx.doi.org/10.1007/s00449-019-02210-w] [PMID: 31628532]
[66]
Lee, S.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[67]
Zhang, L.; Dong, H.; Zhang, J.; Chen, Y.; Zeng, G.; Yuan, Y.; Cao, W.; Fang, W.; Hou, K.; Wang, B.; Li, L. Influence of FeONPs amendment on nitrogen conservation and microbial community succession during composting of agricultural waste: Relative contributions of ammonia-oxidizing bacteria and archaea to nitrogen conservation. Bioresour. Technol., 2019, 287, 121463.
[http://dx.doi.org/10.1016/j.biortech.2019.121463] [PMID: 31121445]
[68]
Gupta, S.S.; Raja, K.S.; Kaltgrad, E.; Strable, E.; Finn, M.G. Virus–glycopolymer conjugates by copper(I) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. Chem. Commun., 2005, (34), 4315-4317.
[http://dx.doi.org/10.1039/b502444g] [PMID: 16113733]
[69]
Durán, M.A.L.; Escamilla, R.M.I.; Segovia, G.X.F.; Villagrana, E.M.V.; Vega, A.J.R.; Ruiz, G.J. Encapsidation of different plasmonic gold nanoparticles by the CCMV CP. Molecules, 2020, 25(11), 2628.
[http://dx.doi.org/10.3390/molecules25112628] [PMID: 32516956]
[70]
Abdelkhalek, A.; Al-Askar, A.A. Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against tobacco mosaic virus. Appl. Sci., 2020, 10(15), 5054.
[http://dx.doi.org/10.3390/app10155054]
[71]
Lee, K.X.; Shameli, K.; Yew, Y.P.; Teow, S.Y.; Jahangirian, H.; Rafiee, M.R.; Webster, T. Recent developments in the facile bio-synthesis of Gold Nanoparticles (AuNPs) and their biomedical applications. Int. J. Nanomed., 2020, 15, 275-300.
[http://dx.doi.org/10.2147/IJN.S233789] [PMID: 32021180]
[72]
Permana, A.D.; Anjani, Q.K.; Sartini; Utomo, E.; Volpe, Z.F.; Paredes, A.J.; Evary, Y.M.; Mardikasari, S.A.; Pratama, M.R.; Tuany, I.N.; Donnelly, R.F. Selective delivery of silver nanoparticles for improved treatment of biofilm skin infection using bacteria-responsive microparticles loaded into dissolving microneedles. Mater. Sci. Eng. C, 2021, 120, 111786.
[http://dx.doi.org/10.1016/j.msec.2020.111786] [PMID: 33545912]
[73]
Karade, V.C.; Patil, R.B.; Parit, S.B.; Kim, J.H.; Chougale, A.D.; Dawkar, V.V. Insights into shape-based silver nanoparticles: a weapon to cope with pathogenic attacks. ACS Sustain. Chem. Eng., 2021, 9(37), 12476-12507.
[http://dx.doi.org/10.1021/acssuschemeng.1c03797]
[74]
Feng, N.; Zhang, H.; Li, Y.; Liu, Y.; Xu, L.; Wang, Y.; Fei, X.; Tian, J. A novel catalytic material for hydrolyzing cow’s milk allergenic proteins: Papain-Cu3(PO4)2·3H2O-magnetic nanoflowers. Food Chem., 2020, 311, 125911.
[http://dx.doi.org/10.1016/j.foodchem.2019.125911] [PMID: 31869650]
[75]
Priyadarshini, E.; Priyadarshini, S.S.; Cousins, B.G.; Pradhan, N. Metal-fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere, 2021, 274, 129976.
[http://dx.doi.org/10.1016/j.chemosphere.2021.129976] [PMID: 33979913]
[76]
Banerjee, K; Rai, VR Silver nanoparticles synthesis mechanisms. In: Green Synthesis of Silver Nanomaterials; Elsevier: Amsterdam, Netherlands, 2022; pp. 607-625.
[http://dx.doi.org/10.1016/B978-0-12-824508-8.00025-3]
[77]
Dhanasekar, N.N.; Shirke, A.; Sakthivel, N. Bioreduction of gold ions from anisotropic to isotropic nanostructures by NADPH‐dependent reductase from Bipolaris oryzae. Chem. Select, 2020, 5(37), 11522-11529.
[http://dx.doi.org/10.1002/slct.202002385]
[78]
Guilger, C.M.; Lima, R. Synthesis of silver nanoparticles mediated by fungi: A review. Front. Bioeng. Biotechnol., 2019, 7, 287.
[http://dx.doi.org/10.3389/fbioe.2019.00287] [PMID: 31696113]
[79]
Almaary, K.S.; Sayed, S.R.M.; Abd-Elkader, O.H.; Dawoud, T.M.; El Orabi, N.F.; Elgorban, A.M. Complete green synthesis of silver-nanoparticles applying seed-borne Penicillium duclauxii. Saudi J. Biol. Sci., 2020, 27(5), 1333-1339.
[http://dx.doi.org/10.1016/j.sjbs.2019.12.022] [PMID: 32346343]
[80]
Sikiru, S.; Abiodun, O.J.A.; Sanusi, Y.K.; Sikiru, Y.A.; Soleimani, H.; Yekeen, N.; Haslija, A.B.A. A comprehensive review on nanotechnology application in wastewater treatment a case study of metal-based using green synthesis. J. Environ. Chem. Eng., 2022, 10(4), 108065.
[http://dx.doi.org/10.1016/j.jece.2022.108065]
[81]
Shkodenko, L.; Kassirov, I.; Koshel, E. Metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. Microorganisms, 2020, 8(10), 1545.
[http://dx.doi.org/10.3390/microorganisms8101545] [PMID: 33036373]
[82]
Lee, K.Z.; Basnayake, P.V.; Lee, Y.H.; Loesch, F.L.S.; Harris, M.T.; Hemmati, S.; Solomon, K.V. Engineering tobacco mosaic virus and its virus‐like‐particles for synthesis of biotemplated nanomaterials. Biotechnol. J., 2021, 16(4), 2000311.
[http://dx.doi.org/10.1002/biot.202000311] [PMID: 33135368]
[83]
Ghosh, S; Webster, TJ Viruses and nanotechnology. In: Nanobiotechnology; Elsevier: Amsterdam, Netherlands, 2021; pp. 133-143.
[http://dx.doi.org/10.1016/B978-0-12-822878-4.00009-2]
[84]
Tiwari, M.S.; Patil, P.D.; Deshmukh, G.P. Antimicrobial Magnetic Nanoparticles: A Potential Antibiotic Agent in the Era of Multi-Drug Resistance. In: Advanced Antimicrobial Materials and Applications; Springer: Singapore, 2021; pp. 193-224.
[http://dx.doi.org/10.1007/978-981-15-7098-8_8]
[85]
Lateef, A.; Elegbede, J.A.; Akinola, P.O.; Ajayi, V.A. Biomedical applications of green synthesized-metallic nanoparticles: A review. Pan Afr J Life Sci., 2019, 3, 157-182.
[86]
Kamran, U.; Bhatti, H.N.; Iqbal, M.; Nazir, A. Green synthesis of metal nanoparticles and their applications in different fields: A review. Z. Phys. Chem., 2019, 233(9), 1325-1349.
[http://dx.doi.org/10.1515/zpch-2018-1238]
[87]
Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 844-851.
[http://dx.doi.org/10.1080/21691401.2019.1577878] [PMID: 30879351]
[88]
Chandra, H.; Kumari, P.; Bontempi, E.; Yadav, S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal. Agric. Biotechnol., 2020, 24, 101518.
[http://dx.doi.org/10.1016/j.bcab.2020.101518]
[89]
Kotcherlakota, R; Das, S; Patra, CR Therapeutic applications of green-synthesized silver nanoparticles. In: Green synthesis, characterization and applications of nanoparticles; Elsevier: Amsterdam, Netherlands, 2019; pp. 389-428.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00017-4]
[90]
Bloch, K.; Pardesi, K.; Satriano, C.; Ghosh, S. Bacteriogenic platinum nanoparticles for application in nanomedicine. Front Chem., 2021, 9, 624344.
[http://dx.doi.org/10.3389/fchem.2021.624344] [PMID: 33763405]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy