Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

The Tetrahydroisoquinoline Scaffold in ABC Transporter Inhibitors that Act as Multidrug Resistance (MDR) Reversers

Author(s): Elisabetta Teodori, Laura Braconi, Dina Manetti, Maria Novella Romanelli and Silvia Dei*

Volume 22, Issue 31, 2022

Published on: 15 November, 2022

Page: [2535 - 2569] Pages: 35

DOI: 10.2174/1568026623666221025111528

Price: $65

Abstract

Background: The failure of anticancer chemotherapy is often due to the development of resistance to a variety of anticancer drugs. This phenomenon is called multidrug resistance (MDR) and is related to the overexpression of ABC transporters, such as P-glycoprotein, multidrug resistance- associated protein 1 and breast cancer resistance protein. Over the past few decades, several ABC protein modulators have been discovered and studied as a possible approach to evade MDR and increase the success of anticancer chemotherapy. Nevertheless, the co-administration of pump inhibitors with cytotoxic drugs, which are substrates of the transporters, does not appear to be associated with an improvement in the therapeutic efficacy of antitumor agents. However, more recently discovered MDR reversing agents, such as the two tetrahydroisoquinoline derivatives tariquidar and elacridar, are characterized by high affinity towards the ABC proteins and by reduced negative properties. Consequently, many analogs of these two derivatives have been synthesized, with the aim of optimizing their MDR reversal properties.

Objective: This review aims to describe the MDR modulators carrying the tetraidroisoquinoline scaffold reported in the literature in the period 2009-2021, highlighting the structural characteristics that confer potency and/or selectivity towards the three ABC transport proteins.

Results and Conclusion: Many compounds have been synthesized in the last twelve years showing interesting properties, both in terms of potency and selectivity. Although clear structure-activity relationships can be drawn only by considering strictly related compounds, some of the compounds reviewed could be promising starting points for the design of new ABC protein inhibitors.

Keywords: Multidrug resistance reversers, Cancer, Tetrahydroisoquinoline, ABC transporter proteins, P-glycoprotein, Multidrug resistance-associated proteins, Breast cancer resistance protein.

Next »
Graphical Abstract
[1]
Longley, D.B.; Johnston, P.G. Molecular mechanisms of drug resistance. J. Pathol., 2005, 205(2), 275-292.
[http://dx.doi.org/10.1002/path.1706] [PMID: 15641020]
[2]
Assaraf, Y.G.; Brozovic, A.; Gonçalves, A.C.; Jurkovicova, D.; Linē, A.; Machuqueiro, M.; Saponara, S.; Sarmento-Ribeiro, A.B.; Xavier, C.P.R.; Vasconcelos, M.H. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist. Updat., 2019, 46, 100645.
[http://dx.doi.org/10.1016/j.drup.2019.100645] [PMID: 31585396]
[3]
Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C.; Hu, T.; Jiang, L.; Li, J. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett., 2016, 370(1), 153-164.
[http://dx.doi.org/10.1016/j.canlet.2015.10.010] [PMID: 26499806]
[4]
El-Awady, R.; Saleh, E.; Hashim, A.; Soliman, N.; Dallah, A.; Elrasheed, A.; Elakraa, G. The role of eukaryotic and prokaryotic ABC transporter family in failure of chemotherapy. Front. Pharmacol., 2017, 7, 535.
[http://dx.doi.org/10.3389/fphar.2016.00535] [PMID: 28119610]
[5]
Briz, O.; Perez-Silva, L.; Al-Abdulla, R.; Abete, L.; Reviejo, M.; Romero, M.R.; Marin, J.J.G. What “The Cancer Genome Atlas” database tells us about the role of ATP-binding cassette (ABC) proteins in chemoresistance to anticancer drugs. Expert Opin. Drug Metab. Toxicol., 2019, 15(7), 577-593.
[http://dx.doi.org/10.1080/17425255.2019.1631285] [PMID: 31185182]
[6]
Nobili, S.; Lapucci, A.; Landini, I.; Coronnello, M.; Roviello, G.; Mini, E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin. Cancer Biol., 2020, 60, 72-95.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.006] [PMID: 31412294]
[7]
Amawi, H.; Sim, H.M.; Tiwari, A.K.; Ambudkar, S.V.; Shukla, S. ABC transporter-mediated multidrug-resistant cancer. Adv. Exp. Med. Biol., 2019, 1141, 549-580.
[http://dx.doi.org/10.1007/978-981-13-7647-4_12] [PMID: 31571174]
[8]
Loo, T.W.; Clarke, D.M. Mutational analysis of ABC proteins. Arch. Biochem. Biophys., 2008, 476(1), 51-64.
[http://dx.doi.org/10.1016/j.abb.2008.02.025] [PMID: 18328253]
[9]
Liu, X. ABC family transporters. Adv. Exp. Med. Biol., 2019, 1141, 13-100.
[http://dx.doi.org/10.1007/978-981-13-7647-4_2] [PMID: 31571164]
[10]
Gottesman, M.M.; Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem., 1993, 62(1), 385-427.
[http://dx.doi.org/10.1146/annurev.bi.62.070193.002125] [PMID: 8102521]
[11]
Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta Biomembr., 1976, 455(1), 152-162.
[http://dx.doi.org/10.1016/0005-2736(76)90160-7] [PMID: 990323]
[12]
Müller, M.; de Vries, E.G.; Jansen, P.L. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells. J. Hepatol., 1996, 24(Suppl. 1), 100-108.
[PMID: 8926361]
[13]
Lage, H.; Dietel, M. Effect of the breast-cancer resistance protein on atypical multidrug resistance. Lancet Oncol., 2000, 1(3), 169-175.
[http://dx.doi.org/10.1016/S1470-2045(00)00032-2] [PMID: 11905655]
[14]
Rosenberg, M.F.; Kamis, A.B.; Callaghan, R.; Higgins, C.F.; Ford, R.C. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J. Biol. Chem., 2003, 278(10), 8294-8299.
[http://dx.doi.org/10.1074/jbc.M211758200] [PMID: 12501241]
[15]
Wilkens, S. Structure and mechanism of ABC transporters. F1000Prime Rep., 2015, 7, 14.
[http://dx.doi.org/10.12703/P7-14] [PMID: 25750732]
[16]
Jones, P.M.; George, A.M. Symmetry and structure in P-glycoprotein and ABC transporters. Eur. J. Biochem., 2000, 267(17), 5298-5305.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01628.x] [PMID: 10951188]
[17]
Zhang, H.; Xu, H.; Ashby, C.R., Jr; Assaraf, Y.G.; Chen, Z.S.; Liu, H.M. Chemical molecular‐based approach to overcome multidrug resistance in cancer by targeting P‐glycoprotein (P‐gp). Med. Res. Rev., 2021, 41(1), 525-555.
[http://dx.doi.org/10.1002/med.21739] [PMID: 33047304]
[18]
Sharom, F.J. ABC multidrug transporters: Structure, function and role in chemoresistance. Pharmacogenomics, 2008, 9(1), 105-127.
[http://dx.doi.org/10.2217/14622416.9.1.105] [PMID: 18154452]
[19]
Yang, X.; Li, X.; Duan, Z.; Wang, X. Un update on circumventing multidrug resistance in cancer by targeting P-glycoprotein. Curr. Cancer Drug Targets, 2018, 18(7), 677-696.
[http://dx.doi.org/10.2174/1568009617666170623114524] [PMID: 28820055]
[20]
Binkhathlan, Z.; Lavasanifar, A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: Current status and future perspectives. Curr. Cancer Drug Targets, 2013, 13(3), 326-346.
[http://dx.doi.org/10.2174/15680096113139990076] [PMID: 23369096]
[21]
McGrath, T.; Center, M.S. Mechanisms of multidrug resistance in HL60 cells: Evidence that a surface membrane protein distinct from P-glycoprotein contributes to reduced cellular accumulation of drug. Cancer Res., 1988, 48(14), 3959-3963.
[PMID: 2898287]
[22]
Cole, S.; Bhardwaj, G.; Gerlach, J.; Mackie, J.; Grant, C.; Almquist, K.; Stewart, A.; Kurz, E.; Duncan, A.; Deeley, R. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 1992, 258(5088), 1650-1654.
[http://dx.doi.org/10.1126/science.1360704] [PMID: 1360704]
[23]
Ozben, T. Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett., 2006, 580(12), 2903-2909.
[http://dx.doi.org/10.1016/j.febslet.2006.02.020] [PMID: 16497299]
[24]
He, S.M.; Li, R.; Kanwar, J.R.; Zhou, S.F. Structural and functional properties of human multidrug resistance protein 1 (MRP1/ABCC1). Curr. Med. Chem., 2011, 18(3), 439-481.
[http://dx.doi.org/10.2174/092986711794839197] [PMID: 21143116]
[25]
Krizkova, V.; Dubova, M.; Susova, S.; Vycital, O.; Bruha, J.; Skala, M.; Liska, V.; Daum, O.; Soucek, P. Protein expression of ATP-binding cassette transporters ABCC10 and ABCC11 associates with survival of colorectal cancer patients. Cancer Chemother. Pharmacol., 2016, 78(3), 595-603.
[http://dx.doi.org/10.1007/s00280-016-3114-7] [PMID: 27468921]
[26]
Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15665-15670.
[http://dx.doi.org/10.1073/pnas.95.26.15665] [PMID: 9861027]
[27]
Kage, K.; Tsukahara, S.; Sugiyama, T.; Asada, S.; Ishikawa, E.; Tsuruo, T.; Sugimoto, Y. Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int. J. Cancer, 2002, 97(5), 626-630.
[http://dx.doi.org/10.1002/ijc.10100] [PMID: 11807788]
[28]
Wong, K.; Briddon, S.J.; Holliday, N.D.; Kerr, I.D. Plasma membrane dynamics and tetrameric organisation of ABCG2 transporters in mammalian cells revealed by single particle imaging techniques. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(1), 19-29.
[http://dx.doi.org/10.1016/j.bbamcr.2015.10.002] [PMID: 26453803]
[29]
Eckenstaler, R.; Benndorf, R.A. 3D structure of the transporter ABCG2—What’s new? Br. J. Pharmacol., 2020, 177(7), 1485-1496.
[http://dx.doi.org/10.1111/bph.14991] [PMID: 31985041]
[30]
Nakanishi, T.; Ross, D.D. Breast cancer resistance protein (BCRP/ABCG2): Its role in multidrug resistance and regulation of its gene expression. Chin. J. Cancer, 2012, 31(2), 73-99.
[http://dx.doi.org/10.5732/cjc.011.10320] [PMID: 22098950]
[31]
Haber, M.; Smith, J.; Bordow, S.B.; Flemming, C.; Cohn, S.L.; London, W.B.; Marshall, G.M.; Norris, M.D. Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J. Clin. Oncol., 2006, 24(10), 1546-1553.
[http://dx.doi.org/10.1200/JCO.2005.01.6196] [PMID: 16575006]
[32]
Schaich, M.; Soucek, S.; Thiede, C.; Ehninger, G.; Illmer, T. MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia. Br. J. Haematol., 2005, 128(3), 324-332.
[http://dx.doi.org/10.1111/j.1365-2141.2004.05319.x] [PMID: 15667534]
[33]
Suvannasankha, A.; Minderman, H.; O’Loughlin, K.L.; Nakanishi, T.; Ford, L.A.; Greco, W.R.; Wetzler, M.; Ross, D.D.; Baer, M.R. Breast cancer resistance protein (BCRP/MXR/ABCG2) in adult acute lymphoblastic leukaemia: frequent expression and possible correlation with shorter disease-free survival. Br. J. Haematol., 2004, 127(4), 392-398.
[http://dx.doi.org/10.1111/j.1365-2141.2004.05211.x] [PMID: 15521915]
[34]
Choi, Y.; Yu, A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des., 2014, 20(5), 793-807.
[http://dx.doi.org/10.2174/138161282005140214165212] [PMID: 23688078]
[35]
Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat., 2015, 18, 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002] [PMID: 25554624]
[36]
Dong, J.; Qin, Z.; Zhang, W.D.; Cheng, G.; Yehuda, A.G.; Ashby, C.R., Jr; Chen, Z.S.; Cheng, X.D.; Qin, J.J. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist. Updat., 2020, 49, 100681.
[http://dx.doi.org/10.1016/j.drup.2020.100681] [PMID: 32014648]
[37]
Liu, L.; Liu, X. Contributions of drug transporters to blood-placental barrier. Adv. Exp. Med. Biol., 2019, 1141, 505-548.
[http://dx.doi.org/10.1007/978-981-13-7647-4_11] [PMID: 31571173]
[38]
Koehn, L. ABC efflux transporters at blood-central nervous system barriers and their implications for treating spinal cord disorders. Neural Regen. Res., 2020, 15(7), 1235-1242.
[http://dx.doi.org/10.4103/1673-5374.272568] [PMID: 31960802]
[39]
U.S. Food and Drug Administration. Guidance for industry: Drug interaction studies - study design, data analysis, implications for dosing, and labeling recommendations; FDA: Silver Spring, MD, 2012.
[40]
Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res., 1981, 41(5), 1967-1972.
[PMID: 7214365]
[41]
Palmeira, A.; Sousa, E.; Vasconcelos, M.H.; Pinto, M.M. Three decades of P-gp inhibitors: Skimming through several generations and scaffolds. Curr. Med. Chem., 2012, 19(13), 1946-2025.
[http://dx.doi.org/10.2174/092986712800167392] [PMID: 22257057]
[42]
Wilson, W.H.; Jamis-Dow, C.; Bryant, G.; Balis, F.M.; Klecker, R.W.; Bates, S.E.; Chabner, B.A.; Steinberg, S.M.; Kohler, D.R.; Wittes, R.E. Phase I and pharmacokinetic study of the multidrug resistance modulator dexverapamil with EPOCH chemotherapy. J. Clin. Oncol., 1995, 13(8), 1985-1994.
[http://dx.doi.org/10.1200/JCO.1995.13.8.1985] [PMID: 7636539]
[43]
Tidefelt, U.; Liliemark, J.; Gruber, A.; Liliemark, E.; Sundman-Engberg, B.; Juliusson, G.; Stenke, L.; Elmhorn-Rosenborg, A.; Möllgård, L.; Lehman, S.; Xu, D.; Covelli, A.; Gustavsson, B.; Paul, C. P-Glycoprotein inhibitor valspodar (PSC 833) increases the intracellular concentrations of daunorubicin in vivo in patients with P-glycoprotein-positive acute myeloid leukemia. J. Clin. Oncol., 2000, 18(9), 1837-1844.
[http://dx.doi.org/10.1200/JCO.2000.18.9.1837] [PMID: 10784624]
[44]
Lhommé, C.; Joly, F.; Walker, J.L.; Lissoni, A.A.; Nicoletto, M.O.; Manikhas, G.M.; Baekelandt, M.M.O.; Gordon, A.N.; Fracasso, P.M.; Mietlowski, W.L.; Jones, G.J.; Dugan, M.H. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J. Clin. Oncol., 2008, 26(16), 2674-2682.
[http://dx.doi.org/10.1200/JCO.2007.14.9807] [PMID: 18509179]
[45]
Kolitz, J.E.; George, S.L.; Marcucci, G.; Vij, R.; Powell, B.L.; Allen, S.L.; DeAngelo, D.J.; Shea, T.C.; Stock, W.; Baer, M.R.; Hars, V.; Maharry, K.; Hoke, E.; Vardiman, J.W.; Bloomfield, C.D.; Larson, R.A. P-glycoprotein inhibition using valspodar (PSC-833) does not improve outcomes for patients younger than age 60 years with newly diagnosed acute myeloid leukemia: Cancer and Leukemia Group B study 19808. Blood, 2010, 116(9), 1413-1421.
[http://dx.doi.org/10.1182/blood-2009-07-229492] [PMID: 20522709]
[46]
van Zuylen, L.; Sparreboom, A.; van der Gaast, A.; van der Burg, M.E.; van Beurden, V.; Bol, C.J.; Woestenborghs, R.; Palmer, P.A.; Verweij, J. The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin. Cancer Res., 2000, 6(4), 1365-1371.
[PMID: 10778964]
[47]
Mistry, P.; Folkes, A. ONT-093 (Ontogen). Curr. Opin. Investig. Drugs, 2002, 3(11), 1666-1671.
[PMID: 12476971]
[48]
Starling, J.J.; Shepard, R.L.; Cao, J.; Law, K.L.; Norman, B.H.; Kroin, J.S.; Ehlhardt, W.J.; Baughman, T.M.; Winter, M.A.; Bell, M.G.; Shih, C.; Gruber, J.; Elmquist, W.F.; Dantzig, A.H. Pharmacological characterization of LY335979: A potent cyclopropyldibenzosuberane modulator of P-glycoprotein. Adv. Enzyme Regul., 1997, 37, 335-347.
[http://dx.doi.org/10.1016/S0065-2571(96)00021-0] [PMID: 9381979]
[49]
Myer, M.S.; Joone, G.; Chasen, M.R.; van Rensburg, C.E. The chemosensitizing potential of GF120918 is independent of the magnitude of P-glycoprotein-mediated resistance to conventional chemotherapeutic agents in a small cell lung cancer line. Oncol. Rep., 1999, 6(1), 217-218.
[http://dx.doi.org/10.3892/or.6.1.217] [PMID: 9864431]
[50]
Fox, E.; Bates, S.E. Tariquidar (XR9576): A P-glycoprotein drug efflux pump inhibitor. Expert Rev. Anticancer Ther., 2007, 7(4), 447-459.
[http://dx.doi.org/10.1586/14737140.7.4.447] [PMID: 17428165]
[51]
Krishna, R.; Mayer, L.D. Multidrug resistance (MDR) in cancer. Eur. J. Pharm. Sci., 2000, 11(4), 265-283.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[52]
Coley, H.M. Overcoming multidrug resistance in cancer: Clinical studies of p-glycoprotein inhibitors. Methods Mol. Biol., 2010, 596, 341-358.
[http://dx.doi.org/10.1007/978-1-60761-416-6_15] [PMID: 19949931]
[53]
Kelly, R.J.; Draper, D.; Chen, C.C.; Robey, R.W.; Figg, W.D.; Piekarz, R.L.; Chen, X.; Gardner, E.R.; Balis, F.M.; Venkatesan, A.M.; Steinberg, S.M.; Fojo, T.; Bates, S.E. A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin. Cancer Res., 2011, 17(3), 569-580.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1725] [PMID: 21081657]
[54]
Wanek, T.; Mairinger, S.; Langer, O. Radioligands targeting P-glycoprotein and other drug efflux proteins at the blood-brain barrier. J. Labelled Comp. Radiopharm., 2013, 56(3-4), 68-77.
[http://dx.doi.org/10.1002/jlcr.2993] [PMID: 24285312]
[55]
Hartz, A.M.S.; Miller, D.S.; Bauer, B. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer’s disease. Mol. Pharmacol., 2010, 77(5), 715-723.
[http://dx.doi.org/10.1124/mol.109.061754] [PMID: 20101004]
[56]
Brenn, A.; Grube, M.; Jedlitschky, G.; Fischer, A.; Strohmeier, B.; Eiden, M.; Keller, M.; Groschup, M.H.; Vogelgesang, S.St. John’s Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model-role of P-glycoprotein. Brain Pathol., 2014, 24(1), 18-24.
[http://dx.doi.org/10.1111/bpa.12069] [PMID: 23701205]
[57]
Li, Y.; Fang, J.; Zhou, K.; Wang, C.; Mu, D.; Hua, Y. Evaluation of oxidative stress in placenta of fetal cardiac dysfunction rat model and antioxidant defenses of maternal vitamin C supplementation with the impacts on P-glycoprotein. J. Obstet. Gynaecol. Res., 2014, 40(6), 1632-1642.
[http://dx.doi.org/10.1111/jog.12389] [PMID: 24888926]
[58]
Wang, Y.; Venter, H.; Ma, S. Efflux pump inhibitors: A novel approach to combat efflux-mediated drug resistance in bacteria. Curr. Drug Targets, 2016, 17(6), 702-719.
[http://dx.doi.org/10.2174/1389450116666151001103948] [PMID: 26424403]
[59]
Esser, L.; Zhou, F.; Pluchino, K.M.; Shiloach, J.; Ma, J.; Tang, W.; Gutierrez, C.; Zhang, A.; Shukla, S.; Madigan, J.P.; Zhou, T.; Kwong, P.D.; Ambudkar, S.V.; Gottesman, M.M.; Xia, D. Structures of the multidrug transporter P-glycoprotein reveal asymmetric ATP binding and the mechanism of polyspecificity. J. Biol. Chem., 2017, 292(2), 446-461.
[http://dx.doi.org/10.1074/jbc.M116.755884] [PMID: 27864369]
[60]
Aller, S.G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P.M.; Trinh, Y.T.; Zhang, Q.; Urbatsch, I.L.; Chang, G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009, 323(5922), 1718-1722.
[http://dx.doi.org/10.1126/science.1168750] [PMID: 19325113]
[61]
Jin, M.S.; Oldham, M.L.; Zhang, Q.; Chen, J. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature, 2012, 490(7421), 566-569.
[http://dx.doi.org/10.1038/nature11448] [PMID: 23000902]
[62]
Kodan, A.; Yamaguchi, T.; Nakatsu, T.; Sakiyama, K.; Hipolito, C.J.; Fujioka, A.; Hirokane, R.; Ikeguchi, K.; Watanabe, B.; Hiratake, J.; Kimura, Y.; Suga, H.; Ueda, K.; Kato, H. Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog. Proc. Natl. Acad. Sci., 2014, 111(11), 4049-4054.
[http://dx.doi.org/10.1073/pnas.1321562111] [PMID: 24591620]
[63]
Kim, Y.; Chen, J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science, 2018, 359(6378), 915-919.
[http://dx.doi.org/10.1126/science.aar7389] [PMID: 29371429]
[64]
Ferreira, R.J.; Bonito, C.A.; Ferreira, M.J.U.; Santos, D.J.V.A. About P‐glycoprotein: A new drugable domain is emerging from structural data. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(5), e1316.
[http://dx.doi.org/10.1002/wcms.1316]
[65]
Lusvarghi, S.; Robey, R.W.; Gottesman, M.M.; Ambudkar, S.V. Multidrug transporters: Recent insights from cryo-electron microscopy-derived atomic structures and animal models. F1000Res, 2020, 9 F1000 Faculty Rev-17.
[http://dx.doi.org/10.12688/f1000research.21295.1]
[66]
Chufan, E.E.; Kapoor, K.; Sim, H.M.; Singh, S.; Talele, T.T.; Durell, S.R.; Ambudkar, S.V. Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1). PLoS One, 2013, 8(12), e82463.
[http://dx.doi.org/10.1371/journal.pone.0082463] [PMID: 24349290]
[67]
Ferreira, R.J.; Ferreira, M.J.U.; dos Santos, D.J.V.A. Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. J. Chem. Inf. Model., 2013, 53(7), 1747-1760.
[http://dx.doi.org/10.1021/ci400195v] [PMID: 23802684]
[68]
Pajeva, I.K.; Sterz, K.; Christlieb, M.; Steggemann, K.; Marighetti, F.; Wiese, M. Interactions of the multidrug resistance modulators tariquidar and elacridar and their analogues with P-glycoprotein. ChemMedChem, 2013, 8(10), n/a.
[http://dx.doi.org/10.1002/cmdc.201300233] [PMID: 23943604]
[69]
Chen, L.; Li, Y.; Yu, H.; Zhang, L.; Hou, T. Computational models for predicting substrates or inhibitors of P-glycoprotein. Drug Discov. Today, 2012, 17(7-8), 343-351.
[http://dx.doi.org/10.1016/j.drudis.2011.11.003] [PMID: 22119877]
[70]
Dei, S.; Coronnello, M.; Floriddia, E.; Bartolucci, G.; Bellucci, C.; Guandalini, L.; Manetti, D.; Romanelli, M.N.; Salerno, M.; Bello, I.; Mini, E.; Teodori, E. Multidrug resistance (MDR) reversers: High activity and efficacy in a series of asymmetrical N,N-bis(alkanol)amine aryl esters. Eur. J. Med. Chem., 2014, 87, 398-412.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.084] [PMID: 25282263]
[71]
Mollazadeh, S.; Sahebkar, A.; Hadizadeh, F.; Behravan, J.; Arabzadeh, S. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci., 2018, 214, 118-123.
[http://dx.doi.org/10.1016/j.lfs.2018.10.048] [PMID: 30449449]
[72]
Spoelstra, E.C.; Westerhoff, H.V.; Pinedo, H.M.; Dekker, H.; Lankelma, J. The multidrug-resistance-reverser verapamil interferes with cellular P-glycoprotein-mediated pumping of daunorubicin as a non-competing substrate. Eur. J. Biochem., 1994, 221(1), 363-373.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18748.x] [PMID: 7909520]
[73]
Wang, Y.H.; Li, Y.; Yang, S.L.; Yang, L. Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J. Chem. Inf. Model., 2005, 45(3), 750-757.
[http://dx.doi.org/10.1021/ci050041k] [PMID: 15921464]
[74]
Mandal, D.; Moitra, K.; Ghosh, D.; Xia, D.; Dey, S. Evidence for modulatory sites at the lipid-protein interface of the human multidrug transporter P-glycoprotein. Biochemistry, 2012, 51(13), 2852-2866.
[http://dx.doi.org/10.1021/bi201479k] [PMID: 22360349]
[75]
Conseil, G.; Baubichon-Cortay, H.; Dayan, G.; Jault, J.M.; Barron, D.; Di Pietro, A. Flavonoids: A class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc. Natl. Acad. Sci. USA, 1998, 95(17), 9831-9836.
[http://dx.doi.org/10.1073/pnas.95.17.9831] [PMID: 9707561]
[76]
Ryder, H.; Ashworth, P.A.; Roe, M.J.; Brumwell, J.E.; Hunjan, S.; Folkes, A.J.; Sanderson, J.T.; Williams, S.; Maximen, L.M. Anthranilic acid derivatives as multi drug resistance modulators. WO 98/17648 1998.
[77]
Roe, M.; Folkes, A.; Ashworth, P.; Brumwell, J.; Chima, L.; Hunjan, S.; Pretswell, I.; Dangerfield, W.; Ryder, H.; Charlton, P. Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg. Med. Chem. Lett., 1999, 9(4), 595-600.
[http://dx.doi.org/10.1016/S0960-894X(99)00030-X] [PMID: 10098671]
[78]
Mistry, P.; Stewart, A.J.; Dangerfield, W.; Okiji, S.; Liddle, C.; Bootle, D.; Plumb, J.A.; Templeton, D.; Charlton, P. In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res., 2001, 61(2), 749-758.
[PMID: 11212278]
[79]
Walker, J.; Martin, C.; Callaghan, R. Inhibition of P-glycoprotein function by XR9576 in a solid tumour model can restore anticancer drug efficacy. Eur. J. Cancer, 2004, 40(4), 594-605.
[http://dx.doi.org/10.1016/j.ejca.2003.09.036] [PMID: 14962729]
[80]
Köhler, S.; Stein, W.D. Optimizing chemotherapy by measuring reversal of P-glycoprotein activity in plasma membrane vesicles. Biotechnol. Bioeng., 2003, 81(5), 507-517.
[http://dx.doi.org/10.1002/bit.10488] [PMID: 12514799]
[81]
Kakarla, P.; Inupakutika, M.; Devireddy, A.R.; Gunda, S.K.; Willmon, T.M.; Ranjana, K.C.; Shrestha, U.; Ranaweera, I.; Hernandez, A.J.; Barr, S.; Varela, M.F. 3D-QSAR and contour map analysis of tariquidar analogues as multidrug resistance protein-1 (MRP1) inhibitors. Int. J. Pharm. Sci. Res., 2016, 7(2), 554-572.
[PMID: 26913287]
[82]
Robey, R.W.; Steadman, K.; Polgar, O.; Morisaki, K.; Blayney, M.; Mistry, P.; Bates, S.E. Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res., 2004, 64(4), 1242-1246.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3298] [PMID: 14973080]
[83]
Kannan, P.; Telu, S.; Shukla, S.; Ambudkar, S.V.; Pike, V.W.; Halldin, C.; Gottesman, M.M.; Innis, R.B.; Hall, M.D. The “specific” P-glycoprotein inhibitor Tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem. Neurosci., 2011, 2(2), 82-89.
[http://dx.doi.org/10.1021/cn100078a] [PMID: 22778859]
[84]
Sun, Y.L.; Chen, J.J.; Kumar, P.; Chen, K.; Sodani, K.; Patel, A.; Chen, Y.L.; Chen, S.D.; Jiang, W.Q.; Chen, Z.S. Reversal of MRP7 (ABCC10)-mediated multidrug resistance by tariquidar. PLoS One, 2013, 8(2), e55576.
[http://dx.doi.org/10.1371/journal.pone.0055576] [PMID: 23393594]
[85]
Pusztai, L.; Wagner, P.; Ibrahim, N.; Rivera, E.; Theriault, R.; Booser, D.; Symmans, F.W.; Wong, F.; Blumenschein, G.; Fleming, D.R.; Rouzier, R.; Boniface, G.; Hortobagyi, G.N. Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer, 2005, 104(4), 682-691.
[http://dx.doi.org/10.1002/cncr.21227] [PMID: 15986399]
[86]
Szakács, G.; To, K.K.; Polgár, O.; Robey, R.W.; Bates, S.E. Multidrug resistance mediated by MDR-ABC transporters. In: Drug Resistance in Cancer Cells; Siddik, Z.H.; Mehta, K., Eds.; Springer: New York, 2009; 1, pp. 1-20.
[http://dx.doi.org/10.1007/978-0-387-89445-4_1]
[87]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[88]
Nobili, S.; Landini, I.; Giglioni, B.; Mini, E. Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets, 2006, 7(7), 861-879.
[http://dx.doi.org/10.2174/138945006777709593] [PMID: 16842217]
[89]
Hyafil, F.; Vergely, C.; Du Vignaud, P.; Grand-Perret, T. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res., 1993, 53(19), 4595-4602.
[PMID: 8402633]
[90]
Martin, C.; Berridge, G.; Mistry, P.; Higgins, C.; Charlton, P.; Callaghan, R. The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br. J. Pharmacol., 1999, 128(2), 403-411.
[http://dx.doi.org/10.1038/sj.bjp.0702807] [PMID: 10510451]
[91]
Shukla, S.; Wu, C.P.; Ambudkar, S.V. Development of inhibitors of ATP-binding cassette drug transporters - present status and challenges. Expert Opin. Drug Metab. Toxicol., 2008, 4(2), 205-223.
[http://dx.doi.org/10.1517/17425255.4.2.205] [PMID: 18248313]
[92]
de Bruin, M.; Miyake, K.; Litman, T.; Robey, R.; Bates, S.E. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett., 1999, 146(2), 117-126.
[http://dx.doi.org/10.1016/S0304-3835(99)00182-2] [PMID: 10656616]
[93]
Maliepaard, M.; van Gastelen, M.A.; Tohgo, A.; Hausheer, F.H.; van Waardenburg, R.C.; de Jong, L.A.; Pluim, D.; Beijnen, J.H.; Schellens, J.H. Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin. Cancer Res., 2001, 7(4), 935-941.
[PMID: 11309344]
[94]
Martin, C.; Berridge, G.; Higgins, C.F.; Mistry, P.; Charlton, P.; Callaghan, R. Communication between multiple drug binding sites on P-glycoprotein. Mol. Pharmacol., 2000, 58(3), 624-632.
[http://dx.doi.org/10.1124/mol.58.3.624] [PMID: 10953057]
[95]
Traunecker, H.C.L.; Stevens, M.C.G.; Kerr, D.J.; Ferry, D.R. The acridonecarboxamide GF120918 potently reverses P-glycoprotein-mediated resistance in human sarcoma MES-Dx5 cells. Br. J. Cancer, 1999, 81(6), 942-951.
[http://dx.doi.org/10.1038/sj.bjc.6690791] [PMID: 10576649]
[96]
Planting, A.S.T.; Sonneveld, P.; van der Gaast, A.; Sparreboom, A.; van der Burg, M.E.L.; Luyten, G.P.M.; de Leeuw, K.; de Boer-Dennert, M.; Wissel, P.S.; Jewell, R.C.; Paul, E.M.; Purvis, N.B., Jr; Verweij, J. A phase I and pharmacologic study of the MDR converter GF120918 in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2005, 55(1), 91-99.
[http://dx.doi.org/10.1007/s00280-004-0854-6] [PMID: 15565444]
[97]
Dash, R.P.; Jayachandra Babu, R.; Srinivas, N.R. Therapeutic potential and utility of elacridar with respect to P-glycoprotein inhibition: an insight from the published in vitro, preclinical and clinical studies. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(6), 915-933.
[http://dx.doi.org/10.1007/s13318-017-0411-4] [PMID: 28374336]
[98]
Kuntner, C.; Bankstahl, J.P.; Bankstahl, M.; Stanek, J.; Wanek, T.; Stundner, G.; Karch, R.; Brauner, R.; Meier, M.; Ding, X.; Müller, M.; Löscher, W.; Langer, O. Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[11C]verapamil PET. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(5), 942-953.
[http://dx.doi.org/10.1007/s00259-009-1332-5] [PMID: 20016890]
[99]
Wanek, T.; Römermann, K.; Mairinger, S.; Stanek, J.; Sauberer, M.; Filip, T.; Traxl, A.; Kuntner, C.; Pahnke, J.; Bauer, F.; Erker, T.; Löscher, W.; Müller, M.; Langer, O. Factors governing P-glycoprotein-mediated drug-drug interactions at the blood-brain barrier measured with positron emission tomography. Mol. Pharm., 2015, 12(9), 3214-3225.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00168] [PMID: 26202880]
[100]
Bankstahl, J.P.; Bankstahl, M.; Römermann, K.; Wanek, T.; Stanek, J.; Windhorst, A.D.; Fedrowitz, M.; Erker, T.; Müller, M.; Löscher, W.; Langer, O.; Kuntner, C. Tariquidar and elacridar are dose-dependently transported by P-glycoprotein and Bcrp at the blood-brain barrier: A small-animal positron emission tomography and in vitro study. Drug Metab. Dispos., 2013, 41(4), 754-762.
[http://dx.doi.org/10.1124/dmd.112.049148] [PMID: 23305710]
[101]
Wanek, T.; Kuntner, C.; Bankstahl, J.P.; Mairinger, S.; Bankstahl, M.; Stanek, J.; Sauberer, M.; Filip, T.; Erker, T.; Müller, M.; Löscher, W.; Langer, O. A novel PET protocol for visualization of breast cancer resistance protein function at the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 2002-2011.
[http://dx.doi.org/10.1038/jcbfm.2012.112] [PMID: 22828996]
[102]
Klinkhammer, W. Design, Synthese Und 3D-QSAR Neuartiger Pgp-Modulatoren. PhD Thesis, University of Bonn: Bonn, 2006.
[103]
Jekerle, V.; Klinkhammer, W.; Reilly, R.M.; Piquette-Miller, M.; Wiese, M. Novel tetrahydroisoquinolin-ethyl-phenylamine based multidrug resistance inhibitors with broad-spectrum modulating properties. Cancer Chemother. Pharmacol., 2006, 59(1), 61-69.
[http://dx.doi.org/10.1007/s00280-006-0244-3] [PMID: 16636798]
[104]
Jekerle, V.; Klinkhammer, W.; Scollard, D.A.; Breitbach, K.; Reilly, R.M.; Piquette-Miller, M.; Wiese, M. In vitro and in vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques. Int. J. Cancer, 2006, 119(2), 414-422.
[http://dx.doi.org/10.1002/ijc.21827] [PMID: 16646006]
[105]
Müller, H.; Klinkhammer, W.; Globisch, C.; Kassack, M.U.; Pajeva, I.K.; Wiese, M. New functional assay of P-glycoprotein activity using Hoechst 33342. Bioorg. Med. Chem., 2007, 15(23), 7470-7479.
[http://dx.doi.org/10.1016/j.bmc.2007.07.024] [PMID: 17890094]
[106]
Müller, H.; Pajeva, I.K.; Globisch, C.; Wiese, M. Functional assay and structure-activity relationships of new third-generation P-gly-coprotein inhibitors. Bioorg. Med. Chem., 2008, 16(5), 2448-2462.
[http://dx.doi.org/10.1016/j.bmc.2007.11.057] [PMID: 18083034]
[107]
Klinkhammer, W.; Müller, H.; Globisch, C.; Pajeva, I.K.; Wiese, M. Synthesis and biological evaluation of a small molecule library of 3rd generation multidrug resistance modulators. Bioorg. Med. Chem., 2009, 17(6), 2524-2535.
[http://dx.doi.org/10.1016/j.bmc.2009.01.072] [PMID: 19250834]
[108]
Labrie, P.; Maddaford, S.P.; Lacroix, J.; Catalano, C.; Lee, D.K.H.; Rakhit, S.; Gaudreault, R.C. In vitro activity of novel dual action MDR anthranilamide modulators with inhibitory activity at CYP-450. Bioorg. Med. Chem., 2006, 14(23), 7972-7987.
[http://dx.doi.org/10.1016/j.bmc.2006.07.055] [PMID: 16904325]
[109]
Labrie, P.; Maddaford, S.P.; Lacroix, J.; Catalano, C.; Lee, D.K.H.; Rakhit, S.; Gaudreault, R.C. In vitro activity of novel dual action MDR anthranilamide modulators with inhibitory activity on CYP-450 (Part 2). Bioorg. Med. Chem., 2007, 15(11), 3854-3868.
[http://dx.doi.org/10.1016/j.bmc.2007.03.014] [PMID: 17399990]
[110]
Egger, M.; Li, X.; Müller, C.; Bernhardt, G.; Buschauer, A.; König, B. Tariquidar analogues: synthesis by CuI-catalysed N/O-aryl coupling and inhibitory activity against the ABCB1 transporter. Eur. J. Org. Chem., 2007, 2007(16), 2643-2649.
[http://dx.doi.org/10.1002/ejoc.200700142]
[111]
Kühnle, M.; Egger, M.; Müller, C.; Mahringer, A.; Bernhardt, G.; Fricker, G.; König, B.; Buschauer, A. Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar. J. Med. Chem., 2009, 52(4), 1190-1197.
[http://dx.doi.org/10.1021/jm8013822] [PMID: 19170519]
[112]
Pick, A.; Müller, H.; Wiese, M. Structure-activity relationships of new inhibitors of breast cancer resistance protein (ABCG2). Bioorg. Med. Chem., 2008, 16(17), 8224-8236.
[http://dx.doi.org/10.1016/j.bmc.2008.07.034] [PMID: 18678495]
[113]
Pajeva, I.K.; Wiese, M. Structure-activity relationships of tariquidar analogs as multidrug resistance modulators. AAPS J., 2009, 11(3), 435-444.
[http://dx.doi.org/10.1208/s12248-009-9118-z] [PMID: 19504188]
[114]
Globisch, C.; Pajeva, I.K.; Wiese, M. Structure-activity relationships of a series of tariquidar analogs as multidrug resistance modulators. Bioorg. Med. Chem., 2006, 14(5), 1588-1598.
[http://dx.doi.org/10.1016/j.bmc.2005.10.058] [PMID: 16307883]
[115]
Pick, A.; Klinkhammer, W.; Wiese, M. Specific inhibitors of the breast cancer resistance protein (BCRP). ChemMedChem, 2010, 5(9), 1498-1505.
[http://dx.doi.org/10.1002/cmdc.201000216] [PMID: 20632361]
[116]
Allen, J.D.; van Loevezijn, A.; Lakhai, J.M.; van der Valk, M.; van Tellingen, O.; Reid, G.; Schellens, J.H.; Koomen, G.J.; Schinkel, A.H. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol. Cancer Ther., 2002, 1(6), 417-425.
[PMID: 12477054]
[117]
Rabindran, S.K.; Ross, D.D.; Doyle, L.A.; Yang, W.; Greenberger, L.M. Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res., 2000, 60(1), 47-50.
[PMID: 10646850]
[118]
Marighetti, F.; Steggemann, K.; Karbaum, M.; Wiese, M. Scaffold identification of a new class of potent and selective BCRP inhibitors. ChemMedChem, 2015, 10(4), 742-751.
[http://dx.doi.org/10.1002/cmdc.201402498] [PMID: 25735648]
[119]
Hubensack, M.; Müller, C.; Höcherl, P.; Fellner, S.; Spruss, T.; Bernhardt, G.; Buschauer, A. Effect of the ABCB1 modulators elacridar and tariquidar on the distribution of paclitaxel in nude mice. J. Cancer Res. Clin. Oncol., 2008, 134(5), 597-607.
[http://dx.doi.org/10.1007/s00432-007-0323-9] [PMID: 17932689]
[120]
Müller, C. New Approaches to the Therapy of Glioblastoma: Investigations on RNA Interference, Kinesin Eg5 and ABCB1/ABCG2 Inhibition, PhD Thesis, University of Regensburg: Regensburg, 2007.
[121]
Puentes, C.O.; Höcherl, P.; Kühnle, M.; Bauer, S.; Bürger, K.; Bernhardt, G.; Buschauer, A.; König, B. Solid phase synthesis of tariquidar-related modulators of ABC transporters preferring breast cancer resistance protein (ABCG2). Bioorg. Med. Chem. Lett., 2011, 21(12), 3654-3657.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.094] [PMID: 21570282]
[122]
Li, X.Q.; Wang, L.; Lei, Y.; Hu, T.; Zhang, F.L.; Cho, C.H.; To, K.K.W. Reversal of P-gp and BCRP-mediated MDR by tariquidar derivatives. Eur. J. Med. Chem., 2015, 101, 560-572.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.049] [PMID: 26197160]
[123]
Peña-Solórzano, D.; Scholler, M.; Bernhardt, G.; Buschauer, A.; König, B.; Ochoa-Puentes, C. Tariquidar-related chalcones and ketones as ABCG2 modulators. ACS Med. Chem. Lett., 2018, 9(8), 854-859.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00289] [PMID: 30128080]
[124]
Contino, M.; Zinzi, L.; Cantore, M.; Perrone, M.G.; Leopoldo, M.; Berardi, F.; Perrone, R.; Colabufo, N.A. Activity-lipophilicity relationship studies on P-gp ligands designed as simplified tariquidar bulky fragments. Bioorg. Med. Chem. Lett., 2013, 23(13), 3728-3731.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.019] [PMID: 23726026]
[125]
Teodori, E.; Dei, S.; Bartolucci, G.; Perrone, M.G.; Manetti, D.; Romanelli, M.N.; Contino, M.; Colabufo, N.A. Structure-activity relationship studies on 6,7-dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline derivatives as multidrug resistance reversers. ChemMedChem, 2017, 12(16), 1369-1379.
[http://dx.doi.org/10.1002/cmdc.201700239] [PMID: 28570027]
[126]
Braconi, L.; Bartolucci, G.; Contino, M.; Chiaramonte, N.; Giampietro, R.; Manetti, D.; Perrone, M.G.; Romanelli, M.N.; Colabufo, N.A.; Riganti, C.; Dei, S.; Teodori, E. 6,7-Dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline amides and corresponding ester isosteres as multidrug resistance reversers. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 974-992.
[http://dx.doi.org/10.1080/14756366.2020.1747449] [PMID: 32253945]
[127]
Capparelli, E.; Zinzi, L.; Cantore, M.; Contino, M.; Perrone, M.G.; Luurtsema, G.; Berardi, F.; Perrone, R.; Colabufo, N.A. SAR studies on tetrahydroisoquinoline derivatives: the role of flexibility and bioisosterism to raise potency and selectivity toward P-glycoprotein. J. Med. Chem., 2014, 57(23), 9983-9994.
[http://dx.doi.org/10.1021/jm501640e] [PMID: 25379609]
[128]
Colabufo, N.A.; Berardi, F.; Cantore, M.; Perrone, M.G.; Contino, M.; Inglese, C.; Niso, M.; Perrone, R.; Azzariti, A.; Simone, G.M.; Paradiso, A. 4-Biphenyl and 2-naphthyl substituted 6,7-dimethoxytetrahydroisoquinoline derivatives as potent P-gp modulators. Bioorg. Med. Chem., 2008, 16(7), 3732-3743.
[http://dx.doi.org/10.1016/j.bmc.2008.01.055] [PMID: 18276145]
[129]
Azzariti, A.; Quatrale, A.E.; Porcelli, L.; Colabufo, N.A.; Cantore, M.; Cassano, G.; Gasparre, G.; Iannelli, G.; Tommasi, S.; Panaro, M.A.; Paradiso, A. MC70 potentiates doxorubicin efficacy in colon and breast cancer in vitro treatment. Eur. J. Pharmacol., 2011, 670(1), 74-84.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.025] [PMID: 21925160]
[130]
Guglielmo, S.; Contino, M.; Lazzarato, L.; Perrone, M.G.; Blangetti, M.; Fruttero, R.; Colabufo, N.A. A potent and selective P-gp modulator for altering multidrug resistance due to pump overexpression. ChemMedChem, 2016, 11(4), 374-376.
[http://dx.doi.org/10.1002/cmdc.201500538] [PMID: 26797828]
[131]
Guglielmo, S.; Lazzarato, L.; Contino, M.; Perrone, M.G.; Chegaev, K.; Carrieri, A.; Fruttero, R.; Colabufo, N.A.; Gasco, A. Structure-activity relationship studies on tetrahydroisoquinoline derivatives: [4′-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-ylme-thyl)biphenyl-4-ol] (MC70) conjugated through flexible alkyl chains with furazan moieties gives rise to potent and selective ligands of P-glycoprotein. J. Med. Chem., 2016, 59(14), 6729-6738.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00252] [PMID: 27336199]
[132]
Riganti, C.; Miraglia, E.; Viarisio, D.; Costamagna, C.; Pescarmona, G.; Ghigo, D.; Bosia, A. Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res., 2005, 65(2), 516-525.
[http://dx.doi.org/10.1158/0008-5472.516.65.2] [PMID: 15695394]
[133]
Fruttero, R.; Crosetti, M.; Chegaev, K.; Guglielmo, S.; Gasco, A.; Berardi, F.; Niso, M.; Perrone, R.; Panaro, M.A.; Colabufo, N.A. Phenylsulfonylfuroxans as modulators of multidrug-resistance-associated protein-1 and P-glycoprotein. J. Med. Chem., 2010, 53(15), 5467-5475.
[http://dx.doi.org/10.1021/jm100066y] [PMID: 20684594]
[134]
Salaroglio, I.; Gazzano, E.; Kopecka, J.; Chegaev, K.; Costamagna, C.; Fruttero, R.; Guglielmo, S.; Riganti, C. New tetrahydroisoquinoline derivatives overcome Pgp activity in brain-blood barrier and glioblastoma multiforme in vitro. Molecules, 2018, 23(6), 1401.
[http://dx.doi.org/10.3390/molecules23061401] [PMID: 29890725]
[135]
Contino, M.; Guglielmo, S.; Perrone, M.G.; Giampietro, R.; Rolando, B.; Carrieri, A.; Zaccaria, D.; Chegaev, K.; Borio, V.; Riganti, C.; Zabielska-Koczywąs, K.; Colabufo, N.A.; Fruttero, R. New tetrahydroisoquinoline-based P-glycoprotein modulators: Decoration of the biphenyl core gives selective ligands. MedChemComm, 2018, 9(5), 862-869.
[http://dx.doi.org/10.1039/C8MD00075A] [PMID: 30108975]
[136]
Riganti, C.; Contino, M.; Guglielmo, S.; Perrone, M.G.; Salaroglio, I.C.; Milosevic, V.; Giampietro, R.; Leonetti, F.; Rolando, B.; Lazzarato, L.; Colabufo, N.A.; Fruttero, R. Design, biological evaluation, and molecular modeling of tetrahydroisoquinoline derivatives: Discovery of a potent p-glycoprotein ligand overcoming multidrug resistance in cancer stem cells. J. Med. Chem., 2019, 62(2), 974-986.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01655] [PMID: 30584838]
[137]
Contino, M.; Guglielmo, S.; Riganti, C.; Antonello, G.; Perrone, M.G.; Giampietro, R.; Rolando, B.; Fruttero, R.; Colabufo, N.A. One molecule two goals: A selective P-glycoprotein modulator increases drug transport across gastro-intestinal barrier and recovers doxorubicin toxicity in multidrug resistant cancer cells. Eur. J. Med. Chem., 2020, 208, 112843.
[http://dx.doi.org/10.1016/j.ejmech.2020.112843] [PMID: 33007664]
[138]
Rullo, M.; Niso, M.; Pisani, L.; Carrieri, A.; Colabufo, N.A.; Cellamare, S.; Altomare, C.D. 1,2,3,4-Tetrahydroisoquinoline/2H-chromen-2-one conjugates as nanomolar P-glycoprotein inhibitors: Molecular determinants for affinity and selectivity over multidrug resistance associated protein 1. Eur. J. Med. Chem., 2019, 161, 433-444.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.043] [PMID: 30384046]
[139]
Berardi, F.; Colabufo, N.A.; Giudice, G.; Perrone, R.; Tortorella, V.; Govoni, S.; Lucchi, L. New σ and 5-HT 1A receptor ligands: ω-(Tetralin-1-yl)- n -alkylamine derivatives. J. Med. Chem., 1996, 39(1), 176-182.
[http://dx.doi.org/10.1021/jm950409c] [PMID: 8568804]
[140]
Azzariti, A.; Colabufo, N.A.; Berardi, F.; Porcelli, L.; Niso, M.; Simone, G.M.; Perrone, R.; Paradiso, A. Cyclohexylpiperazine derivative PB28, a σ2 agonist and σ1 antagonist receptor, inhibits cell growth, modulates P-glycoprotein, and synergizes with anthracyclines in breast cancer. Mol. Cancer Ther., 2006, 5(7), 1807-1816.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0402] [PMID: 16891467]
[141]
Colabufo, N.A.; Berardi, F.; Perrone, M.G.; Cantore, M.; Contino, M.; Inglese, C.; Niso, M.; Perrone, R. Multi-drug-resistance-reverting agents: 2-aryloxazole and 2-arylthiazole derivatives as potent BCRP or MRP1 inhibitors. ChemMedChem, 2009, 4(2), 188-195.
[http://dx.doi.org/10.1002/cmdc.200800329] [PMID: 19140144]
[142]
Li, Y.S.; Zhao, D.S.; Liu, X.Y.; Liao, Y.X.; Jin, H.W.; Song, G.P.; Cui, Z.N. Synthesis and biological evaluation of 2,5-disubstituted furan derivatives as P-glycoprotein inhibitors for Doxorubicin resistance in MCF-7/ADR cell. Eur. J. Med. Chem., 2018, 151, 546-556.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.012] [PMID: 29656198]
[143]
Colabufo, N.A.; Berardi, F.; Cantore, M.; Perrone, M.G.; Contino, M.; Inglese, C.; Niso, M.; Perrone, R.; Azzariti, A.; Simone, G.M.; Porcelli, L.; Paradiso, A. Small P-gp modulating molecules: SAR studies on tetrahydroisoquinoline derivatives. Bioorg. Med. Chem., 2008, 16(1), 362-373.
[http://dx.doi.org/10.1016/j.bmc.2007.09.039] [PMID: 17936633]
[144]
van Waarde, A.; Ramakrishnan, N.K.; Rybczynska, A.A.; Elsinga, P.H.; Berardi, F.; de Jong, J.R.; Kwizera, C.; Perrone, R.; Cantore, M.; Sijbesma, J.W.A.; Dierckx, R.A.; Colabufo, N.A. Synthesis and preclinical evaluation of novel PET probes for P-glycoprotein function and expression. J. Med. Chem., 2009, 52(14), 4524-4532.
[http://dx.doi.org/10.1021/jm900485a] [PMID: 19530699]
[145]
Mairinger, S.; Wanek, T.; Kuntner, C.; Doenmez, Y.; Strommer, S.; Stanek, J.; Capparelli, E.; Chiba, P.; Müller, M.; Colabufo, N.A.; Langer, O. Synthesis and preclinical evaluation of the radiolabeled P-glycoprotein inhibitor [11C]MC113. Nucl. Med. Biol., 2012, 39(8), 1219-1225.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.08.005] [PMID: 22981987]
[146]
Li, Y.S.; Yang, X.; Zhao, D.S.; Cai, Y.; Huang, Z.; Wu, R.; Wang, S.J.; Liu, G.J.; Wang, J.; Bao, X.Z.; Ye, X.Y.; Wei, B.; Cui, Z.N.; Wang, H. Design, synthesis and bioactivity study on 5-phenylfuran derivatives as potent reversal agents against P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cell. Eur. J. Med. Chem., 2021, 216, 113336.
[http://dx.doi.org/10.1016/j.ejmech.2021.113336] [PMID: 33725657]
[147]
Ma, Y.; Yin, D.; Ye, J.; Wei, X.; Pei, Y.; Li, X.; Si, G.; Chen, X.Y.; Chen, Z.S.; Dong, Y.; Zou, F.; Shi, W.; Qiu, Q.; Qian, H.; Liu, G. Discovery of potent inhibitors against p-glycoprotein-mediated multidrug resistance aided by late-stage functionalization of a 2-(4-(Pyridin-2-yl)phenoxy)pyridine analogue. J. Med. Chem., 2020, 63(10), 5458-5476.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00337] [PMID: 32329342]
[148]
Kwak, J.O.; Lee, S.H.; Lee, G.S.; Kim, M.S.; Ahn, Y.G.; Lee, J.H.; Kim, S.W.; Kim, K.H.; Lee, M.G. Selective inhibition of MDR1 (ABCB1) by HM30181 increases oral bioavailability and therapeutic efficacy of paclitaxel. Eur. J. Pharmacol., 2010, 627(1-3), 92-98.
[http://dx.doi.org/10.1016/j.ejphar.2009.11.008] [PMID: 19903471]
[149]
Kim, T.E.; Lee, H.; Lim, K.S.; Lee, S.; Yoon, S.H.; Park, K.M.; Han, H.; Shin, S.G.; Jang, I.J.; Yu, K.S.; Cho, J.Y. Effects of HM30181, a P-glycoprotein inhibitor, on the pharmacokinetics and pharmacodynamics of loperamide in healthy volunteers. Br. J. Clin. Pharmacol., 2014, 78(3), 556-564.
[http://dx.doi.org/10.1111/bcp.12368] [PMID: 24602137]
[150]
Cha, Y.J.; Lee, H.; Gu, N.; Kim, T.E.; Lim, K.S.; Yoon, S.H.; Chung, J.Y.; Jang, I.J.; Shin, S.G.; Yu, K.S.; Cho, J.Y. Sustained increase in the oral bioavailability of loperamide after a single oral dose of HM30181, a P-glycoprotein inhibitor, in healthy male participants. Basic Clin. Pharmacol. Toxicol., 2013, 113(6), 419-424.
[http://dx.doi.org/10.1111/bcpt.12108] [PMID: 23829508]
[151]
Kim, J.C.; Kim, K.S.; Kim, D.S.; Jin, S.G.; Kim, D.W.; Kim, Y.I.; Park, J.H.; Kim, J.O.; Yong, C.S.; Youn, Y.S.; Woo, J.S.; Choi, H.G. Effect of HM30181 mesylate salt-loaded microcapsules on the oral absorption of paclitaxel as a novel P-glycoprotein inhibitor. Int. J. Pharm., 2016, 506(1-2), 93-101.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.034] [PMID: 27106527]
[152]
Joo, K.M.; Song, S.Y.; Park, K.; Kim, M.H.; Jin, J.; Kang, B.G.; Jang, M.J.; Lee, G.S.; Kim, M.S.; Nam, D.H. Response of brain specific microenvironment to P-glycoprotein inhibitor: An important factor determining therapeutic effect of P-glycoprotein inhibitor on brain metastatic tumors. Int. J. Oncol., 2008, 33(4), 705-712.
[PMID: 18813783]
[153]
Umanzor, G.; Cutler, D.L.; Barrios, F.J. Oral paclitaxel with encequidar: The first orally administered paclitaxel shown to be superior to IV paclitaxel on confirmed response and survival with less neuropathy: A phase III clinical study in metastatic breast cancer. San Antonio Breast Cancer Symposium, San Antonio, Texas2019.
[154]
Köhler, S.C.; Wiese, M. HM30181 derivatives as novel potent and selective inhibitors of the Breast Cancer Resistance Protein (BCRP/ABCG2). J. Med. Chem., 2015, 58(9), 3910-3921.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00188] [PMID: 25855895]
[155]
Jiao, L.; Qiu, Q.; Liu, B.; Zhao, T.; Huang, W.; Qian, H. Design, synthesis and evaluation of novel triazole core based P-glycoprotein-mediated multidrug resistance reversal agents. Bioorg. Med. Chem., 2014, 22(24), 6857-6866.
[http://dx.doi.org/10.1016/j.bmc.2014.10.032] [PMID: 25464884]
[156]
Liu, B.; Qiu, Q.; Zhao, T.; Jiao, L.; Hou, J.; Li, Y.; Qian, H.; Huang, W. Discovery of novel P-glycoprotein-mediated multidrug resistance inhibitors bearing triazole core via click chemistry. Chem. Biol. Drug Des., 2014, 84(2), 182-191.
[http://dx.doi.org/10.1111/cbdd.12301] [PMID: 24750961]
[157]
Liu, B.; Qiu, Q.; Zhao, T.; Jiao, L.; Li, Y.; Huang, W.; Qian, H. 6,7-Dimethoxy-2-{2-[4-(1H-1,2,3-triazol-1-yl)phenyl]ethyl}-1,2,3,4-tetrahydroisoquinolines as superior reversal agents for P-glyco-protein-mediated multidrug resistance. ChemMedChem, 2015, 10(2), 336-344.
[http://dx.doi.org/10.1002/cmdc.201402463] [PMID: 25470220]
[158]
Wu, Y.; Pan, M.; Dai, Y.; Liu, B.; Cui, J.; Shi, W.; Qiu, Q.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors. Bioorg. Med. Chem., 2016, 24(10), 2287-2297.
[http://dx.doi.org/10.1016/j.bmc.2016.03.065] [PMID: 27073052]
[159]
Pan, M.; Cui, J.; Jiao, L.; Ghaleb, H.; Liao, C.; Zhou, J.; Kairuki, M.; Lin, H.; Huang, W.; Qian, H. Synthesis and biological evaluation of JL-A7 derivatives as potent ABCB1 inhibitors. Bioorg. Med. Chem., 2017, 25(15), 4194-4202.
[http://dx.doi.org/10.1016/j.bmc.2017.06.015] [PMID: 28645831]
[160]
Gao, Y.; Shi, W.; Cui, J.; Liu, C.; Bi, X.; Li, Z.; Huang, W.; Wang, G.; Qian, H. Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as P-glycoprotein-mediated multidrug resistance inhibitors. Bioorg. Med. Chem., 2018, 26(9), 2420-2427.
[http://dx.doi.org/10.1016/j.bmc.2018.03.045] [PMID: 29631786]
[161]
Shayanfar, S.; Shayanfar, A.; Ghandadi, M. Image-based analysis to predict the activity of tariquidar analogs as P-glycoprotein inhibitors: the importance of external validation. Arch. Pharm. (Weinheim), 2016, 349(2), 124-131.
[http://dx.doi.org/10.1002/ardp.201500333] [PMID: 26708190]
[162]
Qiu, Q.; Shi, W.; Zhao, S.; Zhu, Y.; Ding, Z.; Zhou, S.; Kairuki, M.; Huang, W.; Qian, H. Discovery to solve multidrug resistance: Design, synthesis, and biological evaluation of novel agents. Arch. Pharm., 2019, 352(10), 1900127.
[http://dx.doi.org/10.1002/ardp.201900127] [PMID: 31441108]
[163]
Kairuki, M.; Qiu, Q.; Pan, M.; Li, Q.; Zhou, J.; Ghaleb, H.; Huang, W.; Qian, H.; Jiang, C. Designed P-glycoprotein inhibitors with triazol-tetrahydroisoquinoline-core increase doxorubicin-induced mortality in multidrug resistant K562/A02 cells. Bioorg. Med. Chem., 2019, 27(15), 3347-3357.
[http://dx.doi.org/10.1016/j.bmc.2019.06.013] [PMID: 31202598]
[164]
Antoni, F.; Bause, M.; Scholler, M.; Bauer, S.; Stark, S.A.; Jackson, S.M.; Manolaridis, I.; Locher, K.P.; König, B.; Buschauer, A.; Bernhardt, G. Tariquidar-related triazoles as potent, selective and stable inhibitors of ABCG2 (BCRP). Eur. J. Med. Chem., 2020, 191, 112133.
[http://dx.doi.org/10.1016/j.ejmech.2020.112133] [PMID: 32105979]
[165]
Cobos, E.; Entrena, J.; Nieto, F.; Cendán, C.; Pozo, E. Pharmacology and therapeutic potential of sigma(1) receptor ligands. Curr. Neuropharmacol., 2008, 6(4), 344-366.
[http://dx.doi.org/10.2174/157015908787386113] [PMID: 19587856]
[166]
Kourrich, S.; Su, T.P.; Fujimoto, M.; Bonci, A. The sigma-1 receptor: Roles in neuronal plasticity and disease. Trends Neurosci., 2012, 35(12), 762-771.
[http://dx.doi.org/10.1016/j.tins.2012.09.007] [PMID: 23102998]
[167]
Collina, S.; Gaggeri, R.; Marra, A.; Bassi, A.; Negrinotti, S.; Negri, F.; Rossi, D. Sigma receptor modulators: A patent review. Expert Opin. Ther. Pat., 2013, 23(5), 597-613.
[http://dx.doi.org/10.1517/13543776.2013.769522] [PMID: 23387851]
[168]
Colabufo, N.A.; Berardi, F.; Abate, C.; Contino, M.; Niso, M.; Perrone, R. Is the sigma2 receptor a histone binding protein? J. Med. Chem., 2006, 49(14), 4153-4158.
[http://dx.doi.org/10.1021/jm0600592] [PMID: 16821775]
[169]
Wheeler, K.T.; Wang, L-M.; Wallen, C.A.; Childers, S.R.; Cline, J.M.; Keng, P.C.; Mach, R.H. Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br. J. Cancer, 2000, 82(6), 1223-1232.
[http://dx.doi.org/10.1054/bjoc.1999.1067] [PMID: 10735510]
[170]
Abate, C.; Perrone, R.; Berardi, F. Classes of sigma2 (σ2) receptor ligands: structure affinity relationship (SAfiR) studies and antiproliferative activity. Curr. Pharm. Des., 2012, 18(7), 938-949.
[http://dx.doi.org/10.2174/138161212799436485] [PMID: 22288411]
[171]
Niso, M.; Abate, C.; Contino, M.; Ferorelli, S.; Azzariti, A.; Perrone, R.; Colabufo, N.A.; Berardi, F. Sigma-2 receptor agonists as possible antitumor agents in resistant tumors: Hints for collateral sensitivity. ChemMedChem, 2013, 8(12), 2026-2035.
[http://dx.doi.org/10.1002/cmdc.201300291] [PMID: 24106081]
[172]
Abate, C.; Ferorelli, S.; Contino, M.; Marottoli, R.; Colabufo, N.A.; Perrone, R.; Berardi, F. Arylamides hybrids of two high-affinity σ2 receptor ligands as tools for the development of PET radiotracers. Eur. J. Med. Chem., 2011, 46(9), 4733-4741.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.057] [PMID: 21684636]
[173]
Abate, C.; Niso, M.; Contino, M.; Colabufo, N.A.; Ferorelli, S.; Perrone, R.; Berardi, F. 1-Cyclohexyl-4-(4-arylcyclohexyl)pipera-zines: Mixed σ and human Δ(8)-Δ(7) sterol isomerase ligands with antiproliferative and P-glycoprotein inhibitory activity. ChemMedChem, 2011, 6(1), 73-80.
[http://dx.doi.org/10.1002/cmdc.201000371] [PMID: 21069657]
[174]
Abate, C.; Pati, M.L.; Contino, M.; Colabufo, N.A.; Perrone, R.; Niso, M.; Berardi, F. From mixed sigma-2 receptor/P-glycoprotein targeting agents to selective P-glycoprotein modulators: Small structural changes address the mechanism of interaction at the efflux pump. Eur. J. Med. Chem., 2015, 89, 606-615.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.082] [PMID: 25462269]
[175]
Pati, M.L.; Abate, C.; Contino, M.; Ferorelli, S.; Luisi, R.; Carroccia, L.; Niso, M.; Berardi, F. Deconstruction of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline moiety to separate P-glycoprotein (P-gp) activity from σ2 receptor affinity in mixed P-gp/σ2 receptor agents. Eur. J. Med. Chem., 2015, 89, 691-700.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.001] [PMID: 25462276]
[176]
Joshi, P.; Vishwakarma, R.A.; Bharate, S.B. Natural alkaloids as P-gp inhibitors for multidrug resistance reversal in cancer. Eur. J. Med. Chem., 2017, 138, 273-292.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.047] [PMID: 28675836]
[177]
El-Readi, M.Z.; Eid, S.; Ashour, M.L.; Tahrani, A.; Wink, M. Modulation of multidrug resistance in cancer cells by chelidonine and Chelidonium majus alkaloids. Phytomedicine, 2013, 20(3-4), 282-294.
[http://dx.doi.org/10.1016/j.phymed.2012.11.005] [PMID: 23238299]
[178]
Maeng, H.J.; Yoo, H.J.; Kim, I.W.; Song, I.S.; Chung, S.J.; Shim, C.K. P-glycoprotein-mediated transport of berberine across Caco-2 cell monolayers. J. Pharm. Sci., 2002, 91(12), 2614-2621.
[http://dx.doi.org/10.1002/jps.10268] [PMID: 12434406]
[179]
Qiu, W.; Jiang, X.H.; Liu, C.X.; Ju, Y.; Jin, J.X. Effect of berberine on the pharmacokinetics of substrates of CYP3A and P-gp. Phytother. Res., 2009, 23(11), 1553-1558.
[http://dx.doi.org/10.1002/ptr.2808] [PMID: 19370549]
[180]
You, M.; Wickramaratne, D.B.M.; Silva, G.L.; Chai, H.; Chagwedera, T.E.; Farnsworth, N.R.; Cordell, G.A.; Kinghorn, A.D.; Pezzuto, J.M. (-)-Roemerine, an aporphine alkaloid from Annona senegalensis that reverses the multidrug-resistance phenotype with cultured cells. J. Nat. Prod., 1995, 58(4), 598-604.
[http://dx.doi.org/10.1021/np50118a021] [PMID: 7623038]
[181]
Fu, L.; Liang, Y.; Deng, L.; Ding, Y.; Chen, L.; Ye, Y.; Yang, X.; Pan, Q. Characterization of tetrandrine, a potent inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Chemother. Pharmacol., 2004, 53(4), 349-356.
[http://dx.doi.org/10.1007/s00280-003-0742-5] [PMID: 14666379]
[182]
Wei, N.; Liu, G.T.; Chen, X.G.; Liu, Q.; Wang, F.P.; Sun, H. H1, a derivative of Tetrandrine, exerts anti-MDR activity by initiating intrinsic apoptosis pathway and inhibiting the activation of Erk1/2 and Akt1/2. Biochem. Pharmacol., 2011, 82(11), 1593-1603.
[http://dx.doi.org/10.1016/j.bcp.2011.08.012] [PMID: 21864508]
[183]
Wang, T.X.; Yang, X.H. Reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis Mahoniae, on P-glycoprotein-mediated doxorubicin-resistance in human breast cancer (MCF-7/DOX) cells. Yao Xue Xue Bao, 2008, 43(5), 461-466.
[PMID: 18717331]
[184]
Hsiao, S.H.; Lu, Y.J.; Yang, C.C.; Tuo, W.C.; Li, Y.Q.; Huang, Y.H.; Hsieh, C.H.; Hung, T.H.; Wu, C.P. Hernandezine, a bisbenzylisoquinoline alkaloid with selective inhibitory activity against multidrug-resistance-linked ATP-binding cassette drug transporter ABCB1. J. Nat. Prod., 2016, 79(8), 2135-2142.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00597] [PMID: 27504669]
[185]
Wei, Y.; Xu, L.; Liang, Y.; Xu, X.; Zhao, X. Berbamine exhibits potent antitumor effects on imatinib-resistant CML cells in vitro and in vivo. Acta Pharmacol. Sin., 2009, 30(4), 451-457.
[http://dx.doi.org/10.1038/aps.2009.19] [PMID: 19270722]
[186]
Dong, Q.H.; Zheng, S.; Xu, R.Z.; Lu, Q.; He, L. Study on effect of berbamine on multidrug resistance leukemia K562/Adr cells. Chin. J. Integr. Med., 2004, 24(9), 820-822.
[PMID: 15495829]
[187]
Han, Y.Q.; Yuan, J.Y.; Shi, Y.J.; Zhu, Y.; Wu, S.L. Reversal effect of berbamine on multidrug resistance of K562/A02 cells and its mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2003, 11(6), 604-608.
[PMID: 14706144]
[188]
Cheng, Y.H.; Qi, J.; Xiong, D.S.; Liu, J.W.; Qi, S.L.; Pan, B.; Yang, C.Z.; Zhu, H.F. Reversal of multidrug resistance in drug-resistant human breast cancer cell line MCF-7/ADR by calmodulin antagonist O-(4-ethoxyl-butyl)-berbamine. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2006, 28(2), 164-168.
[PMID: 16733896]
[189]
Rinehart, K.L. Antitumor compounds from tunicates. Med. Res. Rev., 2000, 20(1), 1-27.
[http://dx.doi.org/10.1002/(SICI)1098-1128(200001)20:1<1::AID-MED1>3.0.CO;2-A] [PMID: 10608919]
[190]
Jin, S.; Gorfajn, B.; Faircloth, G.; Scotto, K.W. Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6775-6779.
[http://dx.doi.org/10.1073/pnas.97.12.6775] [PMID: 10841572]
[191]
Kanzaki, A.; Takebayashi, Y.; Ren, X.Q.; Miyashita, H.; Mori, S.; Akiyama, S.; Pommier, Y. Overcoming multidrug drug resistance in P-glycoprotein/MDR1-overexpressing cell lines by ecteinascidin 743. Mol. Cancer Ther., 2002, 1(14), 1327-1334.
[PMID: 12516966]
[192]
Lei, Y.; Tan, J.; Wink, M.; Ma, Y.; Li, N.; Su, G. An isoquinoline alkaloid from the Chinese herbal plant Corydalis yanhusuo W.T. Wang inhibits P-glycoprotein and multidrug resistance-associate protein 1. Food Chem., 2013, 136(3-4), 1117-1121.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.059] [PMID: 23194502]
[193]
Tian, F.; Pan, Q.C. Comparative study for reversing multi-drug resistant in dauricine and daurisoline. Chin. J. Cancer, 1996, 15, 410-414.
[194]
Bruyne, S.D.; wyffels, L.; Moerman, L.; Sambre, J.; Colabufo, N.A.; Berardi, F.; Perrone, R.; Vos, F.D. Radiosynthesis and in vivo evaluation of [11C]MC80 for P-glycoprotein imaging. Bioorg. Med. Chem., 2010, 18(17), 6489-6495.
[http://dx.doi.org/10.1016/j.bmc.2010.06.097] [PMID: 20685124]
[195]
Hendrikse, N.H.; Schinkel, A.H.; De Vries, E.G.E.; Fluks, E.; Van der Graaf, W.T.A.; Willemsen, A.T.M.; Vaalburg, W.; Franssen, E.J.F. Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br. J. Pharmacol., 1998, 124(7), 1413-1418.
[http://dx.doi.org/10.1038/sj.bjp.0701979] [PMID: 9723952]
[196]
Lee, Y.J.; Maeda, J.; Kusuhara, H.; Okauchi, T.; Inaji, M.; Nagai, Y.; Obayashi, S.; Nakao, R.; Suzuki, K.; Sugiyama, Y.; Suhara, T. In vivo evaluation of P-glycoprotein function at the blood-brain barrier in nonhuman primates using [11C]verapamil. J. Pharmacol. Exp. Ther., 2006, 316(2), 647-653.
[http://dx.doi.org/10.1124/jpet.105.088328] [PMID: 16293715]
[197]
Lazarova, N.; Zoghbi, S.S.; Hong, J.; Seneca, N.; Tuan, E.; Gladding, R.L.; Liow, J.S.; Taku, A.; Innis, R.B.; Pike, V.W. Synthesis and evaluation of [N-methyl-11C]N-desmethyl-loperamide as a new and improved PET radiotracer for imaging P-gp function. J. Med. Chem., 2008, 51(19), 6034-6043.
[http://dx.doi.org/10.1021/jm800510m] [PMID: 18783208]
[198]
Zoghbi, S.S.; Liow, J.S.; Yasuno, F.; Hong, J.; Tuan, E.; Lazarova, N.; Gladding, R.L.; Pike, V.W.; Innis, R.B. 11C-loperamide and its N-desmethyl radiometabolite are avid substrates for brain permeability-glycoprotein efflux. J. Nucl. Med., 2008, 49(4), 649-656.
[http://dx.doi.org/10.2967/jnumed.107.047308] [PMID: 18344435]
[199]
Seneca, N.; Zoghbi, S.S.; Liow, J.S.; Kreisl, W.; Herscovitch, P.; Jenko, K.; Gladding, R.L.; Taku, A.; Pike, V.W.; Innis, R.B. Human brain imaging and radiation dosimetry of 11C-N-desmethyl-loperamide, a PET radiotracer to measure the function of P-glycoprotein. J. Nucl. Med., 2009, 50(5), 807-813.
[http://dx.doi.org/10.2967/jnumed.108.058453] [PMID: 19372478]
[200]
Cantore, M.; Benadiba, M.; Elsinga, P.H.; Kwizera, C.; Dierckx, R.A.J.O.; Colabufo, N.A.; Luurtsema, G. (11)C- and (18)F-labeled radioligands for P-glycoprotein imaging by positron emission tomography. ChemMedChem, 2016, 11(1), 108-118.
[http://dx.doi.org/10.1002/cmdc.201500420] [PMID: 26563728]
[201]
Bauer, F.; Kuntner, C.; Bankstahl, J.P.; Wanek, T.; Bankstahl, M.; Stanek, J.; Mairinger, S.; Dörner, B.; Löscher, W.; Müller, M.; Erker, T.; Langer, O. Synthesis and in vivo evaluation of [11C]tariquidar, a positron emission tomography radiotracer based on a third-generation P-glycoprotein inhibitor. Bioorg. Med. Chem., 2010, 18(15), 5489-5497.
[http://dx.doi.org/10.1016/j.bmc.2010.06.057] [PMID: 20621487]
[202]
Dörner, B.; Kuntner, C.; Bankstahl, J.P.; Bankstahl, M.; Stanek, J.; Wanek, T.; Stundner, G.; Mairinger, S.; Löscher, W.; Müller, M.; Langer, O.; Erker, T. Synthesis and small-animal positron emission tomography evaluation of [11C]-elacridar as a radiotracer to assess the distribution of P-glycoprotein at the blood-brain barrier. J. Med. Chem., 2009, 52(19), 6073-6082.
[http://dx.doi.org/10.1021/jm900940f] [PMID: 19711894]
[203]
Kawamura, K.; Yamasaki, T.; Konno, F.; Yui, J.; Hatori, A.; Yanamoto, K.; Wakizaka, H.; Takei, M.; Kimura, Y.; Fukumura, T.; Zhang, M.R. Evaluation of limiting brain penetration related to P-glycoprotein and breast cancer resistance protein using [(11)C]GF120918 by PET in mice. Mol. Imaging Biol., 2011, 13(1), 152-160.
[http://dx.doi.org/10.1007/s11307-010-0313-1] [PMID: 20379788]
[204]
Kawamura, K.; Konno, F.; Yui, J.; Yamasaki, T.; Hatori, A.; Yanamoto, K.; Wakizaka, H.; Takei, M.; Nengaki, N.; Fukumura, T.; Zhang, M.R. Synthesis and evaluation of [11C]XR9576 to assess the function of drug efflux transporters using PET. Ann. Nucl. Med., 2010, 24(5), 403-412.
[http://dx.doi.org/10.1007/s12149-010-0373-y] [PMID: 20361276]
[205]
Allen, J.D.; Brinkhuis, R.F.; Wijnholds, J.; Schinkel, A.H. The mouse Bcrp1/Mxr/Abcp gene: Amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res., 1999, 59(17), 4237-4241.
[PMID: 10485464]
[206]
Kawamura, K.; Yamasaki, T.; Konno, F.; Yui, J.; Hatori, A.; Yanamoto, K.; Wakizaka, H.; Ogawa, M.; Yoshida, Y.; Nengaki, N.; Fukumura, T.; Zhang, M.R. Synthesis and in vivo evaluation of 18F-fluoroethyl GF120918 and XR9576 as positron emission tomography probes for assessing the function of drug efflux transporters. Bioorg. Med. Chem., 2011, 19(2), 861-870.
[http://dx.doi.org/10.1016/j.bmc.2010.12.004] [PMID: 21185730]
[207]
Sprachman, M.M.; Laughney, A.M.; Kohler, R.H.; Weissleder, R. In vivo imaging of multidrug resistance using a third generation MDR1 inhibitor. Bioconjug. Chem., 2014, 25(6), 1137-1142.
[http://dx.doi.org/10.1021/bc500154c] [PMID: 24806886]
[208]
Wang, M.; Zheng, D.X.; Luo, M.B.; Gao, M.; Miller, K.D.; Hutchins, G.D.; Zheng, Q.H. Synthesis of carbon-11-labeled tariquidar derivatives as new PET agents for imaging of breast cancer resistance protein (ABCG2). Appl. Radiat. Isot., 2010, 68(6), 1098-1103.
[http://dx.doi.org/10.1016/j.apradiso.2010.02.008] [PMID: 20181488]
[209]
Jewett, D.M. A simple synthesis of [11C]methyl triflate. Int. J. Rad. Appl. Instrum., 1992, 43(11), 1383-1385.
[http://dx.doi.org/10.1016/0883-2889(92)90012-4] [PMID: 1333459]
[210]
Mock, B.H.; Mulholland, G.K.; Vavrek, M.T. Convenient gas phase bromination of [11C]methane and production of [11C]methyl triflate. Nucl. Med. Biol., 1999, 26(4), 467-471.
[http://dx.doi.org/10.1016/S0969-8051(98)00087-0] [PMID: 10382852]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy