Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

基于机器学习的阿尔茨海默病退化性MCI预测模型—— 一项为期两年的随访调查

卷 19, 期 10, 2022

发表于: 03 November, 2022

页: [708 - 715] 页: 8

弟呕挨: 10.2174/1567205020666221019122049

价格: $65

摘要

目的:探讨65岁以下老年老年阿尔茨海默病(AD)恶化性轻度认知障碍(MCI)的特征,建立预测模型。 方法:对105例年龄为65岁的MCI患者进行随访,收集357个特征,这些特征来源于人口学特征、血液学指标(血清Aβ1-40、Aβ1-42、P-tau和MCP-1水平、APOE基因)和116个大脑区域的多模态脑磁共振成像(MRI)成像指标(ADC、FA和CBF值)。认知功能随访2年。基于Python平台Anaconda,通过随机森林算法分析所有特征,将105例患者随机分为训练集(70%)和测试集(30%),建立MCI快速恶化形式的预测模型。 结果:在纳入的105例患者中,41例恶化,64例在2年内没有好转。基于人口统计学特征、血液学指标和多模态MRI图像特征建立模型1,训练集准确率为100%,测试集准确率为64%,敏感性50%,特异性67%,AUC为0.72。模型2基于前5个特征(APOE4基因、左侧梭状回FA值、左侧颞下回FA值、左侧海马旁回FA值、右侧钙质裂作为周围皮层的ADC值),训练集准确率100%,测试集准确率85%,敏感性91%,特异性80%,AUC 0.96。模型3基于模型1的前四个特征,训练集的准确率100%,测试集的准确率97%,敏感性100%,特异性95%,AUC 0.99。模型4基于模型1的前三个特征,训练集的准确率为100%,测试集的准确率为94%,灵敏度为92%,特异性为94%,AUC为0.96。模型5基于血液学特征,训练集准确率100%,测试集准确率91%,敏感性100%,特异性88%,AUC为0.97。基于人口统计学特征、影像学特征FA、CBF和ADC值的模型敏感性和特异性较低。 结论:模型3具有4个重要的预测特征,可以预测社区中AD导致MCI快速恶化的情况。

关键词: 机器学习、随机森林、阿尔茨海默病、轻度认知障碍、预测模型、磁共振成像。

[1]
Aisen PS, Cummings J, Jack CR Jr, et al. On the path to 2025: Understanding the Alzheimer’s disease continuum. Alzheimers Res Ther 2017; 9(1): 60.
[http://dx.doi.org/10.1186/s13195-017-0283-5] [PMID: 28793924]
[2]
Arora P, Boyne D, Slater JJ, Gupta A, Brenner DR, Druzdzel MJ. Bayesian networks for risk prediction using real-world data: A tool for precision medicine. Value Health 2019; 22(4): 439-45.
[http://dx.doi.org/10.1016/j.jval.2019.01.006] [PMID: 30975395]
[3]
Lopez OL, Kuller LH. Epidemiology of aging and associated cognitive disorders: Prevalence and incidence of Alzheimer’s disease and other dementias. Handb Clin Neurol 2019; 167: 139-48.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00009-1] [PMID: 31753130]
[4]
Jia J, Wei C, Chen S, et al. The cost of Alzheimer’s disease in China and re‐estimation of costs worldwide. Alzheimers Dement 2018; 14(4): 483-91.
[http://dx.doi.org/10.1016/j.jalz.2017.12.006] [PMID: 29433981]
[5]
Monier M, El-Mekabaty A, Abdel-Latif D, Doğru MB, Elattar KM. Heterocyclic steroids: Efficient routes for annulation of pentacyclic steroidal pyrimidines. Steroids 2020; 154: 108548.
[http://dx.doi.org/10.1016/j.steroids.2019.108548] [PMID: 31805293]
[6]
Jack CR Jr, Bennett DA, Blennow K, et al. NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[7]
Petersen RC, Wiste HJ, Weigand SD, et al. NIA‐AA Alzheimer’s disease framework: Clinical characterization of stages. Ann Neurol 2021; 89(6): 1145-56.
[http://dx.doi.org/10.1002/ana.26071] [PMID: 33772866]
[8]
Carmichael O, Newton R Jr. Brain MRI findings related to Alzheimer’s disease in older African American adults. Prog Mol Biol Transl Sci 2019; 165: 3-23.
[http://dx.doi.org/10.1016/bs.pmbts.2019.04.002] [PMID: 31481168]
[9]
Zhou Y, Song Z, Han X, Li H, Tang X. Prediction of Alzheimer’s disease progression based on magnetic resonance imaging. ACS Chem Neurosci 2021; 12(22): 4209-23.
[http://dx.doi.org/10.1021/acschemneuro.1c00472] [PMID: 34723463]
[10]
Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning–based model for prediction of outcomes in acute stroke. Stroke 2019; 50(5): 1263-5.
[http://dx.doi.org/10.1161/STROKEAHA.118.024293] [PMID: 30890116]
[11]
Iwendi C, Bashir AK, Peshkar A, et al. COVID-19 patient health prediction using boosted random forest algorithm. Front Public Health 2020; 8: 357.
[http://dx.doi.org/10.3389/fpubh.2020.00357] [PMID: 32719767]
[12]
Asadi S, Roshan S, Kattan MW. Random forest swarm optimization-based for heart diseases diagnosis. J Biomed Inform 2021; 115: 103690.
[http://dx.doi.org/10.1016/j.jbi.2021.103690] [PMID: 33540075]
[13]
Hu WS, Hsieh MH, Lin CL. A novel atrial fibrillation prediction model for Chinese subjects: A nationwide cohort investigation of 682 237 study participants with random forest model. Europace 2019; 21(9): 1307-12.
[http://dx.doi.org/10.1093/europace/euz036] [PMID: 31067312]
[14]
Zhou JY, Song LW, Yuan R, Lu XP, Wang GQ. Prediction of hepatic inflammation in chronic hepatitis B patients with a random forest-backward feature elimination algorithm. World J Gastroenterol 2021; 27(21): 2910-20.
[http://dx.doi.org/10.3748/wjg.v27.i21.2910] [PMID: 34135561]
[15]
Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry 1982; 139(9): 1136-9.
[http://dx.doi.org/10.1176/ajp.139.9.1136] [PMID: 7114305]
[16]
Corbi A, Burgos D. Connection between sleeping patterns and cognitive deterioration in women with Alzheimer’s disease. Sleep Breath 2022; 26(1): 361-71.
[http://dx.doi.org/10.1007/s11325-021-02327-x ] [PMID: 33792886]
[17]
Avants B, Epstein C, Grossman M, Gee J. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 2008; 12(1): 26-41.
[http://dx.doi.org/10.1016/j.media.2007.06.004] [PMID: 17659998]
[18]
Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 2015; 122: 1-5.
[http://dx.doi.org/10.1016/j.neuroimage.2015.07.075] [PMID: 26241684]
[19]
Tang X, Liu J. Comparing different algorithms for the course of Alzheimer’s disease using machine learning. Ann Palliat Med 2021; 10(9): 9715-24.
[http://dx.doi.org/10.21037/apm-21-2013] [PMID: 34628897]
[20]
Song M, Jung H, Lee S, Kim D, Ahn M. Diagnostic classification and biomarker identification of Alzheimer’s disease with random forest algorithm. Brain Sci 2021; 11(4): 453.
[http://dx.doi.org/10.3390/brainsci11040453] [PMID: 33918453]
[21]
Chang CH, Lin CH, Liu CY, et al. Plasma d -glutamate levels for detecting mild cognitive impairment and Alzheimer’s disease: Machine learning approaches. J Psychopharmacol 2021; 35(3): 265-72.
[http://dx.doi.org/10.1177/0269881120972331] [PMID: 33586518]
[22]
Elias-Sonnenschein LS, Viechtbauer W, Ramakers IHGB, Verhey FRJ, Visser PJ. Predictive value of APOE-4 allele for progression from MCI to AD-type dementia: A meta-analysis. J Neurol Neurosurg Psychiatry 2011; 82(10): 1149-56.
[http://dx.doi.org/10.1136/jnnp.2010.231555] [PMID: 21493755]
[23]
Valero S, Marquié M, De Rojas I, et al. Interaction of neuropsychiatric symptoms with APOE ε4 and conversion to dementia in MCI patients in a Memory Clinic. Sci Rep 2020; 10(1): 20058.
[http://dx.doi.org/10.1038/s41598-020-77023-z] [PMID: 33208795]
[24]
Shi JY, Wang P, Wang BH, Xu Y, Chen X, Li HJ. Brain homotopic connectivity in mild cognitive impairment APOE-ε4 carriers. Neuroscience 2020; 436: 74-81.
[http://dx.doi.org/10.1016/j.neuroscience.2020.04.011] [PMID: 32304722]
[25]
Tennant VR, Harrison TM, Adams JN, La Joie R, Winer JR, Jagust WJ. Fusiform gyrus phospho‐tau is associated with failure of proper name retrieval in aging. Ann Neurol 2021; 90(6): 988-93.
[http://dx.doi.org/10.1002/ana.26237] [PMID: 34590340]
[26]
Ma D, Fetahu IS, Wang M, et al. The fusiform gyrus exhibits an epigenetic signature for Alzheimer’s disease. Clin Epigenetics 2020; 12(1): 129.
[http://dx.doi.org/10.1186/s13148-020-00916-3] [PMID: 32854783]
[27]
Kim D, Lee JY, Jeong BC, et al. Overconnectivity of the right Heschl’s and inferior temporal gyrus correlates with symptom severity in preschoolers with autism spectrum disorder. Autism Res 2021; 14(11): 2314-29.
[http://dx.doi.org/10.1002/aur.2609] [PMID: 34529363]
[28]
Zhu L, Wang Z, Du Z, et al. Impaired parahippocampal gyrus–orbitofrontal cortex circuit associated with visuospatial memory deficit as a potential biomarker and interventional approach for Alzheimer disease. Neurosci Bull 2020; 36(8): 831-44.
[http://dx.doi.org/10.1007/s12264-020-00498-3] [PMID: 32350798]
[29]
Lin YH, Dhanaraj V, Mackenzie AE, et al. Anatomy and white matter connections of the parahippocampal gyrus. World Neurosurg 2021; 148: e218-26.
[http://dx.doi.org/10.1016/j.wneu.2020.12.136] [PMID: 33412321]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy