Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Interleukin-1 in Coronary Artery Disease

Author(s): Evangelos Oikonomou*, Paraskevas Tsaplaris, Artemis Anastasiou, Maria Xenou, Stamatios Lampsas, Gerasimos Siasos, Panteleimon Pantelidis, Panagiotis Theofilis, Aikaterini Tsatsaragkou, Ourania Katsarou, Marios Sagris, Michael-Andrew Vavuranakis, Manolis Vavuranakis and Dimitris Tousoulis

Volume 22, Issue 28, 2022

Published on: 31 October, 2022

Page: [2368 - 2389] Pages: 22

DOI: 10.2174/1568026623666221017144734

Price: $65

Abstract

Cardiovascular disease is the leading cause of mortality worldwide. Inflammation has long been established as a key component in the pathophysiology of coronary artery disease. The interleukin-1 family consists of 11 members that regulate the inflammatory response through both pro- and anti-inflammatory properties with the Nod-like receptor (NLR) family pyrin domain containing 3 inflammasome having a pivotal role in the process of converting interleukin-1 beta and interleukin- 18, two key inflammatory mediators, into their mature forms. Interleukin-1 affects various cell types that participate in the pathogenesis of atherosclerosis as it enhances the expression of leukocyte adhesion molecules on the surface of endothelial cells and augments the permeability of the endothelial cell barrier, attracting monocytes and macrophages into the vessel wall and aids the migration of smooth muscle cells toward atheroma. It also enhances the aggregation of low-density lipoprotein particles in endothelium and smooth muscle cells and exhibits procoagulant activity by inducing synthesis, cell-surface expression and release of tissue factor in endothelial cells, promoting platelet adhesion. The value of interleukin-1 as a diagnostic biomarker is currently limited, but interleukin-1 beta, interleukin-18 and interleukin-37 have shown promising data regarding their prognostic value in coronary artery disease. Importantly, target anti-inflammatory treatments have shown promising results regarding atherosclerosis progression and cardiovascular events. In this review article, we focus on the immense role of interleukin-1 in atherosclerosis progression, inflammation cascade and in the clinical application of target anti-inflammatory treatments.

Keywords: IL-1, Interleukin-1, Coronary artery disease, Atherosclerosis, Inflammation, Biomarker, Cytokine.

« Previous
Graphical Abstract
[1]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; AlMazroa, M.A.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Abdulhak, A.B.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.R.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J-P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Memish, Z.A.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.V.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P-H.; Yip, P.; Zabetian, A.; Zheng, Z-J.; Lopez, A.D.; Murray, C.J.L. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[2]
Christodoulidis, G.; Vittorio, T.J.; Fudim, M.; Lerakis, S.; Kosmas, C.E. Inflammation in coronary artery disease. Cardiol. Rev., 2014, 22(6), 279-288.
[http://dx.doi.org/10.1097/CRD.0000000000000006] [PMID: 24441047]
[3]
Dinarello, C.A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat. Rev. Rheumatol., 2019, 15(10), 612-632.
[http://dx.doi.org/10.1038/s41584-019-0277-8] [PMID: 31515542]
[4]
Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 2011, 117(14), 3720-3732.
[http://dx.doi.org/10.1182/blood-2010-07-273417] [PMID: 21304099]
[5]
Grebe, A.; Hoss, F.; Latz, E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ. Res., 2018, 122(12), 1722-1740.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311362] [PMID: 29880500]
[6]
Yazdi, A.S.; Ghoreschi, K. The interleukin-1 family. Adv. Exp. Med. Biol., 2016, 941, 21-29.
[http://dx.doi.org/10.1007/978-94-024-0921-5_2] [PMID: 27734407]
[7]
Weber, A.; Wasiliew, P.; Kracht, M. Interleukin-1 (IL-1) pathway. Sci. Signal., 2010, 3(105), cm1.
[PMID: 20086235]
[8]
Abbate, A.; Toldo, S.; Marchetti, C.; Kron, J.; Van Tassell, B.W.; Dinarello, C.A. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res., 2020, 126(9), 1260-1280.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.315937] [PMID: 32324502]
[9]
Szekely, Y.; Arbel, Y. A review of interleukin-1 in heart disease: Where do we stand today? Cardiol. Ther., 2018, 7(1), 25-44.
[http://dx.doi.org/10.1007/s40119-018-0104-3] [PMID: 29417406]
[10]
Pfeiler, S.; Winkels, H.; Kelm, M.; Gerdes, N. IL-1 family cytokines in cardiovascular disease. Cytokine, 2019, 122154215.
[http://dx.doi.org/10.1016/j.cyto.2017.11.009] [PMID: 29198612]
[11]
Werman, A.; Werman-Venkert, R.; White, R.; Lee, J.K.; Werman, B.; Krelin, Y.; Voronov, E.; Dinarello, C.A.; Apte, R.N. The precursor form of IL-1α is an intracrine proinflammatory activator of transcription. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2434-2439.
[http://dx.doi.org/10.1073/pnas.0308705101] [PMID: 14983027]
[12]
Usui, F.; Shirasuna, K.; Kimura, H.; Tatsumi, K.; Kawashima, A.; Karasawa, T.; Hida, S.; Sagara, J.; Taniguchi, S.; Takahashi, M. Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem. Biophys. Res. Commun., 2012, 425(2), 162-168.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.058] [PMID: 22819845]
[13]
Hajjar, D.P.; Haberland, M.E. Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cellular saboteurs. J. Biol. Chem., 1997, 272(37), 22975-22978.
[http://dx.doi.org/10.1074/jbc.272.37.22975] [PMID: 9287290]
[14]
Palkama, T.; Matikainen, S.; Hurme, M. Tyrosine kinase activity is involved in the protein kinase C induced expression ofinterleukin-1β gene in monocytic cells. FEBS Lett., 1993, 319(1-2), 100-104.
[http://dx.doi.org/10.1016/0014-5793(93)80045-V] [PMID: 8454038]
[15]
Ku, G.; Doherty, N.S.; Schmidt, L.F.; Jackson, R.L.; Dinerstein, R.J. Ex vivo lipopolysaccharide‐induced interleukiri‐1 secretion from murine peritoneal macrophages inhibited by probucol, a hypocholesterolemic agent with antioxidant properties. FASEB J., 1990, 4(6), 1645-1653.
[http://dx.doi.org/10.1096/fasebj.4.6.2318380] [PMID: 2318380]
[16]
Moon, J.S.; Lee, S.; Park, M.A.; Siempos, I.I.; Haslip, M.; Lee, P.J.; Yun, M.; Kim, C.K.; Howrylak, J.; Ryter, S.W.; Nakahira, K.; Choi, A.M.K. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J. Clin. Invest., 2015, 125(2), 665-680.
[http://dx.doi.org/10.1172/JCI78253] [PMID: 25574840]
[17]
Sterpetti, A.V.; Cucina, A.; Morena, A.R.; Di Donna, S.; D’Angelo, L.S.; Cavalarro, A.; Stipa, S. Shear stress increases the release of interleukin-1 and interleukin-6 by aortic endothelial cells. Surgery, 1993, 114(5), 911-914.
[PMID: 8236014]
[18]
Galea, J.; Armstrong, J.; Gadsdon, P.; Holden, H.; Francis, S.E.; Holt, C.M. Interleukin-1 β in coronary arteries of patients with ischemic heart disease. Arterioscler. Thromb. Vasc. Biol., 1996, 16(8), 1000-1006.
[http://dx.doi.org/10.1161/01.ATV.16.8.1000] [PMID: 8696938]
[19]
Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev., 2011, 22(4), 189-195.
[http://dx.doi.org/10.1016/j.cytogfr.2011.10.001] [PMID: 22019906]
[20]
Martinon, F.; Mayor, A.; Tschopp, J. The inflammasomes: Guardians of the body. Annu. Rev. Immunol., 2009, 27(1), 229-265.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132715] [PMID: 19302040]
[21]
Lu, A.; Li, Y.; Schmidt, F.I.; Yin, Q.; Chen, S.; Fu, T.M.; Tong, A.B.; Ploegh, H.L.; Mao, Y.; Wu, H. Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nat. Struct. Mol. Biol., 2016, 23(5), 416-425.
[http://dx.doi.org/10.1038/nsmb.3199] [PMID: 27043298]
[22]
Xia, S.; Zhang, Z.; Magupalli, V.G.; Pablo, J.L.; Dong, Y.; Vora, S.M.; Wang, L.; Fu, T.M.; Jacobson, M.P.; Greka, A.; Lieberman, J.; Ruan, J.; Wu, H.; Gasdermin, D. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 2021, 593(7860), 607-611.
[http://dx.doi.org/10.1038/s41586-021-03478-3] [PMID: 33883744]
[23]
J, S.; W, G.; F, S. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 2017, 42(4), 245-254.
[24]
van der Heijden, T.; Kritikou, E.; Venema, W.; van Duijn, J.; van Santbrink, P.J.; Slütter, B.; Foks, A.C.; Bot, I.; Kuiper, J. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler. Thromb. Vasc. Biol., 2017, 37(8), 1457-1461.
[http://dx.doi.org/10.1161/ATVBAHA.117.309575] [PMID: 28596375]
[25]
Olsen, M.B.; Gregersen, I.; Sandanger, Ø.; Yang, K.; Sokolova, M.; Halvorsen, B.E.; Gullestad, L.; Broch, K.; Aukrust, P.; Louwe, M.C. Targeting the inflammasome in cardiovascular disease. JACC Basic Transl. Sci., 2022, 7(1), 84-98.
[http://dx.doi.org/10.1016/j.jacbts.2021.08.006] [PMID: 35128212]
[26]
Peters, V.A.; Joesting, J.J.; Freund, G.G. IL-1 receptor 2 (IL-1R2) and its role in immune regulation. Brain Behav. Immun., 2013, 32, 1-8.
[http://dx.doi.org/10.1016/j.bbi.2012.11.006] [PMID: 23195532]
[27]
Smith, D.E.; Hanna, R. Della Friend; Moore, H.; Chen, H.; Farese, A.M.; MacVittie, T.J.; Virca, G.D.; Sims, J.E. The soluble form of IL-1 receptor accessory protein enhances the ability of soluble type II IL-1 receptor to inhibit IL-1 action. Immunity, 2003, 18(1), 87-96.
[http://dx.doi.org/10.1016/S1074-7613(02)00514-9] [PMID: 12530978]
[28]
Zheng, Y.; Humphry, M.; Maguire, J.J.; Bennett, M.R.; Clarke, M.C.H. Intracellular interleukin-1 receptor 2 binding prevents cleavage and activity of interleukin-1α controlling necrosis-induced sterile inflammation. Immunity, 2013, 38(2), 285-295.
[http://dx.doi.org/10.1016/j.immuni.2013.01.008] [PMID: 23395675]
[29]
Perrier, S.; Darakhshan, F.; Hajduch, E. IL-1 receptor antagonist in metabolic diseases: Dr Jekyll or Mr Hyde? FEBS Lett., 2006, 580(27), 6289-6294.
[http://dx.doi.org/10.1016/j.febslet.2006.10.061] [PMID: 17097645]
[30]
Dewberry. R.; Holden, H.; Crossman, D.; Francis, S. Interleukin-1 receptor antagonist expression in human endothelial cells and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2000, 20(11), 2394-2400.
[http://dx.doi.org/10.1161/01.ATV.20.11.2394] [PMID: 11073843]
[31]
Migliorini, P.; Italiani, P.; Pratesi, F.; Puxeddu, I.; Boraschi, D. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun. Rev., 2020, 19(9), 102617.
[http://dx.doi.org/10.1016/j.autrev.2020.102617] [PMID: 32663626]
[32]
Yasuda, K.; Nakanishi, K.; Tsutsui, H. Interleukin-18 in health and disease. Int. J. Mol. Sci., 2019, 20(3), 649.
[http://dx.doi.org/10.3390/ijms20030649] [PMID: 30717382]
[33]
Dinarello, C.A.; Novick, D.; Kim, S.; Kaplanski, G. Interleukin-18 and IL-18 binding protein. Front. Immunol., 2013, 4, 289.
[http://dx.doi.org/10.3389/fimmu.2013.00289] [PMID: 24115947]
[34]
Lloyd, C.M.; Snelgrove, R.J. Type 2 immunity: Expanding our view. Sci. Immunol., 2018, 3, eaat1604.
[35]
Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev., 2018, 281(1), 8-27.
[http://dx.doi.org/10.1111/imr.12621] [PMID: 29247995]
[36]
Pascual-Figal, D.A.; Januzzi, J.L. The biology of ST2: The international ST2 consensus panel. Am. J. Cardiol., 2015, 115(Suppl. 7), 3B-7B.
[http://dx.doi.org/10.1016/j.amjcard.2015.01.034] [PMID: 25665766]
[37]
Villacorta, H.; Maisel, A.S. Soluble ST2 testing: A promising biomarker in the management of heart failure. Arq. Bras. Cardiol., 2016, 106(2), 145-152.
[PMID: 26761075]
[38]
Griesenauer, B.; Paczesny, S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front. Immunol., 2017, 8, 475.
[http://dx.doi.org/10.3389/fimmu.2017.00475] [PMID: 28484466]
[39]
Sanada, S.; Hakuno, D.; Higgins, L.J.; Schreiter, E.R.; McKenzie, A.N.J.; Lee, R.T. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest., 2007, 117(6), 1538-1549.
[http://dx.doi.org/10.1172/JCI30634] [PMID: 17492053]
[40]
Seki, K.; Sanada, S.; Kudinova, A.Y.; Steinhauser, M.L.; Handa, V.; Gannon, J.; Lee, R.T. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ. Heart Fail., 2009, 2(6), 684-691.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.109.873240] [PMID: 19919994]
[41]
Sánchez-Más, J.; Lax, A.; Asensio-López, M.C.; Fernandez-Del Palacio, M.J.; Caballero, L.; Santarelli, G.; Januzzi, J.L.; Pascual-Figal, D.A. Modulation of IL-33/ST2 system in postinfarction heart failure: Correlation with cardiac remodelling markers. Eur. J. Clin. Invest., 2014, 44(7), 643-651.
[http://dx.doi.org/10.1111/eci.12282] [PMID: 24837094]
[42]
Weinberg, E.O.; Shimpo, M.; De Keulenaer, G.W.; MacGillivray, C.; Tominaga, S.; Solomon, S.D.; Rouleau, J.L.; Lee, R.T. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation, 2002, 106(23), 2961-2966.
[http://dx.doi.org/10.1161/01.CIR.0000038705.69871.D9] [PMID: 12460879]
[43]
Hartopo, A.B.; Sukmasari, I.; Puspitawati, I. The utility of point of care test for soluble ST2 in predicting adverse cardiac events during acute care of ST-segment elevation myocardial infarction. Cardiol. Res. Pract., 2018, 2018, 3048941.
[http://dx.doi.org/10.1155/2018/3048941] [PMID: 30046467]
[44]
Shimpo, M.; Morrow, D.A.; Weinberg, E.O.; Sabatine, M.S.; Murphy, S.A.; Antman, E.M.; Lee, R.T. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation, 2004, 109(18), 2186-2190.
[http://dx.doi.org/10.1161/01.CIR.0000127958.21003.5A] [PMID: 15117853]
[45]
McLaren, J.E.; Michael, D.R.; Salter, R.C.; Ashlin, T.G.; Calder, C.J.; Miller, A.M.; Liew, F.Y.; Ramji, D.P. IL-33 reduces macrophage foam cell formation. J. Immunol., 2010, 185(2), 1222-1229.
[http://dx.doi.org/10.4049/jimmunol.1000520] [PMID: 20543107]
[46]
Miller, A.M.; Xu, D.; Asquith, D.L.; Denby, L.; Li, Y.; Sattar, N.; Baker, A.H.; McInnes, I.B.; Liew, F.Y. IL-33 reduces the development of atherosclerosis. J. Exp. Med., 2008, 205(2), 339-346.
[http://dx.doi.org/10.1084/jem.20071868] [PMID: 18268038]
[47]
Yuan, Z.C.; Xu, W.D.; Liu, X.Y.; Liu, X.Y.; Huang, A.F.; Su, L.C. Biology of IL-36 signaling and its role in systemic inflammatory diseases. Front. Immunol., 2019, 10, 2532.
[http://dx.doi.org/10.3389/fimmu.2019.02532] [PMID: 31736959]
[48]
Queen, D.; Ediriweera, C.; Liu, L. Function and regulation of IL-36 signaling in inflammatory diseases and cancer development. Front. Cell Dev. Biol., 2019, 7, 317.
[http://dx.doi.org/10.3389/fcell.2019.00317] [PMID: 31867327]
[49]
Bridgewood, C.; Stacey, M.; Alase, A.; Lagos, D.; Graham, A.; Wittmann, M. IL-36γ has proinflammatory effects on human endothelial cells. Exp. Dermatol., 2017, 26(5), 402-408.
[http://dx.doi.org/10.1111/exd.13228] [PMID: 27673278]
[50]
Jia, H.; Liu, J.; Han, B. Reviews of interleukin-37: Functions, receptors, and roles in diseases. BioMed Res. Int., 2018, 2018, 3058640.
[http://dx.doi.org/10.1155/2018/3058640] [PMID: 29805973]
[51]
Li, Y.; Wang, Z.; Yu, T.; Chen, B.; Zhang, J.; Huang, K.; Huang, Z. Increased expression of IL-37 in patients with Graves’ disease and its contribution to suppression of proinflammatory cytokines production in peripheral blood mononuclear cells. PLoS One, 2014, 9(9), e107183.
[http://dx.doi.org/10.1371/journal.pone.0107183] [PMID: 25226272]
[52]
Xia, T.; Zheng, X.; Qian, B.; Fang, H.; Wang, J.; Zhang, L.; Pang, Y.; Zhang, J.; Wei, X.; Xia, Z.; Zhao, D. Plasma interleukin-37 is elevated in patients with rheumatoid arthritis: Its correlation with disease activity and Th1/Th2/Th17-related cytokines. Dis. Markers, 2015, 2015, 795043.
[http://dx.doi.org/10.1155/2015/795043] [PMID: 26435567]
[53]
Yang, L.; Zhang, J.; Tao, J.; Lu, T. Elevated serum levels of Interleukin-37 are associated with inflammatory cytokines and disease activity in rheumatoid arthritis. Acta Pathol. Microbiol. Scand. Suppl., 2015, 123(12), 1025-1031.
[http://dx.doi.org/10.1111/apm.12467] [PMID: 26547368]
[54]
Chen, B.; Huang, K.; Ye, L.; Li, Y.; Zhang, J.; Zhang, J.; Fan, X.; Liu, X.; Li, L.; Sun, J.; Du, J.; Huang, Z. Interleukin-37 is increased in ankylosing spondylitis patients and associated with disease activity. J. Transl. Med., 2015, 13(1), 36.
[http://dx.doi.org/10.1186/s12967-015-0394-3] [PMID: 25627863]
[55]
Keermann, M.; Kõks, S.; Reimann, E.; Abram, K.; Erm, T.; Silm, H.; Kingo, K. Expression of IL-36 family cytokines and IL-37 but not IL-38 is altered in psoriatic skin. J. Dermatol. Sci., 2015, 80(2), 150-152.
[http://dx.doi.org/10.1016/j.jdermsci.2015.08.002] [PMID: 26319074]
[56]
Song, L.; Qiu, F.; Fan, Y.; Ding, F.; Liu, H.; Shu, Q.; Liu, W.; Li, X. Glucocorticoid regulates interleukin-37 in systemic lupus erythematosus. J. Clin. Immunol., 2013, 33(1), 111-117.
[http://dx.doi.org/10.1007/s10875-012-9791-z] [PMID: 22961070]
[57]
Ji, Q.; Zeng, Q.; Huang, Y.; Shi, Y.; Lin, Y.; Lu, Z.; Meng, K.; Wu, B.; Yu, K.; Chai, M.; Liu, Y.; Zhou, Y. Elevated plasma IL-37, IL-18, and IL-18BP concentrations in patients with acute coronary syndrome. Mediators Inflamm., 2014, 2014, 165742.
[58]
van de Veerdonk, F.L.; Stoeckman, A.K.; Wu, G.; Boeckermann, A.N.; Azam, T.; Netea, M.G.; Joosten, L.A.B.; van der Meer, J.W.M.; Hao, R.; Kalabokis, V.; Dinarello, C.A. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 3001-3005.
[http://dx.doi.org/10.1073/pnas.1121534109] [PMID: 22315422]
[59]
Zhong, Y.; Yu, K.; Wang, X.; Wang, X.; Ji, Q.; Zeng, Q. Elevated plasma IL-38 concentrations in patients with acute ST-segment elevation myocardial infarction and their dynamics after reperfusion treatment. Mediators Inflamm., 2015, 2015, 490120.
[http://dx.doi.org/10.1155/2015/490120] [PMID: 26819499]
[60]
Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol., 2009, 27(1), 519-550.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132612] [PMID: 19302047]
[61]
Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood, 1996, 87(6), 2095-2147.
[http://dx.doi.org/10.1182/blood.V87.6.2095.bloodjournal8762095] [PMID: 8630372]
[62]
Lampsas, S.; Tsaplaris, P.; Pantelidis, P.; Oikonomou, E.; Marinos, G.; Charalambous, G.; Souvaliotis, N.; Mystakidi, V-C.; Goliopoulou, A.; Katsianos, E.; Siasos, G.; Vavuranakis, M-A.; Tsioufis, C.; Vavuranakis, M.; Tousoulis, D. The role of endothelial related circulating biomarkers in COVID-19. A systematic review and meta-analysis. Curr. Med. Chem., 2021, 29(21), 3790-3805.
[PMID: 34702152]
[63]
Gupta, S.; Pablo, A.M.; Jiang, X.; Wang, N.; Tall, A.R.; Schindler, C. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest., 1997, 99(11), 2752-2761.
[http://dx.doi.org/10.1172/JCI119465] [PMID: 9169506]
[64]
Hansson, G.K. Immune mechanisms in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2001, 21(12), 1876-1890.
[http://dx.doi.org/10.1161/hq1201.100220] [PMID: 11742859]
[65]
Bevilacqua, M.P.; Pober, J.S.; Wheeler, M.E.; Cotran, R.S.; Gimbrone, M.A., Jr Interleukin-1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. Am. J. Pathol., 1985, 121(3), 394-403.
[PMID: 3878084]
[66]
Tamaru, M.; Tomura, K.; Sakamoto, S.; Tezuka, K.; Tamatani, T.; Narumi, S. Interleukin-1β induces tissue- and cell type-specific expression of adhesion molecules in vivo. Arterioscler. Thromb. Vasc. Biol., 1998, 18(8), 1292-1303.
[http://dx.doi.org/10.1161/01.ATV.18.8.1292] [PMID: 9714137]
[67]
Brett, J.; Gerlach, H.; Nawroth, P.; Steinberg, S.; Godman, G.; Stern, D. Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. J. Exp. Med., 1989, 169(6), 1977-1991.
[http://dx.doi.org/10.1084/jem.169.6.1977] [PMID: 2499653]
[68]
Moser, R.; Schleiffenbaum, B.; Groscurth, P.; Fehr, J. Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J. Clin. Invest., 1989, 83(2), 444-455.
[http://dx.doi.org/10.1172/JCI113903] [PMID: 2643630]
[69]
Kimble, R.B.; Srivastava, S.; Ross, F.P.; Matayoshi, A.; Pacifici, R. Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J. Biol. Chem., 1996, 271(46), 28890-28897.
[http://dx.doi.org/10.1074/jbc.271.46.28890] [PMID: 8910536]
[70]
Clarke, M.C.H.; Talib, S.; Figg, N.L.; Bennett, M.R. Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: Effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ. Res., 2010, 106(2), 363-372.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.208389] [PMID: 19926874]
[71]
Menu, P.; Pellegrin, M.; Aubert, J-F.; Bouzourene, K.; Tardivel, A.; Mazzolai, L.; Tschopp, J. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis., 2011, 2(3), e137.
[http://dx.doi.org/10.1038/cddis.2011.18] [PMID: 21451572]
[72]
Stopeck, A.T.; Nicholson, A.C.; Mancini, F.P.; Hajjar, D.P. Cytokine regulation of low density lipoprotein receptor gene transcription in HepG2 cells. J. Biol. Chem., 1993, 268(23), 17489-17494.
[http://dx.doi.org/10.1016/S0021-9258(19)85360-7] [PMID: 8349628]
[73]
Wang, X.; Feuerstein, G.Z.; Gu, J.L.; Lysko, P.G.; Yue, T.L. Interleukin-1β induces expression of adhesion molecules in human vascular smooth muscle cells and enhances adhesion of leukocytes to smooth muscle cells. Atherosclerosis, 1995, 115(1), 89-98.
[http://dx.doi.org/10.1016/0021-9150(94)05503-B] [PMID: 7545398]
[74]
Alexander, M.R.; Murgai, M.; Moehle, C.W.; Owens, G.K. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms. Physiol. Genomics, 2012, 44(7), 417-429.
[http://dx.doi.org/10.1152/physiolgenomics.00160.2011] [PMID: 22318995]
[75]
Barillari, G.; Albonici, L.; Incerpi, S.; Bogetto, L.; Pistritto, G.; Volpi, A.; Ensoli, B.; Manzari, V. Inflammatory cytokines stimulate vascular smooth muscle cells locomotion and growth by enhancing α5β1 integrin expression and function. Atherosclerosis, 2001, 154(2), 377-385.
[http://dx.doi.org/10.1016/S0021-9150(00)00506-2] [PMID: 11166770]
[76]
Raines, E.W.; Dower, S.K.; Ross, R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science, 1989, 243(4889), 393-396.
[http://dx.doi.org/10.1126/science.2783498] [PMID: 2783498]
[77]
Vromman, A.; Ruvkun, V.; Shvartz, E.; Wojtkiewicz, G.; Santos Masson, G.; Tesmenitsky, Y.; Folco, E.; Gram, H.; Nahrendorf, M.; Swirski, F.K.; Sukhova, G.K.; Libby, P. Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. Eur. Heart J., 2019, 40(30), 2482-2491.
[http://dx.doi.org/10.1093/eurheartj/ehz008] [PMID: 30698710]
[78]
Alexander, M.R.; Moehle, C.W.; Johnson, J.L.; Yang, Z.; Lee, J.K.; Jackson, C.L.; Owens, G.K. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J. Clin. Invest., 2012, 122(1), 70-79.
[http://dx.doi.org/10.1172/JCI43713] [PMID: 22201681]
[79]
Gomez, D.; Baylis, R.A.; Durgin, B.G.; Newman, A.A.C.; Alencar, G.F.; Mahan, S.; St Hilaire, C.; Müller, W.; Waisman, A.; Francis, S.E.; Pinteaux, E.; Randolph, G.J.; Gram, H.; Owens, G.K. Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat. Med., 2018, 24(9), 1418-1429.
[http://dx.doi.org/10.1038/s41591-018-0124-5] [PMID: 30038218]
[80]
Libby, P.; Warner, S.J.; Friedman, G.B. Interleukin 1: A mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J. Clin. Invest., 1988, 81(2), 487-498.
[http://dx.doi.org/10.1172/JCI113346] [PMID: 3276731]
[81]
Clément, N.; Gueguen, M.; Glorian, M.; Blaise, R.; Andréani, M.; Brou, C.; Bausero, P.; Limon, I. Notch3 and IL-1β exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-κB drives crosstalk. J. Cell Sci., 2007, 120(19), 3352-3361.
[http://dx.doi.org/10.1242/jcs.007872] [PMID: 17881497]
[82]
Eun, S.Y.; Ko, Y.S.; Park, S.W.; Chang, K.C.; Kim, H.J. IL-1β enhances vascular smooth muscle cell proliferation and migration via P2Y2 receptor-mediated RAGE expression and HMGB1 release. Vascul. Pharmacol., 2015, 72, 108-117.
[http://dx.doi.org/10.1016/j.vph.2015.04.013] [PMID: 25956731]
[83]
Saklatvala, J.; Pilsworth, L.M.C.; Sarsfield, S.J.; Gavrilovic, J.; Heath, J.K. Pig catabolin is a form of interleukin 1. Cartilage and bone resorb, fibroblasts make prostaglandin and collagenase, and thymocyte proliferation is augmented in response to one protein. Biochem. J., 1984, 224(2), 461-466.
[http://dx.doi.org/10.1042/bj2240461] [PMID: 6097218]
[84]
Lee, E.; Grodzinsky, A.J.; Libby, P.; Clinton, S.K.; Lark, M.W.; Lee, R.T. Human vascular smooth muscle cell-monocyte interactions and metalloproteinase secretion in culture. Arterioscler. Thromb. Vasc. Biol., 1995, 15(12), 2284-2289.
[http://dx.doi.org/10.1161/01.ATV.15.12.2284] [PMID: 7489254]
[85]
Porat, R.; Poutsiaka, D.D.; Miller, L.C.; Granowitz, E.V.; Dinarello, C.A. Interleukin‐1 (IL‐1) receptor blockade reduces endotoxin and Borrelia burgdorferi‐stimulated IL‐8 synthesis in human mononuclear cells. FASEB J., 1992, 6(7), 2482-2486.
[http://dx.doi.org/10.1096/fasebj.6.7.1532945] [PMID: 1532945]
[86]
Apostolakis, S.; Vogiatzi, K.; Amanatidou, V.; Spandidos, D.A. Interleukin 8 and cardiovascular disease. Cardiovasc. Res., 2009, 84(3), 353-360.
[http://dx.doi.org/10.1093/cvr/cvp241] [PMID: 19617600]
[87]
Cavusoglu, E.; Marmur, J.D.; Yanamadala, S.; Chopra, V.; Hegde, S.; Nazli, A.; Singh, K.P.; Zhang, M.; Eng, C. Elevated baseline plasma IL-8 levels are an independent predictor of long-term all-cause mortality in patients with acute coronary syndrome. Atherosclerosis, 2015, 242(2), 589-594.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.022] [PMID: 26318109]
[88]
Kaplanski, G.; Farnarier, C.; Kaplanski, S.; Porat, R.; Shapiro, L.; Bongrand, P.; Dinarello, C.A. Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism. Blood, 1994, 84(12), 4242-4248.
[http://dx.doi.org/10.1182/blood.V84.12.4242.bloodjournal84124242] [PMID: 7994038]
[89]
Sarwar, N.; Butterworth, A.S.; Freitag, D.F.; Gregson, J.; Willeit, P.; Gorman, D.N.; Gao, P.; Saleheen, D.; Rendon, A.; Nelson, C.P.; Braund, P.S.; Hall, A.S.; Chasman, D.I.; Tybjærg-Hansen, A.; Chambers, J.C.; Benjamin, E.J.; Franks, P.W.; Clarke, R.; Wilde, A.A.M.; Trip, M.D.; Steri, M.; Witteman, J.C.M.; Qi, L.; van der Schoot, C.E.; de Faire, U.; Erdmann, J.; Stringham, H.M.; Koenig, W.; Rader, D.J.; Melzer, D.; Reich, D.; Psaty, B.M.; Kleber, M.E.; Panagiotakos, D.B.; Willeit, J.; Wennberg, P.; Woodward, M.; Adamovic, S.; Rimm, E.B.; Meade, T.W.; Gillum, R.F.; Shaffer, J.A.; Hofman, A.; Onat, A.; Sundström, J.; Wassertheil-Smoller, S.; Mellström, D.; Gallacher, J.; Cushman, M.; Tracy, R.P.; Kauhanen, J.; Karlsson, M.; Salonen, J.T.; Wilhelmsen, L.; Amouyel, P.; Cantin, B.; Best, L.G.; Ben-Shlomo, Y.; Manson, J.E.; Davey-Smith, G.; de Bakker, P.I.W.; O’Donnell, C.J.; Wilson, J.F.; Wilson, A.G.; Assimes, T.L.; Jansson, J-O.; Ohlsson, C.; Tivesten, Å.; Ljunggren, Ö.; Reilly, M.P.; Hamsten, A.; Ingelsson, E.; Cambien, F.; Hung, J.; Thomas, G.N.; Boehnke, M.; Schunkert, H.; Asselbergs, F.W.; Kastelein, J.J.P.; Gudnason, V.; Salomaa, V.; Harris, T.B.; Kooner, J.S.; Allin, K.H.; Nordestgaard, B.G.; Hopewell, J.C.; Goodall, A.H.; Ridker, P.M.; Hólm, H.; Watkins, H.; Ouwehand, W.H.; Samani, N.J.; Kaptoge, S.; Di Angelantonio, E.; Harari, O.; Danesh, J. IL6R Genetics Consortium Emerging Risk Factors Collaboration. Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. Lancet Lond. Engl., 2012, 379, 1205-1213.
[90]
Swerdlow, D.I.; Holmes, M.V.; Kuchenbaecker, K.B.; Engmann, J.E.; Shah, T.; Sofat, R.; Guo, Y.; Chung, C.; Peasey, A.; Pfister, R.; Mooijaart, S.P.; Ireland, H.A.; Leusink, M.; Langenberg, C.; Li, K.W.; Palmen, J.; Howard, P.; Cooper, J.A.; Drenos, F.; Hardy, J.; Nalls, M.A.; Li, Y.R.; Lowe, G.; Stewart, M.; Bielinski, S.J.; Peto, J.; Timpson, N.J.; Gallacher, J.; Dunlop, M.; Houlston, R.; Tomlinson, I.; Tzoulaki, I.; Luan, J.; Boer, J.M.; Forouhi, N.G.; Onland-Moret, N.C.; van der Schouw, Y.T.; Schnabel, R.B.; Hubacek, J.A.; Kubinova, R.; Baceviciene, M.; Tamosiunas, A.; Pajak, A.; Topor-Madry, R.; Malyutina, S.; Baldassarre, D.; Sennblad, B.; Tremoli, E.; de Faire, U.; Ferrucci, L.; Bandenelli, S.; Tanaka, T.; Meschia, J.F.; Singleton, A.; Navis, G.; Mateo Leach, I.; Bakker, S.J.; Gansevoort, R.T.; Ford, I.; Epstein, S.E.; Burnett, M.S.; Devaney, J.M.; Jukema, J.W.; Westendorp, R.G.; Jan de Borst, G.; van der Graaf, Y.; de Jong, P.A.; Mailand-van der Zee, A.H.; Klungel, O.H.; de Boer, A.; Doevendans, P.A.; Stephens, J.W.; Eaton, C.B.; Robinson, J.G.; Manson, J.E.; Fowkes, F.G.; Frayling, T.M.; Price, J.F.; Whincup, P.H.; Morris, R.W.; Lawlor, D.A.; Smith, G.D.; Ben-Shlomo, Y.; Redline, S.; Lange, L.A.; Kumari, M.; Wareham, N.J.; Verschuren, W.M.; Benjamin, E.J.; Whittaker, J.C.; Hamsten, A.; Dudbridge, F.; Delaney, J.A.; Wong, A.; Kuh, D.; Hardy, R.; Castillo, B.A.; Connolly, J.J.; van der Harst, P.; Brunner, E.J.; Marmot, M.G.; Wassel, C.L.; Humphries, S.E.; Talmud, P.J.; Kivimaki, M.; Asselbergs, F.W.; Voevoda, M.; Bobak, M.; Pikhart, H.; Wilson, J.G.; Hakonarson, H.; Reiner, A.P.; Keating, B.J.; Sattar, N.; Hingorani, A.D.; Casas, J.P. The interleukin-6 receptor as a target for prevention of coronary heart disease: A mendelian randomisation analysis. Lancet, 2012, 379(9822), 1214-1224.
[http://dx.doi.org/10.1016/S0140-6736(12)60110-X] [PMID: 22421340]
[91]
Le, J.M.; Vilcek, J. Interleukin 6: A multifunctional cytokine regulating immune reactions and the acute phase protein response. Lab. Invest., 1989, 61(6), 588-602.
[PMID: 2481148]
[92]
Loppnow, H.; Libby, P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J. Clin. Invest., 1990, 85(3), 731-738.
[http://dx.doi.org/10.1172/JCI114498] [PMID: 2312724]
[93]
Dinarello, C.A. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N. Engl. J. Med., 2000, 343(10), 732-734.
[http://dx.doi.org/10.1056/NEJM200009073431011] [PMID: 10974140]
[94]
Khan, R.; Rheaume, E.; Tardif, J.C. Examining the role of and treatment directed at IL-1β in atherosclerosis. Curr. Atheroscler. Rep., 2018, 20(11), 53.
[http://dx.doi.org/10.1007/s11883-018-0754-6] [PMID: 30219977]
[95]
Hawrylowicz, C.M.; Howells, G.L.; Feldmann, M. Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J. Exp. Med., 1991, 174(4), 785-790.
[http://dx.doi.org/10.1084/jem.174.4.785] [PMID: 1680957]
[96]
Kaplanski, G.; Porat, R.; Aiura, K.; Erban, J.K.; Gelfand, J.A.; Dinarello, C.A. Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-mediated event. Blood, 1993, 81(10), 2492-2495.
[http://dx.doi.org/10.1182/blood.V81.10.2492.2492] [PMID: 8490165]
[97]
Frostegård, J.; Ulfgren, A.K.; Nyberg, P.; Hedin, U.; Swedenborg, J.; Andersson, U.; Hansson, G.K. Cytokine expression in advanced human atherosclerotic plaques: Dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis, 1999, 145(1), 33-43.
[http://dx.doi.org/10.1016/S0021-9150(99)00011-8] [PMID: 10428293]
[98]
Scheller, J.; Garbers, C.; Rose-John, S. Interleukin-6: From basic biology to selective blockade of pro-inflammatory activities. Semin. Immunol., 2014, 26(1), 2-12.
[http://dx.doi.org/10.1016/j.smim.2013.11.002] [PMID: 24325804]
[99]
Schuett, H.; Oestreich, R.; Waetzig, G.H.; Annema, W.; Luchtefeld, M.; Hillmer, A.; Bavendiek, U.; von Felden, J.; Divchev, D.; Kempf, T.; Wollert, K.C.; Seegert, D.; Rose-John, S.; Tietge, U.J.F.; Schieffer, B.; Grote, K. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 2012, 32(2), 281-290.
[http://dx.doi.org/10.1161/ATVBAHA.111.229435] [PMID: 22075248]
[100]
Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 2005, 352(16), 1685-1695.
[http://dx.doi.org/10.1056/NEJMra043430] [PMID: 15843671]
[101]
Torzewski, J.; Torzewski, M.; Bowyer, D.E.; Fröhlich, M.; Koenig, W.; Waltenberger, J.; Fitzsimmons, C.; Hombach, V. C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arterioscler. Thromb. Vasc. Biol., 1998, 18(9), 1386-1392.
[http://dx.doi.org/10.1161/01.ATV.18.9.1386] [PMID: 9743226]
[102]
Wilson, P.W.F.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation, 1998, 97(18), 1837-1847.
[http://dx.doi.org/10.1161/01.CIR.97.18.1837] [PMID: 9603539]
[103]
Visseren, F.L.J. Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; Cosyns, B.; Crawford, C.; Davos, C.H.; Desormais, I.; Di Angelantonio, E.; Franco, O.H.; Halvorsen, S.; Hobbs, F.D.R.; Hollander, M.; Jankowska, E.A.; Michal, M.; Sacco, S.; Sattar, N.; Tokgozoglu, L.; Tonstad, S.; Tsioufis, K.P.; van Dis, I.; van Gelder, I.C.; Wanner, C.; Williams, B.; De Backer, G.; Regitz-Zagrosek, V.; Aamodt, A.H.; Abdelhamid, M.; Aboyans, V.; Albus, C.; Asteggiano, R.; Bäck, M.; Borger, M.A.; Brotons, C.; Čelutkienė J.; Cifkova, R.; Cikes, M.; Cosentino, F.; Dagres, N.; De Backer, T.; De Bacquer, D.; Delgado, V.; Den Ruijter, H.; Dendale, P.; Drexel, H.; Falk, V.; Fauchier, L.; Ference, B.A.; Ferrières, J.; Ferrini, M.; Fisher, M.; Fliser, D.; Fras, Z.; Gaita, D.; Giampaoli, S.; Gielen, S.; Graham, I.; Jennings, C.; Jorgensen, T.; Kautzky-Willer, A.; Kavousi, M.; Koenig, W.; Konradi, A.; Kotecha, D.; Landmesser, U.; Lettino, M.; Lewis, B.S.; Linhart, A.; Løchen, M-L.; Makrilakis, K.; Mancia, G.; Marques-Vidal, P.; McEvoy, J.W.; McGreavy, P.; Merkely, B.; Neubeck, L.; Nielsen, J.C.; Perk, J.; Petersen, S.E.; Petronio, A.S.; Piepoli, M.; Pogosova, N.G.; Prescott, E.I.B.; Ray, K.K.; Reiner, Z.; Richter, D.J.; Rydén, L.; Shlyakhto, E.; Sitges, M.; Sousa-Uva, M.; Sudano, I.; Tiberi, M.; Touyz, R.M.; Ungar, A.; Verschuren, W.M.M.; Wiklund, O.; Wood, D.; Zamorano, J.L.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J-M.; Capodanno, D.; Cosyns, B.; Crawford, C.A.; Davos, C.H.; Desormais, I.; Di Angelantonio, E.; Franco Duran, O.H.; Halvorsen, S.; Richard Hobbs, F.D.; Hollander, M.; Jankowska, E.A.; Michal, M.; Sacco, S.; Sattar, N.; Tokgozoglu, L.; Tonstad, S.; Tsioufis, K.P.; Dis, I.; van Gelder, I.C.; Wanner, C.; Williams, B. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J., 2021, 42(34), 3227-3337.
[http://dx.doi.org/10.1093/eurheartj/ehab484] [PMID: 34458905]
[104]
Stein, J.H.; Korcarz, C.E.; Hurst, R.T.; Lonn, E.; Kendall, C.B.; Mohler, E.R.; Najjar, S.S.; Rembold, C.M.; Post, W.S. American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: A consensus statement from the American society of echocardiography carotid intima-media thickness task force.Endorsed by the society for vascular medicine. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr., 2008, 21, 93-111.
[http://dx.doi.org/10.1016/j.echo.2007.11.011]
[105]
Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol., 2010, 55(13), 1318-1327.
[http://dx.doi.org/10.1016/j.jacc.2009.10.061] [PMID: 20338492]
[106]
Tsimikas, S. A test in context: Lipoprotein(a). J. Am. Coll. Cardiol., 2017, 69(6), 692-711.
[http://dx.doi.org/10.1016/j.jacc.2016.11.042] [PMID: 28183512]
[107]
Stefanadis, C.; Antoniou, C.K.; Tsiachris, D.; Pietri, P. Coronary atherosclerotic vulnerable plaque: Current perspectives. J. Am. Heart Assoc., 2017, 6(3), e005543.
[http://dx.doi.org/10.1161/JAHA.117.005543] [PMID: 28314799]
[108]
Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; Kastelein, J.J.P.; Cornel, J.H.; Pais, P.; Pella, D.; Genest, J.; Cifkova, R.; Lorenzatti, A.; Forster, T.; Kobalava, Z.; Vida-Simiti, L.; Flather, M.; Shimokawa, H.; Ogawa, H.; Dellborg, M.; Rossi, P.R.F.; Troquay, R.P.T.; Libby, P.; Glynn, R.J. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med., 2017, 377(12), 1119-1131.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[109]
Herder, C.; de las Heras Gala, T.; Carstensen-Kirberg, M.; Huth, C.; Zierer, A.; Wahl, S.; Sudduth-Klinger, J.; Kuulasmaa, K.; Peretz, D.; Ligthart, S.; Bongaerts, B.W.C.; Dehghan, A.; Ikram, M.A.; Jula, A.; Kee, F.; Pietilä, A.; Saarela, O.; Zeller, T.; Blankenberg, S.; Meisinger, C.; Peters, A.; Roden, M.; Salomaa, V.; Koenig, W.; Thorand, B. Circulating levels of interleukin 1-receptor antagonist and risk of cardiovascular disease. Arterioscler. Thromb. Vasc. Biol., 2017, 37(6), 1222-1227.
[http://dx.doi.org/10.1161/ATVBAHA.117.309307] [PMID: 28428221]
[110]
Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: A Mendelian randomisation analysis. Lancet Diabetes Endocrinol., 2015, 3(4), 243-253.
[http://dx.doi.org/10.1016/S2213-8587(15)00034-0] [PMID: 25726324]
[111]
Herder, C.; Brunner, E.J.; Rathmann, W.; Strassburger, K.; Tabák, A.G.; Schloot, N.C.; Witte, D.R. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: The Whitehall II study. Diabetes Care, 2009, 32(3), 421-423.
[http://dx.doi.org/10.2337/dc08-1161] [PMID: 19073760]
[112]
Niessen, R.W.L.M.; Lamping, R.J.; Jansen, P.M.; Prins, M.H.; Peters, M.; Taylor, F.B., Jr; de Vijlder, J.J.M.; ten Cate, J.W.; Hack, C.E.; Sturk, A. Antithrombin acts as a negative acute phase protein as established with studies on HepG2 cells and in baboons. Thromb. Haemost., 1997, 78(3), 1088-1092.
[http://dx.doi.org/10.1055/s-0038-1657691] [PMID: 9308758]
[113]
Mestries, J.C.; Kruithof, E.K.; Gascon, M.P.; Herodin, F.; Agay, D.; Ythier, A. In vivo modulation of coagulation and fibrinolysis by recombinant glycosylated human interleukin-6 in baboons. Eur. Cytokine Netw., 1994, 5(3), 275-281.
[PMID: 7948765]
[114]
Oikonomou, E.; Leopoulou, M.; Theofilis, P.; Antonopoulos, A.S.; Siasos, G.; Latsios, G.; Mystakidi, V.C.; Antoniades, C.; Tousoulis, D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis, 2020, 309, 16-26.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.07.027] [PMID: 32858395]
[115]
Rechciński, T.; Szymańska, B.; Wierzbowska-Drabik, K.; Chmiela, M.; Matusiak, A.; Kurpesa, M.; Wróblewski, J.; Kasprzak, J.D. Polymorphism of interleukin-1 gene cluster in polish patients with acute coronary syndrome. J. Clin. Med., 2021, 10(5), 990.
[http://dx.doi.org/10.3390/jcm10050990] [PMID: 33801199]
[116]
Leocádio, P.; Menta, P.; Dias, M.; Fraga, J.; Goulart, A.; Santos, I.; Lotufo, P.; Bensenor, I.; Alvarez-Leite, J. High serum netrin-1 and IL-1β in elderly females with ACS: Worse prognosis in 2-years follow-up. Arq. Bras. Cardiol., 2020, 114(3), 507-514.
[http://dx.doi.org/10.36660/abc.20190035] [PMID: 32267322]
[117]
Basiak, M.; Kosowski, M.; Hachula, M.; Okopien, B. Plasma concentrations of cytokines in patients with combined hyperlipidemia and atherosclerotic plaque before treatment initiation—a pilot study. Medicina (Kaunas), 2022, 58(5), 624.
[http://dx.doi.org/10.3390/medicina58050624] [PMID: 35630041]
[118]
Chai, M.; Zhang, H-T.; Zhou, Y-J.; Ji, Q-W.; Yang, Q.; Liu, Y-Y.; Zhao, Y-X.; Shi, D-M.; Liu, W.; Yang, L-X.; Zhang, L-L.; Liang, J. Elevated IL-37 levels in the plasma of patients with severe coronary artery calcification. J. Geriatr. Cardiol., 2017, 14(5), 285-291.
[PMID: 28630603]
[119]
Tsimikas, S.; Duff, G.W.; Berger, P.B.; Rogus, J.; Huttner, K.; Clopton, P.; Brilakis, E.; Kornman, K.S.; Witztum, J.L. Pro-inflammatory interleukin-1 genotypes potentiate the risk of coronary artery disease and cardiovascular events mediated by oxidized phospholipids and lipoprotein(a). J. Am. Coll. Cardiol., 2014, 63(17), 1724-1734.
[http://dx.doi.org/10.1016/j.jacc.2013.12.030] [PMID: 24530664]
[120]
Wæhre, T.; Yndestad, A.; Smith, C.; Haug, T.; Tunheim, S.H.; Gullestad, L.; Frøland, S.S.; Semb, A.G.; Aukrust, P.; Damås, J.K. Increased expression of interleukin-1 in coronary artery disease with downregulatory effects of HMG-CoA reductase inhibitors. Circulation, 2004, 109(16), 1966-1972.
[http://dx.doi.org/10.1161/01.CIR.0000125700.33637.B1] [PMID: 15051633]
[121]
Shubair, M.K.; Lutfi, M.F.; Bolad, A.K.; Ali, A.B.; Saeed, E.S.; Int, J. IL-1β level in Sudanese patients with atherosclerotic coronary heart disease. Int. J. Med. Biomed. Res., 2012, 1(1), 73-78.
[http://dx.doi.org/10.14194/ijmbr.1112]
[122]
Oprescu, N.; Micheu, M.M.; Scafa-Udriste, A.; Popa-Fotea, N.M.; Dorobantu, M. Inflammatory markers in acute myocardial infarction and the correlation with the severity of coronary heart disease. Ann. Med., 2021, 53(1), 1042-1048.
[http://dx.doi.org/10.1080/07853890.2021.1916070] [PMID: 34180324]
[123]
Mutluer, F.O.; Ural, D.; Güngör, B.; Bolca, O.; Aksu, T. Association of interleukin-1 Gene cluster polymorphisms with coronary slow flow phenomenon. Anatol. J. Cardiol., 2018, 19(1), 34-41.
[http://dx.doi.org/10.14744/AnatolJCardiol.2017.8071] [PMID: 29339698]
[124]
Parisi, V.; Petraglia, L.; Cabaro, S.; D’Esposito, V.; Bruzzese, D.; Ferraro, G.; Urbani, A.; Grieco, F.V.; Conte, M.; Caruso, A.; Grimaldi, M.G.; de Bellis, A.; Severino, S.; Campana, P.; Pilato, E.; Comentale, G.; Raia, M.; Scalia, G.; Castaldo, G.; Formisano, P.; Leosco, D. Imbalance between interleukin-1β and interleukin-1 receptor antagonist in epicardial adipose tissue is associated with non ST-segment elevation acute coronary syndrome. Front. Physiol., 2020, 11, 42.
[http://dx.doi.org/10.3389/fphys.2020.00042] [PMID: 32116755]
[125]
Blankenberg, S.; Luc, G.; Ducimetière, P.; Arveiler, D.; Ferrières, J.; Amouyel, P.; Evans, A.; Cambien, F.; Tiret, L. Interleukin-18 and the risk of coronary heart disease in European men: The Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation, 2003, 108(20), 2453-2459.
[http://dx.doi.org/10.1161/01.CIR.0000099509.76044.A2] [PMID: 14581397]
[126]
Koenig, W.; Khuseyinova, N.; Baumert, J.; Thorand, B.; Loewel, H.; Chambless, L.; Meisinger, C.; Schneider, A.; Martin, S.; Kolb, H.; Herder, C. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: Results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. Arterioscler. Thromb. Vasc. Biol., 2006, 26(12), 2745-2751.
[http://dx.doi.org/10.1161/01.ATV.0000248096.62495.73] [PMID: 17008587]
[127]
Herder, C.; Nuotio, M.L.; Shah, S.; Blankenberg, S.; Brunner, E.J.; Carstensen, M.; Gieger, C.; Grallert, H.; Jula, A.; Kähönen, M.; Kettunen, J.; Kivimäki, M.; Koenig, W.; Kristiansson, K.; Langenberg, C.; Lehtimäki, T.; Luotola, K.; Marzi, C.; Müller, C.; Peters, A.; Prokisch, H.; Raitakari, O.; Rathmann, W.; Roden, M.; Salmi, M.; Schramm, K.; Swerdlow, D.; Tabak, A.G.; Thorand, B.; Wareham, N.; Wild, P.S.; Zeller, T.; Hingorani, A.D.; Witte, D.R.; Kumari, M.; Perola, M.; Salomaa, V. Genetic determinants of circulating interleukin-1 receptor antagonist levels and their association with glycemic traits. Diabetes, 2014, 63(12), 4343-4359.
[http://dx.doi.org/10.2337/db14-0731] [PMID: 24969107]
[128]
Schofer, N.; Ludwig, S.; Rübsamen, N.; Schnabel, R.; Lackner, K.J.; Ruprecht, H.J.; Bickel, C.; Landmesser, U.; Blankenberg, S.; Zeller, T. Prognostic impact of Interleukin-1 receptor antagonist in patients with documented coronary artery disease. Int. J. Cardiol., 2018, 257, 24-29.
[http://dx.doi.org/10.1016/j.ijcard.2018.01.055] [PMID: 29395365]
[129]
Hartford, M.; Wiklund, O.; Hultén, L.M.; Persson, A.; Karlsson, T.; Herlitz, J.; Hulthe, J.; Caidahl, K. Interleukin-18 as a predictor of future events in patients with acute coronary syndromes. Arterioscler. Thromb. Vasc. Biol., 2010, 30(10), 2039-2046.
[http://dx.doi.org/10.1161/ATVBAHA.109.202697] [PMID: 20689079]
[130]
Blankenberg, S.; Tiret, L.; Bickel, C.; Peetz, D.; Cambien, F.; Meyer, J.; Rupprecht, H.J. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation, 2002, 106(1), 24-30.
[http://dx.doi.org/10.1161/01.CIR.0000020546.30940.92] [PMID: 12093765]
[131]
Chalikias, G.K.; Tziakas, D.N.; Kaski, J.C.; Kekes, A.; Hatzinikolaou, E.I.; Stakos, D.A.; Tentes, I.K.; Kortsaris, A.X.; Hatseras, D.I. Interleukin-18/interleukin-10 ratio is an independent predictor of recurrent coronary events during a 1-year follow-up in patients with acute coronary syndrome. Int. J. Cardiol., 2007, 117(3), 333-339.
[http://dx.doi.org/10.1016/j.ijcard.2006.05.017] [PMID: 16859776]
[132]
Liu, C.; Cui, Y.; Zhang, D.; Tian, X.; Zhang, H. Analysis of serum interleukin-37 Level and prognosis in patients with ACS. Comput. Math. Methods Med., 2021, 2021, 3755458.
[http://dx.doi.org/10.1155/2021/3755458] [PMID: 34580597]
[133]
Yndestad, A.; Kristian Damås, J.; Øie, E.; Ueland, T.; Gullestad, L.; Aukrust, P. Systemic inflammation in heart failure - The whys and wherefores. Heart Fail. Rev., 2006, 11(1), 83-92.
[http://dx.doi.org/10.1007/s10741-006-9196-2] [PMID: 16819581]
[134]
Anand, I.S.; Rector, T.S.; Kuskowski, M.; Snider, J.; Cohn, J.N. Prognostic value of soluble ST2 in the valsartan heart failure trial. Circ. Heart Fail., 2014, 7(3), 418-426.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.001036] [PMID: 24622243]
[135]
Felker, G.M.; Fiuzat, M.; Thompson, V.; Shaw, L.K.; Neely, M.L.; Adams, K.F.; Whellan, D.J.; Donahue, M.P.; Ahmad, T.; Kitzman, D.W.; Piña, I.L.; Zannad, F.; Kraus, W.E.; O’Connor, C.M. Soluble ST2 in ambulatory patients with heart failure: Association with functional capacity and long-term outcomes. Circ. Heart Fail., 2013, 6(6), 1172-1179.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000207] [PMID: 24103327]
[136]
Li, Y.; Zhang, Y.; Lu, J.; Yin, Y.; Xie, J.; Xu, B. Anti‐inflammatory mechanisms and research progress of colchicine in atherosclerotic therapy. J. Cell. Mol. Med., 2021, 25(17), 8087-8094.
[http://dx.doi.org/10.1111/jcmm.16798] [PMID: 34312998]
[137]
Leung, Y.Y.; Yao, Hui L.L.; Kraus, V.B. Colchicine-Update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum., 2015, 45(3), 341-350.
[http://dx.doi.org/10.1016/j.semarthrit.2015.06.013] [PMID: 26228647]
[138]
Martínez, G.J.; Celermajer, D.S.; Patel, S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis, 2018, 269, 262-271.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.12.027] [PMID: 29352570]
[139]
Nidorf, M.; Thompson, P.L. Effect of colchicine (0.5 mg twice daily) on high-sensitivity C-reactive protein independent of aspirin and atorvastatin in patients with stable coronary artery disease. Am. J. Cardiol., 2007, 99(6), 805-807.
[http://dx.doi.org/10.1016/j.amjcard.2006.10.039] [PMID: 17350370]
[140]
Vaidya, K.; Arnott, C.; Martínez, G.J.; Ng, B.; McCormack, S.; Sullivan, D.R.; Celermajer, D.S.; Patel, S. Colchicine therapy and plaque stabilization in patients with acute coronary syndrome. JACC Cardiovasc. Imaging, 2018, 11(2), 305-316.
[http://dx.doi.org/10.1016/j.jcmg.2017.08.013] [PMID: 29055633]
[141]
Akodad, M.; Fauconnier, J.; Sicard, P.; Huet, F.; Blandel, F.; Bourret, A.; de Santa Barbara, P.; Aguilhon, S.; LeGall, M.; Hugon, G.; Lacampagne, A.; Roubille, F. Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure in a mouse model. Int. J. Cardiol., 2017, 240, 347-353.
[http://dx.doi.org/10.1016/j.ijcard.2017.03.126] [PMID: 28395979]
[142]
Fujisue, K.; Sugamura, K.; Kurokawa, H.; Matsubara, J.; Ishii, M.; Izumiya, Y.; Kaikita, K.; Sugiyama, S. Colchicine improves survival, left ventricular remodeling, and chronic cardiac function after acute myocardial infarction. Circ. J., 2017, 81(8), 1174-1182.
[http://dx.doi.org/10.1253/circj.CJ-16-0949] [PMID: 28420825]
[143]
Nidorf, S.M.; Eikelboom, J.W.; Budgeon, C.A.; Thompson, P.L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol., 2013, 61(4), 404-410.
[http://dx.doi.org/10.1016/j.jacc.2012.10.027] [PMID: 23265346]
[144]
Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; Berry, C.; López-Sendón, J.; Ostadal, P.; Koenig, W.; Angoulvant, D.; Grégoire, J.C.; Lavoie, M.A.; Dubé, M.P.; Rhainds, D.; Provencher, M.; Blondeau, L.; Orfanos, A.; L’Allier, P.L.; Guertin, M.C.; Roubille, F. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med., 2019, 381(26), 2497-2505.
[http://dx.doi.org/10.1056/NEJMoa1912388] [PMID: 31733140]
[145]
Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.F.; Ireland, M.A.; Lenderink, T.; Latchem, D.; Hoogslag, P.; Jerzewski, A.; Nierop, P.; Whelan, A.; Hendriks, R.; Swart, H.; Schaap, J.; Kuijper, A.F.M.; van Hessen, M.W.J.; Saklani, P.; Tan, I.; Thompson, A.G.; Morton, A.; Judkins, C.; Bax, W.A.; Dirksen, M.; Alings, M.; Hankey, G.J.; Budgeon, C.A.; Tijssen, J.G.P.; Cornel, J.H.; Thompson, P.L. Colchicine in patients with chronic coronary disease. N. Engl. J. Med., 2020, 383(19), 1838-1847.
[http://dx.doi.org/10.1056/NEJMoa2021372] [PMID: 32865380]
[146]
Tong, D.C.; Quinn, S.; Nasis, A.; Hiew, C.; Roberts-Thomson, P.; Adams, H.; Sriamareswaran, R.; Htun, N.M.; Wilson, W.; Stub, D.; van Gaal, W.; Howes, L.; Collins, N.; Yong, A.; Bhindi, R.; Whitbourn, R.; Lee, A.; Hengel, C.; Asrress, K.; Freeman, M.; Amerena, J.; Wilson, A.; Layland, J. Colchicine in patients with acute coronary syndrome. Circulation, 2020, 142(20), 1890-1900.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050771] [PMID: 32862667]
[147]
Bytyçi, I.; Bajraktari, G.; Penson, P.E.; Henein, M.Y.; Banach, M. International Lipid Expert Panel (ILEP). Efficacy and Safety of Colchicine in Patients with Coronary Artery Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Br. J. Clin. Pharmacol., 2022, 88(4), 1520-1528.
[148]
Reiss, A.B.; Carsons, S.E.; Anwar, K.; Rao, S.; Edelman, S.D.; Zhang, H.; Fernandez, P.; Cronstein, B.N.; Chan, E.S.L. Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP‐1 monocyte/macrophages. Arthritis Rheum., 2008, 58(12), 3675-3683.
[149]
Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; Gupta, M.; Tsigoulis, M.; Verma, S.; Clearfield, M.; Libby, P.; Goldhaber, S.Z.; Seagle, R.; Ofori, C.; Saklayen, M.; Butman, S.; Singh, N.; Le May, M.; Bertrand, O.; Johnston, J.; Paynter, N.P.; Glynn, R.J. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med., 2019, 380(8), 752-762.
[http://dx.doi.org/10.1056/NEJMoa1809798] [PMID: 30415610]
[150]
Buckley, L.F.; Abbate, A. Interleukin-1 blockade in cardiovascular diseases: A clinical update. Eur. Heart J., 2018, 39(22), 2063-2069.
[http://dx.doi.org/10.1093/eurheartj/ehy128] [PMID: 29584915]
[151]
Emmi, G.; Urban, M.L.; Imazio, M.; Gattorno, M.; Maestroni, S.; Lopalco, G.; Cantarini, L.; Prisco, D.; Brucato, A. Use of interleukin-1 blockers in pericardial and cardiovascular diseases. Curr. Cardiol. Rep., 2018, 20(8), 61.
[http://dx.doi.org/10.1007/s11886-018-1007-6] [PMID: 29904899]
[152]
Chakraborty, A.; Van, L.M.; Skerjanec, A.; Floch, D.; Klein, U.R.; Krammer, G.; Sunkara, G.; Howard, D. Pharmacokinetic and pharmacodynamic properties of canakinumab in patients with gouty arthritis. J. Clin. Pharmacol., 2013, 53(12), 1240-1251.
[http://dx.doi.org/10.1002/jcph.162] [PMID: 24122883]
[153]
Ridker, P.M.; Howard, C.P.; Walter, V.; Everett, B.; Libby, P.; Hensen, J.; Thuren, T. Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: A phase IIb randomized, placebo-controlled trial. Circulation, 2012, 126(23), 2739-2748.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.122556] [PMID: 23129601]
[154]
Choudhury, R.P.; Birks, J.S.; Mani, V.; Biasiolli, L.; Robson, M.D.; L’Allier, P.L.; Gingras, M.A.; Alie, N.; McLaughlin, M.A.; Basson, C.T.; Schecter, A.D.; Svensson, E.C.; Zhang, Y.; Yates, D.; Tardif, J.C.; Fayad, Z.A. Arterial effects of canakinumab in patients with atherosclerosis and type 2 diabetes or glucose intolerance. J. Am. Coll. Cardiol., 2016, 68(16), 1769-1780.
[http://dx.doi.org/10.1016/j.jacc.2016.07.768] [PMID: 27737744]
[155]
Ridker, P.M.; MacFadyen, J.G.; Glynn, R.J.; Koenig, W.; Libby, P.; Everett, B.M.; Lefkowitz, M.; Thuren, T.; Cornel, J.H. Inhibition of interleukin-1β by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J. Am. Coll. Cardiol., 2018, 71(21), 2405-2414.
[http://dx.doi.org/10.1016/j.jacc.2018.03.490] [PMID: 29793629]
[156]
Everett, B.M.; Cornel, J.H.; Lainscak, M.; Anker, S.D.; Abbate, A.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation, 2019, 139(10), 1289-1299.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038010] [PMID: 30586730]
[157]
Issafras, H.; Corbin, J.A.; Goldfine, I.D.; Roell, M.K. Detailed mechanistic analysis of gevokizumab, an allosteric anti-IL-1β antibody with differential receptor-modulating properties. J. Pharmacol. Exp. Ther., 2014, 348(1), 202-215.
[http://dx.doi.org/10.1124/jpet.113.205443] [PMID: 24194526]
[158]
Harouki, N.; Nicol, L.; Remy-Jouet, I.; Henry, J.P.; Dumesnil, A.; Lejeune, A.; Renet, S.; Golding, F.; Djerada, Z.; Wecker, D.; Bolduc, V.; Bouly, M.; Roussel, J.; Richard, V.; Mulder, P. The IL-1β antibody gevokizumab limits cardiac remodeling and coronary dysfunction in rats with heart failure. JACC Basic Transl. Sci., 2017, 2(4), 418-430.
[http://dx.doi.org/10.1016/j.jacbts.2017.06.005] [PMID: 30062160]
[159]
Cvetkovic, R.S.; Keating, G. Anakinra. BioDrugs, 2002, 16, 303-311. discussion 313-314.
[http://dx.doi.org/10.2165/00063030-200216040-00005] [PMID: 12196041]
[160]
Yang, B.; Baughman, S.; Sullivan, J.T. Pharmacokinetics of anakinra in subjects with different levels of renal function. Clin. Pharmacol. Ther., 2003, 74(1), 85-94.
[http://dx.doi.org/10.1016/S0009-9236(03)00094-8] [PMID: 12844139]
[161]
Ikonomidis, I.; Lekakis, J.P.; Nikolaou, M.; Paraskevaidis, I.; Andreadou, I.; Kaplanoglou, T.; Katsimbri, P.; Skarantavos, G.; Soucacos, P.N.; Kremastinos, D.T. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation, 2008, 117(20), 2662-2669.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.731877] [PMID: 18474811]
[162]
Abbate, A.; Kontos, M.C.; Grizzard, J.D.; Biondi-Zoccai, G.G.L.; Van Tassell, B.W.; Robati, R.; Roach, L.M.; Arena, R.A.; Roberts, C.S.; Varma, A.; Gelwix, C.C.; Salloum, F.N.; Hastillo, A.; Dinarello, C.A.; Vetrovec, G.W. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am. J. Cardiol., 2010, 105(10), 1371-1377.e1.
[http://dx.doi.org/10.1016/j.amjcard.2009.12.059] [PMID: 20451681]
[163]
Abbate, A.; Van Tassell, B.W.; Biondi-Zoccai, G.; Kontos, M.C.; Grizzard, J.D.; Spillman, D.W.; Oddi, C.; Roberts, C.S.; Melchior, R.D.; Mueller, G.H.; Abouzaki, N.A.; Rengel, L.R.; Varma, A.; Gambill, M.L.; Falcao, R.A.; Voelkel, N.F.; Dinarello, C.A.; Vetrovec, G.W. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am. J. Cardiol., 2013, 111(10), 1394-1400.
[http://dx.doi.org/10.1016/j.amjcard.2013.01.287] [PMID: 23453459]
[164]
Abbate, A.; Trankle, C.R.; Buckley, L.F.; Lipinski, M.J.; Appleton, D.; Kadariya, D.; Canada, J.M.; Carbone, S.; Roberts, C.S.; Abouzaki, N.; Melchior, R.; Christopher, S.; Turlington, J.; Mueller, G.; Garnett, J.; Thomas, C.; Markley, R.; Wohlford, G.F.; Puckett, L.; Medina de Chazal, H.; Chiabrando, J.G.; Bressi, E.; Del Buono, M.G.; Schatz, A.; Vo, C.; Dixon, D.L.; Biondi-Zoccai, G.G.; Kontos, M.C.; Van Tassell, B.W. Interleukin‐1 blockade inhibits the acute inflammatory response in patients with ST‐segment-elevation myocardial infarction. J. Am. Heart Assoc., 2020, 9(5), e014941.
[http://dx.doi.org/10.1161/JAHA.119.014941] [PMID: 32122219]
[165]
Morton, A.C.; Rothman, A.M.K.; Greenwood, J.P.; Gunn, J.; Chase, A.; Clarke, B.; Hall, A.S.; Fox, K.; Foley, C.; Banya, W.; Wang, D.; Flather, M.D.; Crossman, D.C. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: The MRC-ILA Heart Study. Eur. Heart J., 2015, 36(6), 377-384.
[http://dx.doi.org/10.1093/eurheartj/ehu272] [PMID: 25079365]
[166]
Radin, A.; Marbury, T.; Osgood, G.; Belomestnov, P. Safety and pharmacokinetics of subcutaneously administered rilonacept in patients with well-controlled end-stage renal disease (ESRD). J. Clin. Pharmacol., 2010, 50(7), 835-841.
[http://dx.doi.org/10.1177/0091270009351882] [PMID: 20035038]
[167]
Van Tassell, B.W.; Varma, A.; Salloum, F.N.; Das, A.; Seropian, I.M.; Toldo, S.; Smithson, L.; Hoke, N.N.; Chau, V.Q.; Robati, R.; Abbate, A. Interleukin-1 trap attenuates cardiac remodeling after experimental acute myocardial infarction in mice. J. Cardiovasc. Pharmacol., 2010, 55(2), 117-122.
[http://dx.doi.org/10.1097/FJC.0b013e3181c87e53] [PMID: 19920765]
[168]
Klein, A.L.; Imazio, M.; Cremer, P.; Brucato, A.; Abbate, A.; Fang, F.; Insalaco, A.; LeWinter, M.; Lewis, B.S.; Lin, D.; Luis, S.A.; Nicholls, S.J.; Pano, A.; Wheeler, A.; Paolini, J.F. Phase 3 Trial of interleukin-1 trap rilonacept in recurrent pericarditis. N. Engl. J. Med., 2021, 384(1), 31-41.
[http://dx.doi.org/10.1056/NEJMoa2027892] [PMID: 33200890]
[169]
Zheng, Z.H.; Zeng, X.; Nie, X.Y.; Cheng, Y.J.; Liu, J.; Lin, X.X.; Yao, H.; Ji, C.C.; Chen, X.M.; Jun, F.; Wu, S.H. Retracted: Interleukin‐1 blockade treatment decreasing cardiovascular risk. Clin. Cardiol., 2019, 42(10), 942-951.
[http://dx.doi.org/10.1002/clc.23246] [PMID: 31415103]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy