Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

COVID-19 and Alzheimer's Disease: Neuroinflammation, Oxidative Stress, Ferroptosis, and Mechanisms Involved

Author(s): Alicia B. Pomilio*, Arturo A. Vitale and Alberto J. Lazarowski

Volume 30, Issue 35, 2023

Published on: 23 November, 2022

Page: [3993 - 4031] Pages: 39

DOI: 10.2174/0929867329666221003101548

Price: $65

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by marked cognitive decline, memory loss, and spatio-temporal troubles and, in severe cases, lack of recognition of family members. Neurological symptoms, cognitive disturbances, and the inflammatory frame due to COVID-19, together with long-term effects, have fueled renewed interest in AD based on similar damage. COVID-19 also caused the acceleration of AD symptom onset. In this regard, the morbidity and mortality of COVID-19 were reported to be increased in patients with AD due to multiple pathological changes such as excessive expression of the viral receptor angiotensin-converting enzyme 2 (ACE2), comorbidities such as diabetes, hypertension, or drug-drug interactions in patients receiving polypharmacy and the high presence of proinflammatory molecules. Furthermore, the release of cytokines, neuroinflammation, oxidative stress, and ferroptosis in both diseases showed common underlying mechanisms, which together worsen the clinical picture and prognosis of these patients.

Keywords: COVID-19, Alzheimer's disease, neurodegeneration, cytokines, neuroinflammation, oxidative stress, ferroptosis, mechanisms.

[1]
Vitale, A.A.; Ciprian-Ollivier, J.; Vitale, M.G.; Romero, E.; Pomilio, A.B. Clinical studies of markers of the indolic hypermethylation in human perception alterations. Acta Bioquim. Clin. Latinoam., 2010, 44(4), 627-642.
[2]
Vitale, A.A.; Pomilio, A.B.; Cañellas, C.O.; Vitale, M.G.; Putz, E.M.; Ciprian-Ollivier, J. In vivo long-term kinetics of radiolabeled n,n-dimethyltryptamine and tryptamine. J. Nucl. Med., 2011, 52(6), 970-977.
[http://dx.doi.org/10.2967/jnumed.110.083246] [PMID: 21622895]
[3]
Pomilio, A.B.; Vitale, A.A.; Ciprian Ollivier, J. Clinical and radiolabeled studies of biomarkers of the indolic hypermethylation in human perception alterations. Annales. Soc. Ci. Argent., 2017, 259(3)
[4]
Merelli, A.; Repetto, M.; Lazarowski, A.; Auzmendi, J. Hypoxia, oxidative stress, and inflammation: Three faces of neurodegenerative diseases. J. Alzheimers Dis., 2021, 82(s1), S109-S126.
[http://dx.doi.org/10.3233/JAD-201074] [PMID: 33325385]
[5]
Merelli, A.; Ramos, A.J.; Lazarowski, A.; Auzmendi, J. Convulsive stress mimics brain hypoxia and promotes the P-glycoprotein (P-gp) and erythropoietin receptor overexpression. Recombinant human erythropoietin effect on P-gp activity. Front. Neurosci., 2019, 13, 750.
[http://dx.doi.org/10.3389/fnins.2019.00750] [PMID: 31379495]
[6]
Merelli, A.; Rodríguez, J.C.G.; Folch, J.; Regueiro, M.R.; Camins, A.; Lazarowski, A. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr. Neuropharmacol., 2018, 16(10), 1484-1498.
[http://dx.doi.org/10.2174/1570159X16666180110130253] [PMID: 29318974]
[7]
Pomilio, A.B.; Vitale, A.A.; Lazarowski, A.J. Neuroproteomics chip-based mass spectrometry and other techniques for Alzheimer’s disease biomarkers – update. Curr. Pharm. Des., 2022, 28(14), 1124-1151.
[http://dx.doi.org/10.2174/1381612828666220413094918] [PMID: 35422204]
[8]
Pomilio, A.B.; Vitale, A.A.; Lazarowski, A.J. Uncommon noninvasive biomarkers for the evaluation and monitoring of the etiopathogenesis of Alzheimer’s disease. Curr. Pharm. Des., 2022, 28(14), 1152-1169.
[http://dx.doi.org/10.2174/1381612828666220413101929] [PMID: 35422205]
[9]
Iadecola, C.; Anrather, J.; Kamel, H. Effects of COVID-19 on the nervous system. Cell, 2020, 183(1), 16-27.e1.
[http://dx.doi.org/10.1016/j.cell.2020.08.028] [PMID: 32882182]
[10]
Ciaccio, M.; Lo Sasso, B.; Scazzone, C.; Gambino, C.M.; Ciaccio, A.M.; Bivona, G.; Piccoli, T.; Giglio, R.V.; Agnello, L. COVID-19 and Alzheimer’s disease. Brain Sci., 2021, 11(3), 305.
[http://dx.doi.org/10.3390/brainsci11030305] [PMID: 33673697]
[11]
Rahman, M.A.; Islam, K.; Rahman, S.; Alamin, M. Neurobiochemical cross-talk between COVID-19 and Alzheimer’s disease. Mol. Neurobiol., 2021, 58(3), 1017-1023.
[http://dx.doi.org/10.1007/s12035-020-02177-w] [PMID: 33078369]
[12]
Xiong, N.; Schiller, M.R.; Li, J.; Chen, X.; Lin, Z. Severe COVID-19 in Alzheimer’s disease: APOE4’s fault again? Alzheimers Res. Ther., 2021, 13(1), 111.
[http://dx.doi.org/10.1186/s13195-021-00858-9] [PMID: 34118974]
[13]
Alomari, S.O.; Abou-Mrad, Z.; Bydon, A. COVID-19 and the central nervous system. Clin. Neurol. Neurosurg., 2020, 198, 106116.
[http://dx.doi.org/10.1016/j.clineuro.2020.106116] [PMID: 32828027]
[14]
Ferini-Strambi, L.; Salsone, M. COVID-19 and neurological disorders: Are neurodegenerative or neuroimmunological diseases more vulnerable? J. Neurol., 2021, 268(2), 409-419.
[http://dx.doi.org/10.1007/s00415-020-10070-8] [PMID: 32696341]
[15]
Sirin, S.; Nigdelioglu Dolanbay, S.; Aslim, B. The relationship of early- and late-onset Alzheimer’s disease genes with COVID-19. J. Neural Transm. (Vienna), 2022, 129(7), 847-859.
[http://dx.doi.org/10.1007/s00702-022-02499-0] [PMID: 35429259]
[16]
Villa, C.; Rivellini, E.; Lavitrano, M.; Combi, R. Can SARS-CoV-2 infection exacerbate Alzheimer’s disease? An overview of shared risk factors and pathogenetic mechanisms. J. Pers. Med., 2022, 12(1), 29.
[http://dx.doi.org/10.3390/jpm12010029] [PMID: 35055344]
[17]
Pimentel, G.A.; Guimarães, T.G.; Silva, G.D.; Scaff, M. Case report: Neurodegenerative diseases after severe acute respiratory syndrome coronavirus 2 infection, a report of three cases: Creutzfeldt-Jakob disease, rapidly progressive Alzheimer’s disease, and frontotemporal dementia. Front. Neurol., 2022, 13, 731369.
[http://dx.doi.org/10.3389/fneur.2022.731369] [PMID: 35197920]
[18]
Wang, Y.; Li, M.; Kazis, L.E.; Xia, W. Clinical outcomes of COVID-19 infection among patients with Alzheimer’s disease or mild cognitive impairment. Alzheimers Dement., 2022, 18(5), 911-923.
[http://dx.doi.org/10.1002/alz.12665] [PMID: 35377523]
[19]
Alavi Naini, S.M.; Soussi-Yanicostas, N. Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid. Med. Cell. Longev., 2015, 2015, 151979.
[http://dx.doi.org/10.1155/2015/151979] [PMID: 26576216]
[20]
Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of tau as a microtubule-associated protein: Structural and functional aspects. Front. Aging Neurosci., 2019, 11, 204.
[http://dx.doi.org/10.3389/fnagi.2019.00204] [PMID: 31447664]
[21]
Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 16(3), 391-460.
[http://dx.doi.org/10.1002/alz.12068]
[22]
Ashraf, A.; Jeandriens, J.; Parkes, H.G.; So, P.W. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: Evidence of ferroptosis. Redox Biol., 2020, 32, 101494.
[http://dx.doi.org/10.1016/j.redox.2020.101494] [PMID: 32199332]
[23]
Nir, T.M.; Jahanshad, N.; Villalon-Reina, J.E.; Toga, A.W.; Jack, C.R.; Weiner, M.W.; Thompson, P.M. Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease, MCI, and normal aging. Neuroimage Clin., 2013, 3, 180-195.
[http://dx.doi.org/10.1016/j.nicl.2013.07.006] [PMID: 24179862]
[24]
Bergamino, M.; Schiavi, S.; Daducci, A.; Walsh, R.R.; Stokes, A.M. Analysis of brain structural connectivity networks and white matter integrity in patients with mild cognitive impairment. Front. Aging Neurosci., 2022, 14, 793991.
[http://dx.doi.org/10.3389/fnagi.2022.793991] [PMID: 35173605]
[25]
Stages of Alzheimer’s Disease. U.S. Alzheimer Association, 2022. Available from: https://www.alz.org/alzheimers-dementia/stages?lang=en-US
[26]
Narayanaswami, V.; Dahl, K.; Bernard-Gauthier, V.; Josephson, L.; Cumming, P.; Vasdev, N. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: Outlook beyond TSPO. Mol. Imaging, 2018, 17, 1536012118792317.
[http://dx.doi.org/10.1177/1536012118792317] [PMID: 30203712]
[27]
Fleeman, R.M.; Proctor, E.A. Astrocytic propagation of tau in the context of Alzheimer’s disease. Front. Cell. Neurosci., 2021, 15, 645233.
[http://dx.doi.org/10.3389/fncel.2021.645233] [PMID: 33815065]
[28]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[29]
Reitz, C.; Rogaeva, E.; Beecham, G.W. Late-onset vs. nonmendelian early-onset Alzheimer disease. Neurol. Genet., 2020, 6(5), e512.
[http://dx.doi.org/10.1212/NXG.0000000000000512] [PMID: 33225065]
[30]
Seto, M.; Weiner, R.L.; Dumitrescu, L.; Hohman, T.J. Protective genes and pathways in Alzheimer’s disease: Moving towards precision interventions. Mol. Neurodegener., 2021, 16(1), 29.
[http://dx.doi.org/10.1186/s13024-021-00452-5] [PMID: 33926499]
[31]
D’Argenio, V.; Sarnataro, D. New insights into the molecular bases of familial Alzheimer’s disease. J. Pers. Med., 2020, 10(2), 26.
[http://dx.doi.org/10.3390/jpm10020026] [PMID: 32325882]
[32]
Baker, E.; Escott-Price, V. Polygenic risk scores in Alzheimer’s disease: Current applications and future directions. Frontiers in Digital Health, 2020, 2, 14.
[http://dx.doi.org/10.3389/fdgth.2020.00014] [PMID: 34713027]
[33]
Zhou, X.; Li, Y.Y.T.; Fu, A.K.Y.; Ip, N.Y. Polygenic score models for Alzheimer’s disease: From research to clinical applications. Front. Neurosci., 2021, 15, 650220.
[http://dx.doi.org/10.3389/fnins.2021.650220] [PMID: 33854414]
[34]
Rabinovici, G.D. Late-onset Alzheimer disease. Continuum (Minneap. Minn.), 2019, 25(1), 14-33.
[http://dx.doi.org/10.1212/CON.0000000000000700] [PMID: 30707185]
[35]
Centers for Disease Control and Prevention (CDC). Coronavirus disease. 2019. Available from: https://www.cdc.gov/dotw/covid-19/index.html
[36]
New coronavirus COVID-19: Information, recommendations and prevention measures from the Ministry of Health of the Nation. Available from: https://www.argentina.gob.ar/salud/coronavirus-COVID-19
[37]
WHO. Coronavirus disease (COVID-19): How is it transmitted? Available from: https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted (Accessed on April 5th, 2022).
[38]
WHO. Coronavirus disease (COVID-19) pandemic. WHO, 2022. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (Accessed on April 5th, 2022).
[39]
Worldometers.info. COVID-19 Coronavirus Pandemic. Statistics. 2022. Available from: https://www.worldometers.info/coronavirus/ (Accessed June 25th, 2022).
[40]
Kim, D.; Lee, J.Y.; Yang, J.S.; Kim, J.W.; Kim, V.N.; Chang, H. The architecture of SARS-CoV-2 transcriptome. Cell, 2020, 181(4), 914-921.e10.
[http://dx.doi.org/10.1016/j.cell.2020.04.011] [PMID: 32330414]
[41]
Ugurel, O.M.; Mutlu, O.; Sariyer, E.; Kocer, S.; Ugurel, E.; Inci, T.G.; Ata, O.; Turgut-Balik, D. Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13). Int. J. Biol. Macromol., 2020, 163, 1687-1696.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.138] [PMID: 32980406]
[42]
Wu, C.; Yin, W.; Jiang, Y.; Xu, H.E. Structure genomics of SARS-CoV-2 and its Omicron variant: Drug design templates for COVID-19. Acta Pharmacol. Sin., 2022. [Epub ahead of print].
[http://dx.doi.org/10.1038/s41401-021-00851-w] [PMID: 35058587]
[43]
Yan, W.; Zheng, Y.; Zeng, X.; He, B.; Cheng, W. Structural biology of SARS-CoV-2: Open the door for novel therapies. Signal Transduct. Target. Ther., 2022, 7(1), 26.
[http://dx.doi.org/10.1038/s41392-022-00884-5] [PMID: 35087058]
[44]
Du, X.; Tang, H.; Gao, L.; Wu, Z.; Meng, F.; Yan, R.; Qiao, S.; An, J.; Wang, C.; Qin, F.X.F. Omicron adopts a different strategy from Delta and other variants to adapt to host. Signal Transduct. Target. Ther., 2022, 7(1), 45.
[http://dx.doi.org/10.1038/s41392-022-00903-5] [PMID: 35145066]
[45]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[46]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[47]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[48]
Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; Feldman, J.; Muus, C.; Wadsworth, M.H., II; Kazer, S.W.; Hughes, T.K.; Doran, B.; Gatter, G.J.; Vukovic, M.; Taliaferro, F.; Mead, B.E.; Guo, Z.; Wang, J.P.; Gras, D.; Plaisant, M.; Ansari, M.; Angelidis, I.; Adler, H.; Sucre, J.M.S.; Taylor, C.J.; Lin, B.; Waghray, A.; Mitsialis, V.; Dwyer, D.F.; Buchheit, K.M.; Boyce, J.A.; Barrett, N.A.; Laidlaw, T.M.; Carroll, S.L.; Colonna, L.; Tkachev, V.; Peterson, C.W.; Yu, A.; Zheng, H.B.; Gideon, H.P.; Winchell, C.G.; Lin, P.L.; Bingle, C.D.; Snapper, S.B.; Kropski, J.A.; Theis, F.J.; Schiller, H.B.; Zaragosi, L.E.; Barbry, P.; Leslie, A.; Kiem, H.P.; Flynn, J.L.; Fortune, S.M.; Berger, B.; Finberg, R.W.; Kean, L.S.; Garber, M.; Schmidt, A.G.; Lingwood, D.; Shalek, A.K.; Ordovas-Montanes, J.; Banovich, N.; Barbry, P.; Brazma, A.; Desai, T.; Duong, T.E.; Eickelberg, O.; Falk, C.; Farzan, M.; Glass, I.; Haniffa, M.; Horvath, P.; Hung, D.; Kaminski, N.; Krasnow, M.; Kropski, J.A.; Kuhnemund, M.; Lafyatis, R.; Lee, H.; Leroy, S.; Linnarson, S.; Lundeberg, J.; Meyer, K.; Misharin, A.; Nawijn, M.; Nikolic, M.Z.; Ordovas-Montanes, J.; Pe’er, D.; Powell, J.; Quake, S.; Rajagopal, J.; Tata, P.R.; Rawlins, E.L.; Regev, A.; Reyfman, P.A.; Rojas, M.; Rosen, O.; Saeb-Parsy, K.; Samakovlis, C.; Schiller, H.; Schultze, J.L.; Seibold, M.A.; Shalek, A.K.; Shepherd, D.; Spence, J.; Spira, A.; Sun, X.; Teichmann, S.; Theis, F.; Tsankov, A.; van den Berge, M.; von Papen, M.; Whitsett, J.; Xavier, R.; Xu, Y.; Zaragosi, L-E.; Zhang, K. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 2020, 181(5), 1016-1035.e19.
[http://dx.doi.org/10.1016/j.cell.2020.04.035] [PMID: 32413319]
[49]
Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res., 2020, 116(6), 1097-1100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[50]
Bilinska, K.; Jakubowska, P.; Von Bartheld, C.S.; Butowt, R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci., 2020, 11(11), 1555-1562.
[http://dx.doi.org/10.1021/acschemneuro.0c00210] [PMID: 32379417]
[51]
Oz, M.; Lorke, D.E. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed. Pharmacother., 2021, 136, 111193.
[http://dx.doi.org/10.1016/j.biopha.2020.111193] [PMID: 33461019]
[52]
Gusev, E.; Sarapultsev, A.; Solomatina, L.; Chereshnev, V. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19. Int. J. Mol. Sci., 2022, 23(3), 1716.
[http://dx.doi.org/10.3390/ijms23031716] [PMID: 35163638]
[53]
Drayman, N.; DeMarco, J.K.; Jones, K.A.; Azizi, S.A.; Froggatt, H.M.; Tan, K.; Maltseva, N.I.; Chen, S.; Nicolaescu, V.; Dvorkin, S.; Furlong, K.; Kathayat, R.S.; Firpo, M.R.; Mastrodomenico, V.; Bruce, E.A.; Schmidt, M.M.; Jedrzejczak, R.; Muñoz-Alía, M.Á.; Schuster, B.; Nair, V.; Han, K.; O’Brien, A.; Tomatsidou, A.; Meyer, B.; Vignuzzi, M.; Missiakas, D.; Botten, J.W.; Brooke, C.B.; Lee, H.; Baker, S.C.; Mounce, B.C.; Heaton, N.S.; Severson, W.E.; Palmer, K.E.; Dickinson, B.C.; Joachimiak, A.; Randall, G.; Tay, S. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373(6557), 931-936.
[http://dx.doi.org/10.1126/science.abg5827] [PMID: 34285133]
[54]
Folch, J.; Petrov, D.; Ettcheto, M.; Pedrós, I.; Abad, S.; Beas-Zarate, C.; Lazarowski, A.; Marin, M.; Olloquequi, J.; Auladell, C.; Camins, A. Masitinib for the treatment of mild to moderate Alzheimer’s disease. Expert Rev. Neurother., 2015, 15(6), 587-596.
[http://dx.doi.org/10.1586/14737175.2015.1045419] [PMID: 25961655]
[55]
Zhang, L.; Jackson, C.B.; Mou, H.; Ojha, A.; Rangarajan, E.S.; Izard, T.; Farzan, M.; Choe, H. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv, 2020, 2020, 148726.
[http://dx.doi.org/10.1101/2020.06.12.148726]
[56]
Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; Hastie, K.M.; Parker, M.D.; Partridge, D.G.; Evans, C.M.; Freeman, T.M.; de Silva, T.I.; McDanal, C.; Perez, L.G.; Tang, H.; Moon-Walker, A.; Whelan, S.P.; LaBranche, C.C.; Saphire, E.O.; Montefiori, D.C.; Angyal, A.; Brown, R.L.; Carrilero, L.; Green, L.R.; Groves, D.C.; Johnson, K.J.; Keeley, A.J.; Lindsey, B.B.; Parsons, P.J.; Raza, M.; Rowland-Jones, S.; Smith, N.; Tucker, R.M.; Wang, D.; Wyles, M.D. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 2020, 182(4), 812-827.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.043] [PMID: 32697968]
[57]
Castonguay, N.; Zhang, W.; Langlois, M.A. Meta-analysis and structural dynamics of the emergence of genetic variants of SARS-CoV-2. Front. Microbiol., 2021, 12, 676314.
[http://dx.doi.org/10.3389/fmicb.2021.676314] [PMID: 34267735]
[58]
Scott, L.; Hsiao, N.; Moyo, S.; Singh, L.; Tegally, H.; Dor, G.; Maes, P.; Pybus, O.G.; Kraemer, M.U.G.; Semenova, E.; Bhatt, S.; Flaxman, S.; Faria, N.R.; de Oliveira, T. Track Omicron’s spread with molecular data. Science, 2021, 374(6574), 1454-1455.
[http://dx.doi.org/10.1126/science.abn4543] [PMID: 34882437]
[59]
Pulliam, J.R.C.; van Schalkwyk, C.; Govender, N.; von Gottberg, A.; Cohen, C.; Groome, M.J.; Dushoff, J.; Mlisana, K.; Moultrie, H. SARS-CoV-2 reinfection trends in South Africa: Analysis of routine surveillance data. MedRχiv, 2021, 2021, 21266068.
[http://dx.doi.org/10.1101/2021.11.11.21266068]
[60]
Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; Choga, W.T.; Colquhoun, R.; Davids, M.; Deforche, K.; Doolabh, D.; du Plessis, L.; Engelbrecht, S.; Everatt, J.; Giandhari, J.; Giovanetti, M.; Hardie, D.; Hill, V.; Hsiao, N.Y.; Iranzadeh, A.; Ismail, A.; Joseph, C.; Joseph, R.; Koopile, L.; Kosakovsky Pond, S.L.; Kraemer, M.U.G.; Kuate-Lere, L.; Laguda-Akingba, O.; Lesetedi-Mafoko, O.; Lessells, R.J.; Lockman, S.; Lucaci, A.G.; Maharaj, A.; Mahlangu, B.; Maponga, T.; Mahlakwane, K.; Makatini, Z.; Marais, G.; Maruapula, D.; Masupu, K.; Matshaba, M.; Mayaphi, S.; Mbhele, N.; Mbulawa, M.B.; Mendes, A.; Mlisana, K.; Mnguni, A.; Mohale, T.; Moir, M.; Moruisi, K.; Mosepele, M.; Motsatsi, G.; Motswaledi, M.S.; Mphoyakgosi, T.; Msomi, N.; Mwangi, P.N.; Naidoo, Y.; Ntuli, N.; Nyaga, M.; Olubayo, L.; Pillay, S.; Radibe, B.; Ramphal, Y.; Ramphal, U.; San, J.E.; Scott, L.; Shapiro, R.; Singh, L.; Smith-Lawrence, P.; Stevens, W.; Strydom, A.; Subramoney, K.; Tebeila, N.; Tshiabuila, D.; Tsui, J.; van Wyk, S.; Weaver, S.; Wibmer, C.K.; Wilkinson, E.; Wolter, N.; Zarebski, A.E.; Zuze, B.; Goedhals, D.; Preiser, W.; Treurnicht, F.; Venter, M.; Williamson, C.; Pybus, O.G.; Bhiman, J.; Glass, A.; Martin, D.P.; Rambaut, A.; Gaseitsiwe, S.; von Gottberg, A.; de Oliveira, T. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 2022, 603(7902), 679-686.
[http://dx.doi.org/10.1038/s41586-022-04411-y] [PMID: 35042229]
[61]
WHO. Update on Omicron. 2021. Available from: https://www.who.int/news/item/28-11-2021-update-on-omicron (Accessed on April 5th, 2022).
[62]
WHO. The effects of virus variants on COVID-19 vaccines. 2021. Available from: https://www.who.int/news-room/feature-stories/detail/the-effects-of-virus-variants-on-covid-19-vaccines (Accessed on: April 6th, 2022).
[63]
Simon-Loriere, E.; Schwartz, O. Towards SARS-CoV-2 serotypes? Nat. Rev. Microbiol., 2022, 20(4), 187-188.
[http://dx.doi.org/10.1038/s41579-022-00708-x] [PMID: 35181769]
[64]
Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics, 2018, 34(23), 4121-4123.
[http://dx.doi.org/10.1093/bioinformatics/bty407] [PMID: 29790939]
[65]
Nextrain. Nextclade: Analysis of viral genetic sequences. Available from: https://docs.nextstrain.org/projects/nextclade/en/latest/index.html (Accessed on: March 12th, 2022).
[66]
Nextrain. Clade assignment. Available from: https://docs.nextstrain.org/projects/nextclade/en/latest/user/algorithm/06-clade-assignment.html (Accessed on: March 12th, 2022).
[67]
Yu, J.; Collier, A.Y.; Rowe, M.; Mardas, F.; Ventura, J.D.; Wan, H.; Miller, J.; Powers, O.; Chung, B.; Siamatu, M.; Hachmann, N.P.; Surve, N.; Nampanya, F.; Chandrashekar, A.; Barouch, D.H. Comparable neutralization of the SARS-CoV-2 omicron BA.1 and BA.2 variants. N. Engl. J. Med., 2022, 386(16), 1579-1580.
[http://dx.doi.org/10.1056/NEJMc2201849]
[68]
WHO. Statement on Omicron sublineage BA.2 Available from: https://www.who.int/news/item/22-02-2022-statement-on-omicron-sublineage-ba.2 (Accessed on: March 12th, 2022).
[69]
SARS-CoV-2 variant classifications and definitions. 2022. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html#interest
[70]
WHO. Tracking SARS-CoV-2 variants. Tracking SARS-CoV-2 variants, 2022. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (Accessed on: April 6th, 2022).
[71]
Kupferschmidt, K. New coronavirus variants could cause more reinfections, require updated vaccines. Science Magazine, Available from: https://www.sciencemag.org/news/ 2021/01/new-coronavirus-variants-could-cause-more-reinfections-require-updated-vaccines (Accessed on: April 6th, 2022).
[http://dx.doi.org/10.1126/science.abg6028]
[72]
Sabino, E.C.; Buss, L.F.; Carvalho, M.P.S.; Prete, C.A., Jr; Crispim, M.A.E.; Fraiji, N.A.; Pereira, R.H.M.; Parag, K.V.; da Silva Peixoto, P.; Kraemer, M.U.G.; Oikawa, M.K.; Salomon, T.; Cucunuba, Z.M.; Castro, M.C.; de Souza Santos, A.A.; Nascimento, V.H.; Pereira, H.S.; Ferguson, N.M.; Pybus, O.G.; Kucharski, A.; Busch, M.P.; Dye, C.; Faria, N.R. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet, 2021, 397(10273), 452-455.
[http://dx.doi.org/10.1016/S0140-6736(21)00183-5] [PMID: 33515491]
[73]
Maslo, C.; Friedland, R.; Toubkin, M.; Laubscher, A.; Akaloo, T.; Kama, B. Characteristics and outcomes of hospitalized patients in South Africa during the COVID-19 omicron wave compared with previous waves. JAMA, 2022, 327(6), 583-584.
[http://dx.doi.org/10.1001/jama.2021.24868] [PMID: 34967859]
[74]
Hastie, K.M.; Li, H.; Bedinger, D.; Schendel, S.L.; Dennison, S.M.; Li, K.; Rayaprolu, V.; Yu, X.; Mann, C.; Zandonatti, M.; Diaz Avalos, R.; Zyla, D.; Buck, T.; Hui, S.; Shaffer, K.; Hariharan, C.; Yin, J.; Olmedillas, E.; Enriquez, A.; Parekh, D.; Abraha, M.; Feeney, E.; Horn, G.Q.; Aldon, Y.; Ali, H.; Aracic, S.; Cobb, R.R.; Federman, R.S.; Fernandez, J.M.; Glanville, J.; Green, R.; Grigoryan, G.; Lujan Hernandez, A.G.; Ho, D.D.; Huang, K.Y.A.; Ingraham, J.; Jiang, W.; Kellam, P.; Kim, C.; Kim, M.; Kim, H.M.; Kong, C.; Krebs, S.J.; Lan, F.; Lang, G.; Lee, S.; Leung, C.L.; Liu, J.; Lu, Y.; MacCamy, A.; McGuire, A.T.; Palser, A.L.; Rabbitts, T.H.; Rikhtegaran Tehrani, Z.; Sajadi, M.M.; Sanders, R.W.; Sato, A.K.; Schweizer, L.; Seo, J.; Shen, B.; Snitselaar, J.L.; Stamatatos, L.; Tan, Y.; Tomic, M.T.; van Gils, M.J.; Youssef, S.; Yu, J.; Yuan, T.Z.; Zhang, Q.; Peters, B.; Tomaras, G.D.; Germann, T.; Saphire, E.O. Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science, 2021, 374(6566), 472-478.
[http://dx.doi.org/10.1126/science.abh2315] [PMID: 34554826]
[75]
Darif, D.; Hammi, I.; Kihel, A.; El Idrissi Saik, I.; Guessous, F.; Akarid, K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microb. Pathog., 2021, 153, 104799.
[http://dx.doi.org/10.1016/j.micpath.2021.104799] [PMID: 33609650]
[76]
Morgan, B.P. Complement in the pathogenesis of Alzheimer’s disease. Semin. Immunopathol., 2018, 40(1), 113-124.
[http://dx.doi.org/10.1007/s00281-017-0662-9] [PMID: 29134267]
[77]
Veerhuis, R. Histological and direct evidence for the role of complement in the neuroinflammation of AD. Curr. Alzheimer Res., 2011, 8(1), 34-58.
[http://dx.doi.org/10.2174/156720511794604589] [PMID: 21143154]
[78]
Györffy, B.A.; Tóth, V.; Török, G.; Gulyássy, P.; Kovács, R.Á.; Vadászi, H.; Micsonai, A.; Tóth, M.E.; Sántha, M.; Homolya, L.; Drahos, L.; Juhász, G.; Kékesi, K.A.; Kardos, J. Synaptic mitochondrial dysfunction and septin accumulation are linked to complement-mediated synapse loss in an Alzheimer’s disease animal model. Cell. Mol. Life Sci., 2020, 77(24), 5243-5258.
[http://dx.doi.org/10.1007/s00018-020-03468-0] [PMID: 32034429]
[79]
Lazarowski, A. Possible use of Eculizumab in critically III patients infected with Covid-19 role of complement C5, neutrophils, and NETs in the induction DIC, sepsis, and MOF. Front. Clin. Drug Res.-Hematol., 2022, 5, 168-191.
[http://dx.doi.org/10.2174/9789815039535122050008]
[80]
Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents, 2020, 34(2), 327-331.
[http://dx.doi.org/10.23812/CONTI-E] [PMID: 32171193]
[81]
Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol., 2020, 146(1), 128-136.e4.
[http://dx.doi.org/10.1016/j.jaci.2020.05.008] [PMID: 32425269]
[82]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[83]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic manifestations of hospitalized patients with Coronavirus disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[84]
Vaninov, N. In the eye of the COVID-19 cytokine storm. Nat. Rev. Immunol., 2020, 20(5), 277.
[http://dx.doi.org/10.1038/s41577-020-0305-6] [PMID: 32249847]
[85]
Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; Wang, C.; Zhao, J.; Sun, X.; Tian, R.; Wu, W.; Wu, D.; Ma, J.; Chen, Y.; Zhang, D.; Xie, J.; Yan, X.; Zhou, X.; Liu, Z.; Wang, J.; Du, B.; Qin, Y.; Gao, P.; Qin, X.; Xu, Y.; Zhang, W.; Li, T.; Zhang, F.; Zhao, Y.; Li, Y.; Zhang, S. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N. Engl. J. Med., 2020, 382(17), e38.
[http://dx.doi.org/10.1056/NEJMc2007575] [PMID: 32268022]
[86]
Schett, G.; Sticherling, M.; Neurath, M.F. COVID-19: Risk for cytokine targeting in chronic inflammatory diseases? Nat. Rev. Immunol., 2020, 20(5), 271-272.
[http://dx.doi.org/10.1038/s41577-020-0312-7] [PMID: 32296135]
[87]
Lundström, A.; Ziegler, L.; Havervall, S.; Rudberg, A.S.; Meijenfeldt, F.; Lisman, T.; Mackman, N.; Sandén, P.; Thålin, C. Soluble angiotensin-converting enzyme 2 is transiently elevated in COVID-19 and correlates with specific inflammatory and endothelial markers. J. Med. Virol., 2021, 93(10), 5908-5916.
[http://dx.doi.org/10.1002/jmv.27144] [PMID: 34138483]
[88]
Farrer, L.A.; Sherbatich, T.; Keryanov, S.A.; Korovaitseva, G.I.; Rogaeva, E.A.; Petruk, S.; Premkumar, S.; Moliaka, Y.; Song, Y.Q.; Pei, Y.; Sato, C.; Selezneva, N.D.; Voskresenskaya, S.; Golimbet, V.; Sorbi, S.; Duara, R.; Gavrilova, S.; St George-Hyslop, P.H.; Rogaev, E.I. Association between angiotensin-converting enzyme and Alzheimer disease. Arch. Neurol., 2000, 57(2), 210-214.
[http://dx.doi.org/10.1001/archneur.57.2.210] [PMID: 10681079]
[89]
Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; Bellenguez, C.; Frizatti, A.; Chouraki, V.; Martin, E.R.; Sleegers, K.; Badarinarayan, N.; Jakobsdottir, J.; Hamilton-Nelson, K.L.; Moreno-Grau, S.; Olaso, R.; Raybould, R.; Chen, Y.; Kuzma, A.B.; Hiltunen, M.; Morgan, T.; Ahmad, S.; Vardarajan, B.N.; Epelbaum, J.; Hoffmann, P.; Boada, M.; Beecham, G.W.; Garnier, J.G.; Harold, D.; Fitzpatrick, A.L.; Valladares, O.; Moutet, M.L.; Gerrish, A.; Smith, A.V.; Qu, L.; Bacq, D.; Denning, N.; Jian, X.; Zhao, Y.; Del Zompo, M.; Fox, N.C.; Choi, S.H.; Mateo, I.; Hughes, J.T.; Adams, H.H.; Malamon, J.; Sanchez-Garcia, F.; Patel, Y.; Brody, J.A.; Dombroski, B.A.; Naranjo, M.C.D.; Daniilidou, M.; Eiriksdottir, G.; Mukherjee, S.; Wallon, D.; Uphill, J.; Aspelund, T.; Cantwell, L.B.; Garzia, F.; Galimberti, D.; Hofer, E.; Butkiewicz, M.; Fin, B.; Scarpini, E.; Sarnowski, C.; Bush, W.S.; Meslage, S.; Kornhuber, J.; White, C.C.; Song, Y.; Barber, R.C.; Engelborghs, S.; Sordon, S.; Voijnovic, D.; Adams, P.M.; Vandenberghe, R.; Mayhaus, M.; Cupples, L.A.; Albert, M.S.; De Deyn, P.P.; Gu, W.; Himali, J.J.; Beekly, D.; Squassina, A.; Hartmann, A.M.; Orellana, A.; Blacker, D.; Rodriguez-Rodriguez, E.; Lovestone, S.; Garcia, M.E.; Doody, R.S.; Munoz-Fernadez, C.; Sussams, R.; Lin, H.; Fairchild, T.J.; Benito, Y.A.; Holmes, C.; Karamujić-Čomić, H.; Frosch, M.P.; Thonberg, H.; Maier, W.; Roshchupkin, G.; Ghetti, B.; Giedraitis, V.; Kawalia, A.; Li, S.; Huebinger, R.M.; Kilander, L.; Moebus, S.; Hernández, I.; Kamboh, M.I.; Brundin, R.; Turton, J.; Yang, Q.; Katz, M.J.; Concari, L.; Lord, J.; Beiser, A.S.; Keene, C.D.; Helisalmi, S.; Kloszewska, I.; Kukull, W.A.; Koivisto, A.M.; Lynch, A.; Tarraga, L.; Larson, E.B.; Haapasalo, A.; Lawlor, B.; Mosley, T.H.; Lipton, R.B.; Solfrizzi, V.; Gill, M.; Longstreth, W.T., Jr; Montine, T.J.; Frisardi, V.; Diez-Fairen, M.; Rivadeneira, F.; Petersen, R.C.; Deramecourt, V.; Alvarez, I.; Salani, F.; Ciaramella, A.; Boerwinkle, E.; Reiman, E.M.; Fievet, N.; Rotter, J.I.; Reisch, J.S.; Hanon, O.; Cupidi, C.; Andre Uitterlinden, A.G.; Royall, D.R.; Dufouil, C.; Maletta, R.G.; de Rojas, I.; Sano, M.; Brice, A.; Cecchetti, R.; George-Hyslop, P.S.; Ritchie, K.; Tsolaki, M.; Tsuang, D.W.; Dubois, B.; Craig, D.; Wu, C.K.; Soininen, H.; Avramidou, D.; Albin, R.L.; Fratiglioni, L.; Germanou, A.; Apostolova, L.G.; Keller, L.; Koutroumani, M.; Arnold, S.E.; Panza, F.; Gkatzima, O.; Asthana, S.; Hannequin, D.; Whitehead, P.; Atwood, C.S.; Caffarra, P.; Hampel, H.; Quintela, I.; Carracedo, Á.; Lannfelt, L.; Rubinsztein, D.C.; Barnes, L.L.; Pasquier, F.; Frölich, L.; Barral, S.; McGuinness, B.; Beach, T.G.; Johnston, J.A.; Becker, J.T.; Passmore, P.; Bigio, E.H.; Schott, J.M.; Bird, T.D.; Warren, J.D.; Boeve, B.F.; Lupton, M.K.; Bowen, J.D.; Proitsi, P.; Boxer, A.; Powell, J.F.; Burke, J.R.; Kauwe, J.S.K.; Burns, J.M.; Mancuso, M.; Buxbaum, J.D.; Bonuccelli, U.; Cairns, N.J.; McQuillin, A.; Cao, C.; Livingston, G.; Carlson, C.S.; Bass, N.J.; Carlsson, C.M.; Hardy, J.; Carney, R.M.; Bras, J.; Carrasquillo, M.M.; Guerreiro, R.; Allen, M.; Chui, H.C.; Fisher, E.; Masullo, C.; Crocco, E.A.; DeCarli, C.; Bisceglio, G.; Dick, M.; Ma, L.; Duara, R.; Graff-Radford, N.R.; Evans, D.A.; Hodges, A.; Faber, K.M.; Scherer, M.; Fallon, K.B.; Riemenschneider, M.; Fardo, D.W.; Heun, R.; Farlow, M.R.; Kölsch, H.; Ferris, S.; Leber, M.; Foroud, T.M.; Heuser, I.; Galasko, D.R.; Giegling, I.; Gearing, M.; Hüll, M.; Geschwind, D.H.; Gilbert, J.R.; Morris, J.; Green, R.C.; Mayo, K.; Growdon, J.H.; Feulner, T.; Hamilton, R.L.; Harrell, L.E.; Drichel, D.; Honig, L.S.; Cushion, T.D.; Huentelman, M.J.; Hollingworth, P.; Hulette, C.M.; Hyman, B.T.; Marshall, R.; Jarvik, G.P.; Meggy, A.; Abner, E.; Menzies, G.E.; Jin, L.W.; Leonenko, G.; Real, L.M.; Jun, G.R.; Baldwin, C.T.; Grozeva, D.; Karydas, A.; Russo, G.; Kaye, J.A.; Kim, R.; Jessen, F.; Kowall, N.W.; Vellas, B.; Kramer, J.H.; Vardy, E.; LaFerla, F.M.; Jöckel, K.H.; Lah, J.J.; Dichgans, M.; Leverenz, J.B.; Mann, D.; Levey, A.I.; Pickering-Brown, S.; Lieberman, A.P.; Klopp, N.; Lunetta, K.L.; Wichmann, H.E.; Lyketsos, C.G.; Morgan, K.; Marson, D.C.; Brown, K.; Martiniuk, F.; Medway, C.; Mash, D.C.; Nöthen, M.M.; Masliah, E.; Hooper, N.M.; McCormick, W.C.; Daniele, A.; McCurry, S.M.; Bayer, A.; McDavid, A.N.; Gallacher, J.; McKee, A.C.; van den Bussche, H.; Mesulam, M.; Brayne, C.; Miller, B.L.; Riedel-Heller, S.; Miller, C.A.; Miller, J.W.; Al-Chalabi, A.; Morris, J.C.; Shaw, C.E.; Myers, A.J.; Wiltfang, J.; O’Bryant, S.; Olichney, J.M.; Alvarez, V.; Parisi, J.E.; Singleton, A.B.; Paulson, H.L.; Collinge, J.; Perry, W.R.; Mead, S.; Peskind, E.; Cribbs, D.H.; Rossor, M.; Pierce, A.; Ryan, N.S.; Poon, W.W.; Nacmias, B.; Potter, H.; Sorbi, S.; Quinn, J.F.; Sacchinelli, E.; Raj, A.; Spalletta, G.; Raskind, M.; Caltagirone, C.; Bossù, P.; Orfei, M.D.; Reisberg, B.; Clarke, R.; Reitz, C.; Smith, A.D.; Ringman, J.M.; Warden, D.; Roberson, E.D.; Wilcock, G.; Rogaeva, E.; Bruni, A.C.; Rosen, H.J.; Gallo, M.; Rosenberg, R.N.; Ben-Shlomo, Y.; Sager, M.A.; Mecocci, P.; Saykin, A.J.; Pastor, P.; Cuccaro, M.L.; Vance, J.M.; Schneider, J.A.; Schneider, L.S.; Slifer, S.; Seeley, W.W.; Smith, A.G.; Sonnen, J.A.; Spina, S.; Stern, R.A.; Swerdlow, R.H.; Tang, M.; Tanzi, R.E.; Trojanowski, J.Q.; Troncoso, J.C.; Van Deerlin, V.M.; Van Eldik, L.J.; Vinters, H.V.; Vonsattel, J.P.; Weintraub, S.; Welsh-Bohmer, K.A.; Wilhelmsen, K.C.; Williamson, J.; Wingo, T.S.; Woltjer, R.L.; Wright, C.B.; Yu, C.E.; Yu, L.; Saba, Y.; Pilotto, A.; Bullido, M.J.; Peters, O.; Crane, P.K.; Bennett, D.; Bosco, P.; Coto, E.; Boccardi, V.; De Jager, P.L.; Lleo, A.; Warner, N.; Lopez, O.L.; Ingelsson, M.; Deloukas, P.; Cruchaga, C.; Graff, C.; Gwilliam, R.; Fornage, M.; Goate, A.M.; Sanchez-Juan, P.; Kehoe, P.G.; Amin, N.; Ertekin-Taner, N.; Berr, C.; Debette, S.; Love, S.; Launer, L.J.; Younkin, S.G.; Dartigues, J.F.; Corcoran, C.; Ikram, M.A.; Dickson, D.W.; Nicolas, G.; Campion, D.; Tschanz, J.; Schmidt, H.; Hakonarson, H.; Clarimon, J.; Munger, R.; Schmidt, R.; Farrer, L.A.; Van Broeckhoven, C.; C O’Donovan, M.; DeStefano, A.L.; Jones, L.; Haines, J.L.; Deleuze, J.F.; Owen, M.J.; Gudnason, V.; Mayeux, R.; Escott-Price, V.; Psaty, B.M.; Ramirez, A.; Wang, L.S.; Ruiz, A.; van Duijn, C.M.; Holmans, P.A.; Seshadri, S.; Williams, J.; Amouyel, P.; Schellenberg, G.D.; Lambert, J.C.; Pericak-Vance, M.A. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet., 2019, 51(3), 414-430.
[http://dx.doi.org/10.1038/s41588-019-0358-2] [PMID: 30820047]
[90]
Haghighi, M.M.; Kakhki, E.G.; Sato, C.; Ghani, M.; Rogaeva, E. The intersection between COVID-19, the gene family of ACE2 and Alzheimer’s disease. Neurosci. Insights, 2020, 15, 2633105520975743.
[http://dx.doi.org/10.1177/2633105520975743] [PMID: 33283188]
[91]
Almutlaq, M.; Alamro, A.A.; Alroqi, F.; Barhoumi, T. Classical and counter-regulatory renin-angiotensin system: Potential key roles in COVID-19 pathophysiology. CJC Open, 2021, 3(8), 1060-1074.
[http://dx.doi.org/10.1016/j.cjco.2021.04.004] [PMID: 33875979]
[92]
Divani, A.A.; Andalib, S.; Di Napoli, M.; Lattanzi, S.; Hussain, M.S.; Biller, J.; McCullough, L.D.; Azarpazhooh, M.R.; Seletska, A.; Mayer, S.A.; Torbey, M. Coronavirus disease 2019 and stroke: Clinical manifestations and pathophysiological insights. J. Stroke Cerebrovasc. Dis., 2020, 29(8), 104941.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941] [PMID: 32689643]
[93]
Zhao, Y.; Shang, Y.; Song, W.; Li, Q.; Xie, H.; Xu, Q.; Jia, J.; Li, L.; Mao, H.; Zhou, X.; Luo, H.; Gao, Y.; Xu, A. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClin. Med., 2020, 25, 100463.
[http://dx.doi.org/10.1016/j.eclinm.2020.100463] [PMID: 32838236]
[94]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[95]
Wang, Q.; Davis, P.B.; Gurney, M.E.; Xu, R. COVID-19 and dementia: Analyses of risk, disparity, and outcomes from electronic health records in the US. Alzheimers Dement., 2021, 17(8), 1297-1306.
[http://dx.doi.org/10.1002/alz.12296] [PMID: 33559975]
[96]
Li, J.; Long, X.; Huang, H.; Tang, J.; Zhu, C.; Hu, S.; Wu, J.; Li, J.; Lin, Z.; Xiong, N. Resilience of Alzheimer’s disease to COVID-19. J. Alzheimers Dis., 2020, 77(1), 67-73.
[http://dx.doi.org/10.3233/JAD-200649] [PMID: 32804094]
[97]
Isaia, G.; Marinello, R.; Tibaldi, V.; Tamone, C.; Bo, M. Atypical presentation of COVID-19 in an older adult with severe Alzheimer disease. Am. J. Geriatr. Psychiatry, 2020, 28(7), 790-791.
[http://dx.doi.org/10.1016/j.jagp.2020.04.018] [PMID: 32381283]
[98]
Cosarderelioglu, C.; Nidadavolu, L.S.; George, C.J.; Oh, E.S.; Bennett, D.A.; Walston, J.D.; Abadir, P.M. Brain renin-angiotensin system at the intersect of physical and cognitive frailty. Front. Neurosci., 2020, 14, 586314.
[http://dx.doi.org/10.3389/fnins.2020.586314] [PMID: 33117127]
[99]
Kehoe, P.G.; Wong, S.; AL Mulhim, N.; Palmer, L.E.; Miners, J.S. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-β and tau pathology. Alzheimers Res. Ther., 2016, 8(1), 50.
[http://dx.doi.org/10.1186/s13195-016-0217-7] [PMID: 27884212]
[100]
Kehoe, P.G.; Al Mulhim, N.; Zetterberg, H.; Blennow, K.; Miners, J.S. Cerebrospinal fluid changes in the renin-angiotensin system in Alzheimer’s disease. J. Alzheimers Dis., 2019, 72(2), 525-535.
[http://dx.doi.org/10.3233/JAD-190721] [PMID: 31594235]
[101]
Bianchetti, A.; Rozzini, R.; Guerini, F.; Boffelli, S.; Ranieri, P.; Minelli, G.; Bianchetti, L.; Trabucchi, M. Clinical presentation of COVID19 in dementia patients. J. Nutr. Health Aging, 2020, 24(6), 560-562.
[http://dx.doi.org/10.1007/s12603-020-1389-1] [PMID: 32510106]
[102]
Medoro, A.; Bartollino, S.; Mignogna, D.; Marziliano, N.; Porcile, C.; Nizzari, M.; Florio, T.; Pagano, A.; Raimo, G.; Intrieri, M.; Russo, C. Proteases upregulation in sporadic Alzheimer’s disease brain. J. Alzheimers Dis., 2019, 68(3), 931-938.
[http://dx.doi.org/10.3233/JAD-181284] [PMID: 30814362]
[103]
Lanfranco, M.F.; Ng, C.A.; Rebeck, G.W. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(17), 6336.
[http://dx.doi.org/10.3390/ijms21176336] [PMID: 32882843]
[104]
Wang, H.; Eckel, R.H. What are lipoproteins doing in the brain? Trends Endocrinol. Metab., 2014, 25(1), 8-14.
[http://dx.doi.org/10.1016/j.tem.2013.10.003] [PMID: 24189266]
[105]
Flowers, S.A.; Rebeck, G.W. APOE in the normal brain. Neurobiol. Dis., 2020, 136, 104724.
[http://dx.doi.org/10.1016/j.nbd.2019.104724] [PMID: 31911114]
[106]
Xu, P.T.; Gilbert, J.R.; Qiu, H.L.; Ervin, J.; Rothrock-Christian, T.R.; Hulette, C.; Schmechel, D.E. Specific regional transcription of apolipoprotein E in human brain neurons. Am. J. Pathol., 1999, 154(2), 601-611.
[http://dx.doi.org/10.1016/S0002-9440(10)65305-9] [PMID: 10027417]
[107]
Xu, Q.; Bernardo, A.; Walker, D.; Kanegawa, T.; Mahley, R.W.; Huang, Y. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci., 2006, 26(19), 4985-4994.
[http://dx.doi.org/10.1523/JNEUROSCI.5476-05.2006] [PMID: 16687490]
[108]
Wang, C.; Najm, R.; Xu, Q.; Jeong, D.; Walker, D.; Balestra, M.E.; Yoon, S.Y.; Yuan, H.; Li, G.; Miller, Z.A.; Miller, B.L.; Malloy, M.J.; Huang, Y. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med., 2018, 24(5), 647-657.
[http://dx.doi.org/10.1038/s41591-018-0004-z] [PMID: 29632371]
[109]
Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[110]
Drouet, B.; Fifre, A.; Pinçon-Raymond, M.; Vandekerckhove, J.; Rosseneu, M.; Guéant, J.L.; Chambaz, J.; Pillot, T. ApoE protects cortical neurones against neurotoxicity induced by the non-fibrillar C-terminal domain of the amyloid-beta peptide. J. Neurochem., 2001, 76(1), 117-127.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00047.x] [PMID: 11145984]
[111]
Polazzi, E.; Mengoni, I.; Peña-Altamira, E.; Massenzio, F.; Virgili, M.; Petralla, S.; Monti, B. Neuronal regulation of neuroprotective microglial Apolipoprotein E secretion in rat in vitro models of brain pathophysiology. J. Neuropathol. Exp. Neurol., 2015, 74(8), 818-834.
[http://dx.doi.org/10.1097/NEN.0000000000000222] [PMID: 26185969]
[112]
Shi, Y.; Manis, M.; Long, J.; Wang, K.; Sullivan, P.M.; Remolina Serrano, J.; Hoyle, R.; Holtzman, D.M. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J. Exp. Med., 2019, 216(11), 2546-2561.
[http://dx.doi.org/10.1084/jem.20190980] [PMID: 31601677]
[113]
Fernandez, C.G.; Hamby, M.E.; McReynolds, M.L.; Ray, W.J. The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease. Front. Aging Neurosci., 2019, 11, 14.
[http://dx.doi.org/10.3389/fnagi.2019.00014] [PMID: 30804776]
[114]
Abondio, P.; Sazzini, M.; Garagnani, P.; Boattini, A.; Monti, D.; Franceschi, C.; Luiselli, D.; Giuliani, C. The genetic variability of APOE in different human populations and its implications for longevity. Genes (Basel), 2019, 10(3), 222.
[http://dx.doi.org/10.3390/genes10030222] [PMID: 30884759]
[115]
Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; Gabriel, S.B.; Gibbs, R.A.; Green, E.D.; Hurles, M.E.; Knoppers, B.M.; Korbel, J.O.; Lander, E.S.; Lee, C.; Lehrach, H.; Mardis, E.R.; Marth, G.T.; McVean, G.A.; Nickerson, D.A.; Schmidt, J.P.; Sherry, S.T.; Wang, J.; Wilson, R.K.; Gibbs, R.A.; Boerwinkle, E.; Doddapaneni, H.; Han, Y.; Korchina, V.; Kovar, C.; Lee, S.; Muzny, D.; Reid, J.G.; Zhu, Y.; Wang, J.; Chang, Y.; Feng, Q.; Fang, X.; Guo, X.; Jian, M.; Jiang, H.; Jin, X.; Lan, T.; Li, G.; Li, J.; Li, Y.; Liu, S.; Liu, X.; Lu, Y.; Ma, X.; Tang, M.; Wang, B.; Wang, G.; Wu, H.; Wu, R.; Xu, X.; Yin, Y.; Zhang, D.; Zhang, W.; Zhao, J.; Zhao, M.; Zheng, X.; Lander, E.S.; Altshuler, D.M.; Gabriel, S.B.; Gupta, N.; Gharani, N.; Toji, L.H.; Gerry, N.P.; Resch, A.M.; Flicek, P.; Barker, J.; Clarke, L.; Gil, L.; Hunt, S.E.; Kelman, G.; Kulesha, E.; Leinonen, R.; McLaren, W.M.; Radhakrishnan, R.; Roa, A.; Smirnov, D.; Smith, R.E.; Streeter, I.; Thormann, A.; Toneva, I.; Vaughan, B.; Zheng-Bradley, X.; Bentley, D.R.; Grocock, R.; Humphray, S.; James, T.; Kingsbury, Z.; Lehrach, H.; Sudbrak, R.; Albrecht, M.W.; Amstislavskiy, V.S.; Borodina, T.A.; Lienhard, M.; Mertes, F.; Sultan, M.; Timmermann, B.; Yaspo, M-L.; Mardis, E.R.; Wilson, R.K.; Fulton, L.; Fulton, R.; Sherry, S.T.; Ananiev, V.; Belaia, Z.; Beloslyudtsev, D.; Bouk, N.; Chen, C.; Church, D.; Cohen, R.; Cook, C.; Garner, J.; Hefferon, T.; Kimelman, M.; Liu, C.; Lopez, J.; Meric, P.; O’Sullivan, C.; Ostapchuk, Y.; Phan, L.; Ponomarov, S.; Schneider, V.; Shekhtman, E.; Sirotkin, K.; Slotta, D.; Zhang, H.; McVean, G.A.; Durbin, R.M.; Balasubramaniam, S.; Burton, J.; Danecek, P.; Keane, T.M.; Kolb-Kokocinski, A.; McCarthy, S.; Stalker, J.; Quail, M.; Schmidt, J.P.; Davies, C.J.; Gollub, J.; Webster, T.; Wong, B.; Zhan, Y.; Auton, A.; Campbell, C.L.; Kong, Y.; Marcketta, A.; Gibbs, R.A.; Yu, F.; Antunes, L.; Bainbridge, M.; Muzny, D.; Sabo, A.; Huang, Z.; Wang, J.; Coin, L.J.M.; Fang, L.; Guo, X.; Jin, X.; Li, G.; Li, Q.; Li, Y.; Li, Z.; Lin, H.; Liu, B.; Luo, R.; Shao, H.; Xie, Y.; Ye, C.; Yu, C.; Zhang, F.; Zheng, H.; Zhu, H.; Alkan, C.; Dal, E.; Kahveci, F.; Marth, G.T.; Garrison, E.P.; Kural, D.; Lee, W-P.; Fung Leong, W.; Stromberg, M.; Ward, A.N.; Wu, J.; Zhang, M.; Daly, M.J.; DePristo, M.A.; Handsaker, R.E.; Altshuler, D.M.; Banks, E.; Bhatia, G.; del Angel, G.; Gabriel, S.B.; Genovese, G.; Gupta, N.; Li, H.; Kashin, S.; Lander, E.S.; McCarroll, S.A.; Nemesh, J.C.; Poplin, R.E.; Yoon, S.C.; Lihm, J.; Makarov, V.; Clark, A.G.; Gottipati, S.; Keinan, A.; Rodriguez-Flores, J.L.; Korbel, J.O.; Rausch, T.; Fritz, M.H.; Stütz, A.M.; Flicek, P.; Beal, K.; Clarke, L.; Datta, A.; Herrero, J.; McLaren, W.M.; Ritchie, G.R.S.; Smith, R.E.; Zerbino, D.; Zheng-Bradley, X.; Sabeti, P.C.; Shlyakhter, I.; Schaffner, S.F.; Vitti, J.; Cooper, D.N.; Ball, E.V.; Stenson, P.D.; Bentley, D.R.; Barnes, B.; Bauer, M.; Keira Cheetham, R.; Cox, A.; Eberle, M.; Humphray, S.; Kahn, S.; Murray, L.; Peden, J.; Shaw, R.; Kenny, E.E.; Batzer, M.A.; Konkel, M.K.; Walker, J.A.; MacArthur, D.G.; Lek, M.; Sudbrak, R.; Amstislavskiy, V.S.; Herwig, R.; Mardis, E.R.; Ding, L.; Koboldt, D.C.; Larson, D.; Ye, K.; Gravel, S.; Swaroop, A.; Chew, E.; Lappalainen, T.; Erlich, Y.; Gymrek, M.; Frederick Willems, T.; Simpson, J.T.; Shriver, M.D.; Rosenfeld, J.A.; Bustamante, C.D.; Montgomery, S.B.; De La Vega, F.M.; Byrnes, J.K.; Carroll, A.W.; DeGorter, M.K.; Lacroute, P.; Maples, B.K.; Martin, A.R.; Moreno-Estrada, A.; Shringarpure, S.S.; Zakharia, F.; Halperin, E.; Baran, Y.; Lee, C.; Cerveira, E.; Hwang, J.; Malhotra, A.; Plewczynski, D.; Radew, K.; Romanovitch, M.; Zhang, C.; Hyland, F.C.L.; Craig, D.W.; Christoforides, A.; Homer, N.; Izatt, T.; Kurdoglu, A.A.; Sinari, S.A.; Squire, K.; Sherry, S.T.; Xiao, C.; Sebat, J.; Antaki, D.; Gujral, M.; Noor, A.; Ye, K.; Burchard, E.G.; Hernandez, R.D.; Gignoux, C.R.; Haussler, D.; Katzman, S.J.; James Kent, W.; Howie, B.; Ruiz-Linares, A.; Dermitzakis, E.T.; Devine, S.E.; Abecasis, G.R.; Min Kang, H.; Kidd, J.M.; Blackwell, T.; Caron, S.; Chen, W.; Emery, S.; Fritsche, L.; Fuchsberger, C.; Jun, G.; Li, B.; Lyons, R.; Scheller, C.; Sidore, C.; Song, S.; Sliwerska, E.; Taliun, D.; Tan, A.; Welch, R.; Kate Wing, M.; Zhan, X.; Awadalla, P.; Hodgkinson, A.; Li, Y.; Shi, X.; Quitadamo, A.; Lunter, G.; McVean, G.A.; Marchini, J.L.; Myers, S.; Churchhouse, C.; Delaneau, O.; Gupta-Hinch, A.; Kretzschmar, W.; Iqbal, Z.; Mathieson, I.; Menelaou, A.; Rimmer, A.; Xifara, D.K.; Oleksyk, T.K.; Fu, Y.; Liu, X.; Xiong, M.; Jorde, L.; Witherspoon, D.; Xing, J.; Eichler, E.E.; Browning, B.L.; Browning, S.R.; Hormozdiari, F.; Sudmant, P.H.; Khurana, E.; Durbin, R.M.; Hurles, M.E.; Tyler-Smith, C.; Albers, C.A.; Ayub, Q.; Balasubramaniam, S.; Chen, Y.; Colonna, V.; Danecek, P.; Jostins, L.; Keane, T.M.; McCarthy, S.; Walter, K.; Xue, Y.; Gerstein, M.B.; Abyzov, A.; Balasubramanian, S.; Chen, J.; Clarke, D.; Fu, Y.; Harmanci, A.O.; Jin, M.; Lee, D.; Liu, J.; Jasmine Mu, X.; Zhang, J.; Zhang, Y.; Li, Y.; Luo, R.; Zhu, H.; Alkan, C.; Dal, E.; Kahveci, F.; Marth, G.T.; Garrison, E.P.; Kural, D.; Lee, W-P.; Ward, A.N.; Wu, J.; Zhang, M.; McCarroll, S.A.; Handsaker, R.E.; Altshuler, D.M.; Banks, E.; del Angel, G.; Genovese, G.; Hartl, C.; Li, H.; Kashin, S.; Nemesh, J.C.; Shakir, K.; Yoon, S.C.; Lihm, J.; Makarov, V.; Degenhardt, J.; Korbel, J.O.; Fritz, M.H.; Meiers, S.; Raeder, B.; Rausch, T.; Stütz, A.M.; Flicek, P.; Paolo Casale, F.; Clarke, L.; Smith, R.E.; Stegle, O.; Zheng-Bradley, X.; Bentley, D.R.; Barnes, B.; Keira Cheetham, R.; Eberle, M.; Humphray, S.; Kahn, S.; Murray, L.; Shaw, R.; Lameijer, E-W.; Batzer, M.A.; Konkel, M.K.; Walker, J.A.; Ding, L.; Hall, I.; Ye, K.; Lacroute, P.; Lee, C.; Cerveira, E.; Malhotra, A.; Hwang, J.; Plewczynski, D.; Radew, K.; Romanovitch, M.; Zhang, C.; Craig, D.W.; Homer, N.; Church, D.; Xiao, C.; Sebat, J.; Antaki, D.; Bafna, V.; Michaelson, J.; Ye, K.; Devine, S.E.; Gardner, E.J.; Abecasis, G.R.; Kidd, J.M.; Mills, R.E.; Dayama, G.; Emery, S.; Jun, G.; Shi, X.; Quitadamo, A.; Lunter, G.; McVean, G.A.; Chen, K.; Fan, X.; Chong, Z.; Chen, T.; Witherspoon, D.; Xing, J.; Eichler, E.E.; Chaisson, M.J.; Hormozdiari, F.; Huddleston, J.; Malig, M.; Nelson, B.J.; Sudmant, P.H.; Parrish, N.F.; Khurana, E.; Hurles, M.E.; Blackburne, B.; Lindsay, S.J.; Ning, Z.; Walter, K.; Zhang, Y.; Gerstein, M.B.; Abyzov, A.; Chen, J.; Clarke, D.; Lam, H.; Jasmine Mu, X.; Sisu, C.; Zhang, J.; Zhang, Y.; Gibbs, R.A.; Yu, F.; Bainbridge, M.; Challis, D.; Evani, U.S.; Kovar, C.; Lu, J.; Muzny, D.; Nagaswamy, U.; Reid, J.G.; Sabo, A.; Yu, J.; Guo, X.; Li, W.; Li, Y.; Wu, R.; Marth, G.T.; Garrison, E.P.; Fung Leong, W.; Ward, A.N.; del Angel, G.; DePristo, M.A.; Gabriel, S.B.; Gupta, N.; Hartl, C.; Poplin, R.E.; Clark, A.G.; Rodriguez-Flores, J.L.; Flicek, P.; Clarke, L.; Smith, R.E.; Zheng-Bradley, X.; MacArthur, D.G.; Mardis, E.R.; Fulton, R.; Koboldt, D.C.; Gravel, S.; Bustamante, C.D.; Craig, D.W.; Christoforides, A.; Homer, N.; Izatt, T.; Sherry, S.T.; Xiao, C.; Dermitzakis, E.T.; Abecasis, G.R.; Min Kang, H.; McVean, G.A.; Gerstein, M.B.; Balasubramanian, S.; Habegger, L.; Yu, H.; Flicek, P.; Clarke, L.; Cunningham, F.; Dunham, I.; Zerbino, D.; Zheng-Bradley, X.; Lage, K.; Berg Jespersen, J.; Horn, H.; Montgomery, S.B.; DeGorter, M.K.; Khurana, E.; Tyler-Smith, C.; Chen, Y.; Colonna, V.; Xue, Y.; Gerstein, M.B.; Balasubramanian, S.; Fu, Y.; Kim, D.; Auton, A.; Marcketta, A.; Desalle, R.; Narechania, A.; Wilson Sayres, M.A.; Garrison, E.P.; Handsaker, R.E.; Kashin, S.; McCarroll, S.A.; Rodriguez-Flores, J.L.; Flicek, P.; Clarke, L.; Zheng-Bradley, X.; Erlich, Y.; Gymrek, M.; Frederick Willems, T.; Bustamante, C.D.; Mendez, F.L.; David Poznik, G.; Underhill, P.A.; Lee, C.; Cerveira, E.; Malhotra, A.; Romanovitch, M.; Zhang, C.; Abecasis, G.R.; Coin, L.; Shao, H.; Mittelman, D.; Tyler-Smith, C.; Ayub, Q.; Banerjee, R.; Cerezo, M.; Chen, Y.; Fitzgerald, T.W.; Louzada, S.; Massaia, A.; McCarthy, S.; Ritchie, G.R.; Xue, Y.; Yang, F.; Gibbs, R.A.; Kovar, C.; Kalra, D.; Hale, W.; Muzny, D.; Reid, J.G.; Wang, J.; Dan, X.; Guo, X.; Li, G.; Li, Y.; Ye, C.; Zheng, X.; Altshuler, D.M.; Flicek, P.; Clarke, L.; Zheng-Bradley, X.; Bentley, D.R.; Cox, A.; Humphray, S.; Kahn, S.; Sudbrak, R.; Albrecht, M.W.; Lienhard, M.; Larson, D.; Craig, D.W.; Izatt, T.; Kurdoglu, A.A.; Sherry, S.T.; Xiao, C.; Haussler, D.; Abecasis, G.R.; McVean, G.A.; Durbin, R.M.; Balasubramaniam, S.; Keane, T.M.; McCarthy, S.; Stalker, J.; Chakravarti, A.; Knoppers, B.M.; Abecasis, G.R.; Barnes, K.C.; Beiswanger, C.; Burchard, E.G.; Bustamante, C.D.; Cai, H.; Cao, H.; Durbin, R.M.; Gerry, N.P.; Gharani, N.; Gibbs, R.A.; Gignoux, C.R.; Gravel, S.; Henn, B.; Jones, D.; Jorde, L.; Kaye, J.S.; Keinan, A.; Kent, A.; Kerasidou, A.; Li, Y.; Mathias, R.; McVean, G.A.; Moreno-Estrada, A.; Ossorio, P.N.; Parker, M.; Resch, A.M.; Rotimi, C.N.; Royal, C.D.; Sandoval, K.; Su, Y.; Sudbrak, R.; Tian, Z.; Tishkoff, S.; Toji, L.H.; Tyler-Smith, C.; Via, M.; Wang, Y.; Yang, H.; Yang, L.; Zhu, J.; Bodmer, W.; Bedoya, G.; Ruiz-Linares, A.; Cai, Z.; Gao, Y.; Chu, J.; Peltonen, L.; Garcia-Montero, A.; Orfao, A.; Dutil, J.; Martinez-Cruzado, J.C.; Oleksyk, T.K.; Barnes, K.C.; Mathias, R.A.; Hennis, A.; Watson, H.; McKenzie, C.; Qadri, F.; LaRocque, R.; Sabeti, P.C.; Zhu, J.; Deng, X.; Sabeti, P.C.; Asogun, D.; Folarin, O.; Happi, C.; Omoniwa, O.; Stremlau, M.; Tariyal, R.; Jallow, M.; Sisay Joof, F.; Corrah, T.; Rockett, K.; Kwiatkowski, D.; Kooner, J.; Tịnh Hiê’n, T.; Dunstan, S.J.; Thuy Hang, N.; Fonnie, R.; Garry, R.; Kanneh, L.; Moses, L.; Sabeti, P.C.; Schieffelin, J.; Grant, D.S.; Gallo, C.; Poletti, G.; Saleheen, D.; Rasheed, A.; Brooks, L.D.; Felsenfeld, A.L.; McEwen, J.E.; Vaydylevich, Y.; Green, E.D.; Duncanson, A.; Dunn, M.; Schloss, J.A.; Wang, J.; Yang, H.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Min Kang, H.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; Abecasis, G.R. A global reference for human genetic variation. Nature, 2015, 526(7571), 68-74.
[http://dx.doi.org/10.1038/nature15393] [PMID: 26432245]
[116]
Kloske, C.M.; Wilcock, D.M. The important interface between apolipoprotein E and neuroinflammation in Alzheimer’s disease. Front. Immunol., 2020, 11, 754.
[http://dx.doi.org/10.3389/fimmu.2020.00754] [PMID: 32425941]
[117]
Bertram, L.; Tanzi, R.E. Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses. Nat. Rev. Neurosci., 2008, 9(10), 768-778.
[http://dx.doi.org/10.1038/nrn2494] [PMID: 18802446]
[118]
Wang, H.; Yuan, Z.; Pavel, M.A.; Jablonski, S.M.; Jablonski, J.; Hobson, R.; Valente, S.; Reddy, C.B.; Hansen, S.B. The role of high cholesterol in age-related COVID19 lethality. bioRxiv, 2021, 2021, 086249.
[http://dx.doi.org/10.1101/2020.05.09.086249]
[119]
Liu, N.; Sun, J.; Wang, X.; Zhao, M.; Huang, Q.; Li, H. The impact of dementia on the clinical outcome of COVID-19: A systematic review and meta-analysis. J. Alzheimers Dis., 2020, 78(4), 1775-1782.
[http://dx.doi.org/10.3233/JAD-201016] [PMID: 33285638]
[120]
Finch, C.E.; Kulminski, A.M. The ApoE locus and COVID-19: Are we going where we have been? J. Gerontol. A Biol. Sci. Med. Sci., 2021, 76(2), e1-e3.
[http://dx.doi.org/10.1093/gerona/glaa200] [PMID: 32777042]
[121]
Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Pilling, L.C.; Kuo, C.L.; Kuchel, G.A.; Melzer, D. Preexisting comorbidities predicting COVID-19 and mortality in the UK Biobank community cohort. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(11), 2224-2230.
[http://dx.doi.org/10.1093/gerona/glaa183] [PMID: 32687551]
[122]
Mao, X.Y.; Jin, W.L. The COVID-19 pandemic: Consideration for brain infection. Neuroscience, 2020, 437, 130-131.
[http://dx.doi.org/10.1016/j.neuroscience.2020.04.044] [PMID: 32380269]
[123]
Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA, 1997, 278(16), 1349-1356.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[124]
Emrani, S.; Arain, H.A.; DeMarshall, C.; Nuriel, T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: A systematic review. Alzheimers Res. Ther., 2020, 12(1), 141.
[http://dx.doi.org/10.1186/s13195-020-00712-4] [PMID: 33148345]
[125]
Kuo, C.L.; Pilling, L.C.; Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Kuchel, G.A.; Melzer, D. APOE e4 genotype predicts severe COVID-19 in the UK Biobank community cohort. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(11), 2231-2232.
[http://dx.doi.org/10.1093/gerona/glaa131] [PMID: 32451547]
[126]
Keng, A.; Brown, E.E.; Rostas, A.; Rajji, T.K.; Pollock, B.G.; Mulsant, B.H.; Kumar, S. Effectively caring for individuals with behavioral and psychological symptoms of dementia during the COVID-19 pandemic. Front. Psychiatry, 2020, 11, 573367.
[http://dx.doi.org/10.3389/fpsyt.2020.573367] [PMID: 33132936]
[127]
Kurki, S.N.; Kantonen, J.; Kaivola, K.; Hokkanen, L.; Mäyränpää, M.I.; Puttonen, H.; Martola, J.; Pöyhönen, M.; Kero, M.; Tuimala, J.; Carpén, O.; Kantele, A.; Vapalahti, O.; Tiainen, M.; Tienari, P.J.; Kaila, K.; Hästbacka, J.; Myllykangas, L. APOE ε4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: A Finnish biobank, autopsy and clinical study. Acta Neuropathol. Commun., 2021, 9(1), 199.
[http://dx.doi.org/10.1186/s40478-021-01302-7] [PMID: 34949230]
[128]
Wang, C.; Zhang, M.; Garcia, G., Jr; Tian, E.; Cui, Q.; Chen, X.; Sun, G.; Wang, J.; Arumugaswami, V.; Shi, Y. ApoE-isoform-dependent SARS-CoV-2 neurotropism and cellular response. Cell Stem Cell, 2021, 28(2), 331-342.e5.
[http://dx.doi.org/10.1016/j.stem.2020.12.018] [PMID: 33450186]
[129]
Riedel, B.C.; Thompson, P.M.; Brinton, R.D. Age, APOE and sex: Triad of risk of Alzheimer’s disease. J. Steroid Biochem. Mol. Biol., 2016, 160, 134-147.
[http://dx.doi.org/10.1016/j.jsbmb.2016.03.012] [PMID: 26969397]
[130]
Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; Merson, L.; Lee, J.; Plotkin, D.; Sigfrid, L.; Halpin, S.; Jackson, C.; Gamble, C.; Horby, P.W.; Nguyen-Van-Tam, J.S.; Ho, A.; Russell, C.D.; Dunning, J.; Openshaw, P.J.M.; Baillie, J.K.; Semple, M.G. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO clinical characterisation protocol: Prospective observational cohort study. BMJ, 2020, 369, m1985.
[http://dx.doi.org/10.1136/bmj.m1985] [PMID: 32444460]
[131]
Kuo, C.L.; Pilling, L.C.; Atkins, J.L.; Kuchel, G.A.; Melzer, D. ApoE e2 and aging-related outcomes in 379,000 UK Biobank participants. Aging (Albany NY), 2020, 12(12), 12222-12233.
[http://dx.doi.org/10.18632/aging.103405] [PMID: 32511104]
[132]
Tudorache, I.F.; Trusca, V.G.; Gafencu, A.V.; Apolipoprotein, E. A multifunctional protein with implications in various pathologies as a result of its structural features. Comput. Struct. Biotechnol. J., 2017, 15, 359-365.
[http://dx.doi.org/10.1016/j.csbj.2017.05.003] [PMID: 28660014]
[133]
Kuo, C.L.; Pilling, L.C.; Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Kuchel, G.A.; Melzer, D. ApoE e4e4 genotype and mortality with COVID-19 in UK Biobank. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(9), 1801-1803.
[http://dx.doi.org/10.1093/gerona/glaa169] [PMID: 32623451]
[134]
Kasparian, K.; Graykowski, D.; Cudaback, E. Commentary: APOE e4 genotype predicts severe COVID-19 in the UK Biobank Community cohort. Front. Immunol., 2020, 11, 1939.
[http://dx.doi.org/10.3389/fimmu.2020.01939] [PMID: 33042114]
[135]
Nikogosov, D.A.; Shevlyakov, A.D.; Baranova, A.V. Comment on “ApoE e4e4 Genotype and Mortality With COVID-19 in UK Biobank” by Kuo et al. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(11), 2233-2234.
[http://dx.doi.org/10.1093/gerona/glaa202] [PMID: 32803253]
[136]
Kuo, C.L.; Melzer, D. Response to comment on “ApoE e4e4 genotype and mortality with COVID-19 in UK biobank” by Kuo et al. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(11), 2235-2236.
[http://dx.doi.org/10.1093/gerona/glaa198] [PMID: 32797154]
[137]
Felsenstein, S.; Herbert, J.A.; McNamara, P.S.; Hedrich, C.M. COVID-19: Immunology and treatment options. Clin. Immunol., 2020, 215, 108448.
[http://dx.doi.org/10.1016/j.clim.2020.108448] [PMID: 32353634]
[138]
Yao, X.; Gordon, E.M.; Figueroa, D.M.; Barochia, A.V.; Levine, S.J. Emerging roles of apolipoprotein E and apolipoprotein A-I in the pathogenesis and treatment of lung disease. Am. J. Respir. Cell Mol. Biol., 2016, 55(2), 159-169.
[http://dx.doi.org/10.1165/rcmb.2016-0060TR] [PMID: 27073971]
[139]
Martínez-Martínez, A.B.; Torres-Perez, E.; Devanney, N.; Del Moral, R.; Johnson, L.A.; Arbones-Mainar, J.M. Beyond the CNS: The many peripheral roles of APOE. Neurobiol. Dis., 2020, 138, 104809.
[http://dx.doi.org/10.1016/j.nbd.2020.104809] [PMID: 32087284]
[140]
Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; Smura, T.; Levanov, L.; Szirovicza, L.; Tobi, A.; Kallio-Kokko, H.; Österlund, P.; Joensuu, M.; Meunier, F.A.; Butcher, S.J.; Winkler, M.S.; Mollenhauer, B.; Helenius, A.; Gokce, O.; Teesalu, T.; Hepojoki, J.; Vapalahti, O.; Stadelmann, C.; Balistreri, G.; Simons, M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 2020, 370(6518), 856-860.
[http://dx.doi.org/10.1126/science.abd2985] [PMID: 33082293]
[141]
Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; Asselta, R.; Grimsrud, M.M.; Milani, C.; Aziz, F.; Kässens, J.; May, S.; Wendorff, M.; Wienbrandt, L.; Uellendahl-Werth, F.; Zheng, T.; Yi, X.; de Pablo, R.; Chercoles, A.G.; Palom, A.; Garcia-Fernandez, A.E.; Rodriguez-Frias, F.; Zanella, A.; Bandera, A.; Protti, A.; Aghemo, A.; Lleo, A.; Biondi, A.; Caballero-Garralda, A.; Gori, A.; Tanck, A.; Carreras Nolla, A.; Latiano, A.; Fracanzani, A.L.; Peschuck, A.; Julià, A.; Pesenti, A.; Voza, A.; Jiménez, D.; Mateos, B.; Nafria Jimenez, B.; Quereda, C.; Paccapelo, C.; Gassner, C.; Angelini, C.; Cea, C.; Solier, A.; Pestaña, D.; Muñiz-Diaz, E.; Sandoval, E.; Paraboschi, E.M.; Navas, E.; García Sánchez, F.; Ceriotti, F.; Martinelli-Boneschi, F.; Peyvandi, F.; Blasi, F.; Téllez, L.; Blanco-Grau, A.; Hemmrich-Stanisak, G.; Grasselli, G.; Costantino, G.; Cardamone, G.; Foti, G.; Aneli, S.; Kurihara, H.; ElAbd, H.; My, I.; Galván-Femenia, I.; Martín, J.; Erdmann, J.; Ferrusquía-Acosta, J.; Garcia-Etxebarria, K.; Izquierdo-Sanchez, L.; Bettini, L.R.; Sumoy, L.; Terranova, L.; Moreira, L.; Santoro, L.; Scudeller, L.; Mesonero, F.; Roade, L.; Rühlemann, M.C.; Schaefer, M.; Carrabba, M.; Riveiro-Barciela, M.; Figuera Basso, M.E.; Valsecchi, M.G.; Hernandez-Tejero, M.; Acosta-Herrera, M.; D’Angiò, M.; Baldini, M.; Cazzaniga, M.; Schulzky, M.; Cecconi, M.; Wittig, M.; Ciccarelli, M.; Rodríguez-Gandía, M.; Bocciolone, M.; Miozzo, M.; Montano, N.; Braun, N.; Sacchi, N.; Martínez, N.; Özer, O.; Palmieri, O.; Faverio, P.; Preatoni, P.; Bonfanti, P.; Omodei, P.; Tentorio, P.; Castro, P.; Rodrigues, P.M.; Blandino Ortiz, A.; de Cid, R.; Ferrer, R.; Gualtierotti, R.; Nieto, R.; Goerg, S.; Badalamenti, S.; Marsal, S.; Matullo, G.; Pelusi, S.; Juzenas, S.; Aliberti, S.; Monzani, V.; Moreno, V.; Wesse, T.; Lenz, T.L.; Pumarola, T.; Rimoldi, V.; Bosari, S.; Albrecht, W.; Peter, W.; Romero-Gómez, M.; D’Amato, M.; Duga, S.; Banales, J.M.; Hov, J.R.; Folseraas, T.; Valenti, L.; Franke, A.; Karlsen, T.H. Genomewide association study of severe covid-19 with respiratory failure. N. Engl. J. Med., 2020, 383(16), 1522-1534.
[http://dx.doi.org/10.1056/NEJMoa2020283] [PMID: 32558485]
[142]
Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D.; Furniss, J.; Richmond, A.; Gountouna, E.; Wrobel, N.; Harrison, D.; Wang, B.; Wu, Y.; Meynert, A.; Griffiths, F.; Oosthuyzen, W.; Kousathanas, A.; Moutsianas, L.; Yang, Z.; Zhai, R.; Zheng, C.; Grimes, G.; Beale, R.; Millar, J.; Shih, B.; Keating, S.; Zechner, M.; Haley, C.; Porteous, D.J.; Hayward, C.; Yang, J.; Knight, J.; Summers, C.; Shankar-Hari, M.; Klenerman, P.; Turtle, L.; Ho, A.; Moore, S.C.; Hinds, C.; Horby, P.; Nichol, A.; Maslove, D.; Ling, L.; McAuley, D.; Montgomery, H.; Walsh, T.; Pereira, A.C.; Renieri, A.; Shen, X.; Ponting, C.P.; Fawkes, A.; Tenesa, A.; Caulfield, M.; Scott, R.; Rowan, K.; Murphy, L.; Openshaw, P.J.M.; Semple, M.G.; Law, A.; Vitart, V.; Wilson, J.F.; Baillie, J.K. Genetic mechanisms of critical illness in COVID-19. Nature, 2021, 591(7848), 92-98.
[http://dx.doi.org/10.1038/s41586-020-03065-y] [PMID: 33307546]
[143]
Murgolo, N.; Therien, A.G.; Howell, B.; Klein, D.; Koeplinger, K.; Lieberman, L.A.; Adam, G.C.; Flynn, J.; McKenna, P.; Swaminathan, G.; Hazuda, D.J.; Olsen, D.B. SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathog., 2021, 17(2), e1009225.
[http://dx.doi.org/10.1371/journal.ppat.1009225] [PMID: 33596266]
[144]
Baggen, J.; Persoons, L.; Vanstreels, E.; Jansen, S.; Van Looveren, D.; Boeckx, B.; Geudens, V.; De Man, J.; Jochmans, D.; Wauters, J.; Wauters, E.; Vanaudenaerde, B.M.; Lambrechts, D.; Neyts, J.; Dallmeier, K.; Thibaut, H.J.; Jacquemyn, M.; Maes, P.; Daelemans, D. Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nat. Genet., 2021, 53(4), 435-444.
[http://dx.doi.org/10.1038/s41588-021-00805-2] [PMID: 33686287]
[145]
Van Gool, B.; Storck, S.E.; Reekmans, S.M.; Lechat, B.; Gordts, P.L.S.M.; Pradier, L.; Pietrzik, C.U.; Roebroek, A.J.M. LRP1 has a predominant role in production over clearance of Aβ in a mouse model of Alzheimer’s disease. Mol. Neurobiol., 2019, 56(10), 7234-7245.
[http://dx.doi.org/10.1007/s12035-019-1594-2] [PMID: 31004319]
[146]
Salech, F.; Ponce, D.P.; Paula-Lima, A.C.; SanMartin, C.D.; Behrens, M.I. Nicotinamide, a poly [ADP-ribose] polymerase 1 (PARP-1) inhibitor, as an adjunctive therapy for the treatment of Alzheimer’s disease. Front. Aging Neurosci., 2020, 12, 255.
[http://dx.doi.org/10.3389/fnagi.2020.00255] [PMID: 32903806]
[147]
Tai, L.M.; Ghura, S.; Koster, K.P.; Liakaite, V.; Maienschein-Cline, M.; Kanabar, P.; Collins, N.; Ben-Aissa, M.; Lei, A.Z.; Bahroos, N.; Green, S.J.; Hendrickson, B.; Van Eldik, L.J.; LaDu, M.J. APOE -modulated Aβ-induced neuroinflammation in Alzheimer’s disease: Current landscape, novel data, and future perspective. J. Neurochem., 2015, 133(4), 465-488.
[http://dx.doi.org/10.1111/jnc.13072] [PMID: 25689586]
[148]
Tai, L.M.; Thomas, R.; Marottoli, F.M.; Koster, K.P.; Kanekiyo, T.; Morris, A.W.J.; Bu, G. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol., 2016, 131(5), 709-723.
[http://dx.doi.org/10.1007/s00401-016-1547-z] [PMID: 26884068]
[149]
Xu, H.; Perreau, V.M.; Dent, K.A.; Bush, A.I.; Finkelstein, D.I.; Adlard, P.A. Iron regulates Apolipoprotein E expression and secretion in neurons and astrocytes. J. Alzheimers Dis., 2016, 51(2), 471-487.
[http://dx.doi.org/10.3233/JAD-150797] [PMID: 26890748]
[150]
Ayton, S.; Faux, N.G.; Bush, A.I. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat. Commun., 2015, 6(1), 6760.
[http://dx.doi.org/10.1038/ncomms7760] [PMID: 25988319]
[151]
Ayton, S.; Faux, N.G.; Bush, A.I. Association of cerebrospinal fluid ferritin level with preclinical cognitive decline in APOE-ε4 carriers. JAMA Neurol., 2017, 74(1), 122-125.
[http://dx.doi.org/10.1001/jamaneurol.2016.4406] [PMID: 27893873]
[152]
Wood, H. Iron—the missing link between ApoE and Alzheimer disease? Nat. Rev. Neurol., 2015, 11(7), 369.
[http://dx.doi.org/10.1038/nrneurol.2015.96] [PMID: 26055466]
[153]
Wang, F.; Wang, J.; Shen, Y.; Li, H.; Rausch, W.D.; Huang, X. Iron dyshomeostasis and ferroptosis: A new Alzheimer’s disease hypothesis? Front. Aging Neurosci., 2022, 14, 830569.
[http://dx.doi.org/10.3389/fnagi.2022.830569] [PMID: 35391749]
[154]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[155]
Peng, Y.; Chang, X.; Lang, M. Iron homeostasis disorder and Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(22), 12442.
[http://dx.doi.org/10.3390/ijms222212442] [PMID: 34830326]
[156]
Tan, Q.; Fang, Y.; Gu, Q. Mechanisms of modulation of ferroptosis and its role in central nervous system diseases. Front. Pharmacol., 2021, 12, 657033.
[http://dx.doi.org/10.3389/fphar.2021.657033] [PMID: 34149412]
[157]
Zimmer, T.S.; David, B.; Broekaart, D.W.M.; Schidlowski, M.; Ruffolo, G.; Korotkov, A.; van der Wel, N.N.; van Rijen, P.C.; Mühlebner, A.; van Hecke, W.; Baayen, J.C.; Idema, S.; François, L.; van Eyll, J.; Dedeurwaerdere, S.; Kessels, H.W.; Surges, R.; Rüber, T.; Gorter, J.A.; Mills, J.D.; van Vliet, E.A.; Aronica, E. Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy. Acta Neuropathol., 2021, 142(4), 729-759.
[http://dx.doi.org/10.1007/s00401-021-02348-6] [PMID: 34292399]
[158]
Connor, J.R.; Snyder, B.S.; Arosio, P.; Loeffler, D.A.; LeWitt, P. A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J. Neurochem., 1995, 65(2), 717-724.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65020717.x] [PMID: 7616228]
[159]
Ramos, P.; Santos, A.; Pinto, N.R.; Mendes, R.; Magalhães, T.; Almeida, A. Iron levels in the human brain: A post-mortem study of anatomical region differences and age-related changes. J. Trace Elem. Med. Biol., 2014, 28(1), 13-17.
[http://dx.doi.org/10.1016/j.jtemb.2013.08.001] [PMID: 24075790]
[160]
Xiong, H.; Tuo, Q.; Guo, Y.; Lei, P. Diagnostics and treatments of iron-related CNS diseases. Adv. Exp. Med. Biol., 2019, 1173, 179-194.
[http://dx.doi.org/10.1007/978-981-13-9589-5_10] [PMID: 31456211]
[161]
Cassidy, L.; Fernandez, F.; Johnson, J.B.; Naiker, M.; Owoola, A.G.; Broszczak, D.A. Oxidative stress in Alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med., 2020, 49, 102294.
[http://dx.doi.org/10.1016/j.ctim.2019.102294] [PMID: 32147039]
[162]
Li, J.; Zhang, Q.; Che, Y.; Zhang, N.; Guo, L. Iron deposition characteristics of deep gray matter in elderly individuals in the community revealed by quantitative susceptibility mapping and multiple factor analysis. Front. Aging Neurosci., 2021, 13, 611891.
[http://dx.doi.org/10.3389/fnagi.2021.611891] [PMID: 33935681]
[163]
Vitale, A.A.; Bernatene, E.A.; Vitale, M.G.; Pomilio, A.B. New insights of the Fenton reaction using glycerol as experimental model. Effect of O2, inhibition by Mg2+, and oxidation state of Fe. J. Phys. Chem. A, 2016, 120(28), 5435-5445.
[http://dx.doi.org/10.1021/acs.jpca.6b03805] [PMID: 27340836]
[164]
Vitale, A.A.; Bernatene, E.A.; Pomilio, A.B. Inhibition of Fenton reaction of glucose by alcohols and tetrahydrofuran in catalytic concentrations: Calculation of the stability constants of ROH/Fe2+ complexes. Curr. Phys. Chem., 2022, 12(1), 76-87.
[http://dx.doi.org/10.2174/1877946812666211217152703]
[165]
Liu, J.L.; Fan, Y.G.; Yang, Z.S.; Wang, Z.Y.; Guo, C. Iron and Alzheimer’s disease: From pathogenesis to therapeutic implications. Front. Neurosci., 2018, 12, 632.
[http://dx.doi.org/10.3389/fnins.2018.00632] [PMID: 30250423]
[166]
Piacentini, R.; Centi, L.; Miotto, M.; Milanetti, E.; Di Rienzo, L.; Pitea, M.; Piazza, P.; Ruocco, G.; Boffi, A.; Parisi, G. Lactoferrin inhibition of the complex formation between ACE2 Receptor and SARS CoV-2 Recognition Binding Domain. Int. J. Mol. Sci., 2022, 23(10), 5436.
[http://dx.doi.org/10.3390/ijms23105436] [PMID: 35628247]
[167]
Damulina, A.; Pirpamer, L.; Soellradl, M.; Sackl, M.; Tinauer, C.; Hofer, E.; Enzinger, C.; Gesierich, B.; Duering, M.; Ropele, S.; Schmidt, R.; Langkammer, C. Cross-sectional and longitudinal assessment of brain iron level in Alzheimer disease using 3-T MRI. Radiology, 2020, 296(3), 619-626.
[http://dx.doi.org/10.1148/radiol.2020192541] [PMID: 32602825]
[168]
You, P.; Li, X.; Wang, Z.; Wang, H.; Dong, B.; Li, Q. Characterization of brain iron deposition pattern and its association with genetic risk factor in Alzheimer’s disease using susceptibility-weighted imaging. Front. Hum. Neurosci., 2021, 15, 654381.
[http://dx.doi.org/10.3389/fnhum.2021.654381] [PMID: 34163341]
[169]
Cucos, C.A.; Cracana, I.; Dobre, M.; Popescu, B.O.; Tudose, C.; Spiru, L.; Manda, G.; Niculescu, G.; Milanesi, E. SRXN1 blood levels negatively correlate with hippocampal atrophy and cognitive decline. F1000 Res., 2022, 11, 114.
[http://dx.doi.org/10.12688/f1000research.76191.1] [PMID: 35242306]
[170]
Yan, N.; Zhang, J. Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. Front. Neurosci., 2020, 13, 1443.
[http://dx.doi.org/10.3389/fnins.2019.01443] [PMID: 32063824]
[171]
Duce, J.A.; Tsatsanis, A.; Cater, M.A.; James, S.A.; Robb, E.; Wikhe, K.; Leong, S.L.; Perez, K.; Johanssen, T.; Greenough, M.A.; Cho, H.H.; Galatis, D.; Moir, R.D.; Masters, C.L.; McLean, C.; Tanzi, R.E.; Cappai, R.; Barnham, K.J.; Ciccotosto, G.D.; Rogers, J.T.; Bush, A.I. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell, 2010, 142(6), 857-867.
[http://dx.doi.org/10.1016/j.cell.2010.08.014] [PMID: 20817278]
[172]
Lei, P.; Ayton, S.; Finkelstein, D.I.; Spoerri, L.; Ciccotosto, G.D.; Wright, D.K.; Wong, B.X.W.; Adlard, P.A.; Cherny, R.A.; Lam, L.Q.; Roberts, B.R.; Volitakis, I.; Egan, G.F.; McLean, C.A.; Cappai, R.; Duce, J.A.; Bush, A.I. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat. Med., 2012, 18(2), 291-295.
[http://dx.doi.org/10.1038/nm.2613] [PMID: 22286308]
[173]
Chen, K.; Jiang, X.; Wu, M.; Cao, X.; Bao, W.; Zhu, L.Q. Ferroptosis, a potential therapeutic target in Alzheimer’s disease. Front. Cell Dev. Biol., 2021, 9, 704298.
[http://dx.doi.org/10.3389/fcell.2021.704298] [PMID: 34422824]
[174]
Tuo, Q.; Lei, P.; Jackman, K.A.; Li, X.; Xiong, H.; Li, X.; Liuyang, Z.; Roisman, L.; Zhang, S.; Ayton, S.; Wang, Q.; Crouch, P.J.; Ganio, K.; Wang, X.; Pei, L.; Adlard, P.A.; Lu, Y.; Cappai, R.; Wang, J.; Liu, R.; Bush, A.I. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatry, 2017, 22(11), 1520-1530.
[http://dx.doi.org/10.1038/mp.2017.171] [PMID: 28886009]
[175]
Alonso, A.D.; Cohen, L.S.; Corbo, C.; Morozova, V.; ElIdrissi, A.; Phillips, G.; Kleiman, F.E. Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Front. Cell. Neurosci., 2018, 12, 338.
[http://dx.doi.org/10.3389/fncel.2018.00338] [PMID: 30356756]
[176]
Wong, B.X.; Tsatsanis, A.; Lim, L.Q.; Adlard, P.A.; Bush, A.I.; Duce, J.A. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One, 2014, 9(12), e114174.
[http://dx.doi.org/10.1371/journal.pone.0114174] [PMID: 25464026]
[177]
McCarthy, R.C.; Park, Y.H.; Kosman, D.J. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep., 2014, 15(7), 809-815.
[http://dx.doi.org/10.15252/embr.201338064] [PMID: 24867889]
[178]
Ji, C.; Steimle, B.L.; Bailey, D.K.; Kosman, D.J. The Ferroxidase hephaestin but not amyloid precursor protein is required for ferroportin-supported iron efflux in primary hippocampal neurons. Cell. Mol. Neurobiol., 2018, 38(4), 941-954.
[http://dx.doi.org/10.1007/s10571-017-0568-z] [PMID: 29177638]
[179]
Lane, D.J.R.; Ayton, S.; Bush, A.I. Iron and Alzheimer’s disease: An update on emerging mechanisms. J. Alzheimers Dis., 2018, 64(s1), S379-S395.
[http://dx.doi.org/10.3233/JAD-179944] [PMID: 29865061]
[180]
Lane, D.J.R.; Metselaar, B.; Greenough, M.; Bush, A.I.; Ayton, S.J. Ferroptosis and NRF2: An emerging battlefield in the neurodegeneration of Alzheimer’s disease. Essays Biochem., 2021, 65(7), 925-940.
[http://dx.doi.org/10.1042/EBC20210017] [PMID: 34623415]
[181]
Kopacz, A.; Kloska, D.; Forman, H.J.; Jozkowicz, A.; Grochot-Przeczek, A. Beyond repression of Nrf2: An update on Keap1. Free Radic. Biol. Med., 2020, 157, 63-74.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.03.023] [PMID: 32234331]
[182]
Kerins, M.J.; Ooi, A. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid. Redox Signal., 2018, 29(17), 1756-1773.
[http://dx.doi.org/10.1089/ars.2017.7176] [PMID: 28793787]
[183]
Greenough, M.A.; Lane, D.J.R.; Balez, R.; Anastacio, H.T.D.; Zeng, Z.; Ganio, K.; McDevitt, C.A.; Acevedo, K.; Belaidi, A.A.; Koistinaho, J.; Ooi, L.; Ayton, S.; Bush, A.I. Selective ferroptosis vulnerability due to familial Alzheimer’s disease presenilin mutations. Cell Death Differ., 2022, 29, 2123-2136.
[http://dx.doi.org/10.1038/s41418-022-01003-1] [PMID: 35449212]
[184]
Dang, X.; Huan, X.; Du, X.; Chen, X.; Bi, M.; Yan, C.; Jiao, Q.; Jiang, H. Correlation of ferroptosis and other types of cell death in neurodegenerative diseases. Neurosci. Bull., 2022, 38(8), 938-952.
[http://dx.doi.org/10.1007/s12264-022-00861-6] [PMID: 35482278]
[185]
Onukwufor, J.O.; Dirksen, R.T.; Wojtovich, A.P. Iron dysregulation in mitochondrial dysfunction and Alzheimer’s disease. Antioxidants, 2022, 11(4), 692.
[http://dx.doi.org/10.3390/antiox11040692] [PMID: 35453377]
[186]
Quintana, C. About the presence of hemosiderin in the hippocampus of Alzheimer patients. J. Alzheimers Dis., 2007, 12(2), 157-160.
[http://dx.doi.org/10.3233/JAD-2007-12205] [PMID: 17917160]
[187]
Akoudad, S.; Wolters, F.J.; Viswanathan, A.; de Bruijn, R.F.; van der Lugt, A.; Hofman, A.; Koudstaal, P.J.; Ikram, M.A.; Vernooij, M.W. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol., 2016, 73(8), 934-943.
[http://dx.doi.org/10.1001/jamaneurol.2016.1017] [PMID: 27271785]
[188]
Dixon, L.; McNamara, C.; Gaur, P.; Mallon, D.; Coughlan, C.; Tona, F.; Jan, W.; Wilson, M.; Jones, B. Cerebral microhaemorrhage in COVID-19: A critical illness related phenomenon? Stroke Vasc. Neurol., 2020, 5(4), e000652.
[http://dx.doi.org/10.1136/svn-2020-000652] [PMID: 33208493]
[189]
Fitsiori, A.; Pugin, D.; Thieffry, C.; Lalive, P.; Vargas, M.I. COVID-19 is associated with an unusual pattern of brain microbleeds in critically ill patients. J. Neuroimaging, 2020, 30(5), 593-597.
[http://dx.doi.org/10.1111/jon.12755] [PMID: 32639679]
[190]
Toeback, J.; Depoortere, S.D.R.; Vermassen, J.; Vereecke, E.L.H.; Van Driessche, V.; Hemelsoet, D.M. Microbleed patterns in critical illness and COVID-19. Clin. Neurol. Neurosurg., 2021, 203, 106594.
[http://dx.doi.org/10.1016/j.clineuro.2021.106594] [PMID: 33735661]
[191]
Napolitano, A.; Arrigoni, A.; Caroli, A.; Cava, M.; Remuzzi, A.; Longhi, L.G.; Barletta, A.; Zangari, R.; Lorini, F.L.; Sessa, M.; Gerevini, S. Cerebral microbleeds assessment and quantification in COVID-19 patients with neurological manifestations. Front. Neurol., 2022, 13, 884449.
[http://dx.doi.org/10.3389/fneur.2022.884449] [PMID: 35677326]
[192]
Vernooij, M.W.; van der Lugt, A.; Ikram, M.A.; Wielopolski, P.A.; Niessen, W.J.; Hofman, A.; Krestin, G.P.; Breteler, M.M.B. Prevalence and risk factors of cerebral microbleeds: The rotterdam scan study. Neurology, 2008, 70(14), 1208-1214.
[http://dx.doi.org/10.1212/01.wnl.0000307750.41970.d9] [PMID: 18378884]
[193]
Rogers, J.T.; Bush, A.I.; Cho, H.H.; Smith, D.H.; Thomson, A.M.; Friedlich, A.L.; Lahiri, D.K.; Leedman, P.J.; Huang, X.; Cahill, C.M. Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: Riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem. Soc. Trans., 2008, 36(6), 1282-1287.
[http://dx.doi.org/10.1042/BST0361282] [PMID: 19021541]
[194]
Tisato, V.; Zuliani, G.; Vigliano, M.; Longo, G.; Franchini, E.; Secchiero, P.; Zauli, G.; Paraboschi, E.M.; Vikram Singh, A.; Serino, M.L.; Ortolani, B.; Zurlo, A.; Bosi, C.; Greco, A.; Seripa, D.; Asselta, R.; Gemmati, D. Gene-gene interactions among coding genes of iron-homeostasis proteins and APOE-alleles in cognitive impairment diseases. PLoS One, 2018, 13(3), e0193867.
[http://dx.doi.org/10.1371/journal.pone.0193867] [PMID: 29518107]
[195]
Weiland, A.; Wang, Y.; Wu, W.; Lan, X.; Han, X.; Li, Q.; Wang, J. Ferroptosis and its role in diverse brain diseases. Mol. Neurobiol., 2019, 56(7), 4880-4893.
[http://dx.doi.org/10.1007/s12035-018-1403-3] [PMID: 30406908]
[196]
Reichert, C.O.; de Freitas, F.A.; Sampaio-Silva, J.; Rokita-Rosa, L.; Barros, P.L.; Levy, D.; Bydlowski, S.P. Ferroptosis mechanisms involved in neurodegenerative diseases. Int. J. Mol. Sci., 2020, 21(22), 8765.
[http://dx.doi.org/10.3390/ijms21228765] [PMID: 33233496]
[197]
Zhou, Y.; Lin, W.; Rao, T.; Zheng, J.; Zhang, T.; Zhang, M.; Lin, Z. Ferroptosis and its potential role in the nervous system diseases. J. Inflamm. Res., 2022, 15, 1555-1574.
[http://dx.doi.org/10.2147/JIR.S351799] [PMID: 35264867]
[198]
Wang, Y.; Chen, G.; Shao, W. Identification of ferroptosis-related genes in Alzheimer’s disease based on bioinformatic analysis. Front. Neurosci., 2022, 16, 823741.
[http://dx.doi.org/10.3389/fnins.2022.823741] [PMID: 35197821]
[199]
Guo, N.; Chen, Y.; Zhang, Y.; Deng, Y.; Zeng, F.; Li, X. Potential role of APEX1 during ferroptosis. Front. Oncol., 2022, 12, 798304.
[http://dx.doi.org/10.3389/fonc.2022.798304] [PMID: 35311089]
[200]
Majerníková, N.; den Dunnen, W.F.A.; Dolga, A.M. The potential of ferroptosis-Targeting therapies for Alzheimer’s disease: From mechanism to transcriptomic analysis. Front. Aging Neurosci., 2021, 13, 745046.
[http://dx.doi.org/10.3389/fnagi.2021.745046] [PMID: 34987375]
[201]
Kung, Y.A.; Chiang, H.J.; Li, M.L.; Gong, Y.N.; Chiu, H.P.; Hung, C.T.; Huang, P.N.; Huang, S.Y.; Wang, P.Y.; Hsu, T.A.; Brewer, G.; Shih, S.R. Acyl-Coenzyme A synthetase long-chain family member 4 is involved in viral replication organelle formation and facilitates virus replication via ferroptosis. MBio, 2022, 13(1), e02717-21.
[http://dx.doi.org/10.1128/mbio.02717-21] [PMID: 35038927]
[202]
Kung, Y.A.; Lee, K.M.; Chiang, H.J.; Huang, S.Y.; Wu, C.J.; Shih, S.R. Molecular virology of SARS-CoV-2 and related coronaviruses. Microbiol. Mol. Biol. Rev., 2022, 86(2), e00026-21.
[http://dx.doi.org/10.1128/mmbr.00026-21] [PMID: 35343760]
[203]
Daniloski, Z.; Jordan, T.X.; Wessels, H.H.; Hoagland, D.A.; Kasela, S.; Legut, M.; Maniatis, S.; Mimitou, E.P.; Lu, L.; Geller, E.; Danziger, O.; Rosenberg, B.R.; Phatnani, H.; Smibert, P.; Lappalainen, T.; tenOever, B.R.; Sanjana, N.E. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell, 2021, 184(1), 92-105.e16.
[http://dx.doi.org/10.1016/j.cell.2020.10.030] [PMID: 33147445]
[204]
Banchini, F.; Vallisa, D.; Maniscalco, P.; Capelli, P. Iron overload and Hepcidin overexpression could play a key role in COVID infection, and may explain vulnerability in elderly, diabetics, and obese patients. Acta Biomed., 2020, 91(3), e2020013.
[http://dx.doi.org/10.23750/abm.v91i3.9826] [PMID: 32921750]
[205]
Banchini, F.; Cattaneo, G.M.; Capelli, P. Serum ferritin levels in inflammation: A retrospective comparative analysis between COVID-19 and emergency surgical non-COVID-19 patients. World J. Emerg. Surg., 2021, 16(1), 9.
[http://dx.doi.org/10.1186/s13017-021-00354-3] [PMID: 33685484]
[206]
Fratta Pasini, A.M.; Stranieri, C.; Girelli, D.; Busti, F.; Cominacini, L. Is ferroptosis a key component of the process leading to multiorgan damage in COVID-19? Antioxidants, 2021, 10(11), 1677.
[http://dx.doi.org/10.3390/antiox10111677] [PMID: 34829548]
[207]
Vela, D. The dual role of hepcidin in brain iron load and inflammation. Front. Neurosci., 2018, 12, 740.
[http://dx.doi.org/10.3389/fnins.2018.00740] [PMID: 30374287]
[208]
Chaudhary, S.; Ashok, A.; McDonald, D.; Wise, A.S.; Kritikos, A.E.; Rana, N.A.; Harding, C.V.; Singh, N. Upregulation of local hepcidin contributes to iron accumulation in Alzheimer’s disease brains. J. Alzheimers Dis., 2021, 82(4), 1487-1497.
[http://dx.doi.org/10.3233/JAD-210221] [PMID: 34180415]
[209]
Sato, T.; Shapiro, J.S.; Chang, H.C.; Miller, R.A.; Ardehali, H. Aging is associated with increased brain iron through cortex-derived hepcidin expression. eLife, 2022, 11, e73456.
[http://dx.doi.org/10.7554/eLife.73456] [PMID: 35014607]
[210]
Yilmaz, N.; Eren, E.; Öz, C.; Kalayci, Z.; Sari̇bek, F. COVID-19 and iron metabolism: Traditional review. Turk. Klin. Tip Bilim. Derg., 2021, 41(2), 176-188.
[http://dx.doi.org/10.5336/medsci.2021-81574]
[211]
Liu, J.M.; Tan, B.H.; Wu, S.; Gui, Y.; Suo, J.L.; Li, Y.C. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J. Med. Virol., 2021, 93(3), 1304-1313.
[http://dx.doi.org/10.1002/jmv.26570] [PMID: 33002209]
[212]
Morgello, S. Coronaviruses and the central nervous system. J. Neurovirol., 2020, 26(4), 459-473.
[http://dx.doi.org/10.1007/s13365-020-00868-7] [PMID: 32737861]
[213]
Najjar, S.; Najjar, A.; Chong, D.J.; Pramanik, B.K.; Kirsch, C.; Kuzniecky, R.I.; Pacia, S.V.; Azhar, S. Central nervous system complications associated with SARS-CoV- 2 infection: Integrative concepts of pathophysiology and case reports. J. Neuroinflammation, 2020, 17(1), 231.
[http://dx.doi.org/10.1186/s12974-020-01896-0] [PMID: 32758257]
[214]
Boldrini, M.; Canoll, P.D.; Klein, R.S. How COVID-19 affects the brain. JAMA Psychiatry, 2021, 78(6), 682-683.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.0500] [PMID: 33769431]
[215]
Kristiansen, H.; Gad, H.H.; Eskildsen-Larsen, S.; Despres, P.; Hartmann, R. The oligoadenylate synthetase family: An ancient protein family with multiple antiviral activities. J. Interferon Cytokine Res., 2011, 31(1), 41-47.
[http://dx.doi.org/10.1089/jir.2010.0107] [PMID: 21142819]
[216]
Bisbal, C.; Silverman, R.H. Diverse functions of RNase L and implications in pathology. Biochimie, 2007, 89(6-7), 789-798.
[http://dx.doi.org/10.1016/j.biochi.2007.02.006] [PMID: 17400356]
[217]
Deczkowska, A.; Baruch, K.; Schwartz, M. Type I/II interferon balance in the regulation of brain physiology and pathology. Trends Immunol., 2016, 37(3), 181-192.
[http://dx.doi.org/10.1016/j.it.2016.01.006] [PMID: 26877243]
[218]
Majoros, A.; Platanitis, E.; Kernbauer-Hölzl, E.; Rosebrock, F.; Müller, M.; Decker, T. Canonical and non-canonical aspects of JAK-STAT signaling: Lessons from interferons for cytokine responses. Front. Immunol., 2017, 8, 29.
[http://dx.doi.org/10.3389/fimmu.2017.00029] [PMID: 28184222]
[219]
Taylor, J.M.; Moore, Z.; Minter, M.R.; Crack, P.J. Type-I interferon pathway in neuroinflammation and neurodegeneration: Focus on Alzheimer’s disease. J. Neural Transm. (Vienna), 2018, 125(5), 797-807.
[http://dx.doi.org/10.1007/s00702-017-1745-4] [PMID: 28676934]
[220]
Silverman, R.H. Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J. Virol., 2007, 81(23), 12720-12729.
[http://dx.doi.org/10.1128/JVI.01471-07] [PMID: 17804500]
[221]
Donovan, J.; Dufner, M.; Korennykh, A. Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. Proc. Natl. Acad. Sci. USA, 2013, 110(5), 1652-1657.
[http://dx.doi.org/10.1073/pnas.1218528110] [PMID: 23319625]
[222]
Guillemin, A.; Kumar, A.; Wencker, M.; Ricci, E.P. Shaping the innate immune response through post-transcriptional regulation of gene expression mediated by RNA-binding proteins. Front. Immunol., 2022, 12, 796012.
[http://dx.doi.org/10.3389/fimmu.2021.796012] [PMID: 35087521]
[223]
NIH National Library for Medicine. OAS1 2'-5'-oligoadenylate synthetase 1 [Homo sapiens (human)]. National Center for Biotechnology Information. NIH National Library for Medicine, 2022. Available from: https://www.ncbi.nlm.nih.gov/gene/4938 (Accessed on: June 24th, 2022).
[224]
NIH National Library for Medicine. OAS1 gene. RefSeq: NCBI reference sequence database. National Center for Biotechnology Information. 2022. Available from: https://www.ncbi.nlm.nih.gov/refseq/ [Accessed on June 24th, 2022].
[225]
Schwartz, S.L.; Park, E.N.; Vachon, V.K.; Danzy, S.; Lowen, A.C.; Conn, G.L. Human OAS1 activation is highly dependent on both RNA sequence and context of activating RNA motifs. Nucleic Acids Res., 2020, 48(13), gkaa513.
[http://dx.doi.org/10.1093/nar/gkaa513] [PMID: 32678884]
[226]
Wickenhagen, A.; Sugrue, E.; Lytras, S.; Kuchi, S.; Noerenberg, M.; Turnbull, M.L.; Loney, C.; Herder, V.; Allan, J.; Jarmson, I.; Cameron-Ruiz, N.; Varjak, M.; Pinto, R.M.; Lee, J.Y.; Iselin, L.; Palmalux, N.; Stewart, D.G.; Swingler, S.; Greenwood, E.J.D.; Crozier, T.W.M.; Gu, Q.; Davies, E.L.; Clohisey, S.; Wang, B.; Trindade Maranhão Costa, F.; Freire Santana, M.; de Lima Ferreira, L.C.; Murphy, L.; Fawkes, A.; Meynert, A.; Grimes, G.; Da Silva Filho, J.L.; Marti, M.; Hughes, J.; Stanton, R.J.; Wang, E.C.Y.; Ho, A.; Davis, I.; Jarrett, R.F.; Castello, A.; Robertson, D.L.; Semple, M.G.; Openshaw, P.J.M.; Palmarini, M.; Lehner, P.J.; Baillie, J.K.; Rihn, S.J.; Wilson, S.J. A prenylated dsRNA sensor protects against severe COVID-19. Science, 2021, 374(6567), eabj3624.
[http://dx.doi.org/10.1126/science.abj3624] [PMID: 34581622]
[227]
Salih, D.A.; Bayram, S.; Guelfi, S.; Reynolds, R.H.; Shoai, M.; Ryten, M.; Brenton, J.W.; Zhang, D.; Matarin, M.; Botia, J.A.; Shah, R.; Brookes, K.J.; Guetta-Baranes, T.; Morgan, K.; Bellou, E.; Cummings, D.M.; Escott-Price, V.; Hardy, J. Genetic variability in response to amyloid beta deposition influences Alzheimer’s disease risk. Brain Commun., 2019, 1(1), fcz022.
[http://dx.doi.org/10.1093/braincomms/fcz022] [PMID: 32274467]
[228]
Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front. Cell. Neurosci., 2018, 12, 488.
[http://dx.doi.org/10.3389/fncel.2018.00488] [PMID: 30618635]
[229]
Padhi, S.; Sarangi, S.; Nayak, N.; Pati, A.; Panda, A.K. OAS1 rs1131454 genetic variant is associated with Alzheimer’s disease: An epidemiological analysis. Brain, 2022, 145(6), e61-e63.
[http://dx.doi.org/10.1093/brain/awac132] [PMID: 35383824]
[230]
Magusali, N.; Graham, A.C.; Piers, T.M.; Panichnantakul, P.; Yaman, U.; Shoai, M.; Reynolds, R.H.; Botia, J.A.; Brookes, K.J.; Guetta-Baranes, T.; Bellou, E.; Bayram, S.; Sokolova, D.; Ryten, M.; Sala Frigerio, C.; Escott-Price, V.; Morgan, K.; Pocock, J.M.; Hardy, J.; Salih, D.A. Genetic variability associated with OAS1 expression in myeloid cells increases the risk of Alzheimer’s disease and severe COVID-19 outcomes. bioRxiv, 2021, 2021, 232327408.
[http://dx.doi.org/10.1101/2021.03.16.435702]
[231]
Efthymiou, A.G.; Goate, A.M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol. Neurodegener., 2017, 12(1), 43.
[http://dx.doi.org/10.1186/s13024-017-0184-x] [PMID: 28549481]
[232]
Hardy, J.; Escott-Price, V. Genes, pathways and risk prediction in Alzheimer’s disease. Hum. Mol. Genet., 2019, 28(R2), ddz163.
[http://dx.doi.org/10.1093/hmg/ddz163] [PMID: 31332445]
[233]
Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716.
[http://dx.doi.org/10.1126/science.aad8373] [PMID: 27033548]
[234]
Edwards, F.A. A unifying hypothesis for Alzheimer’s disease: From plaques to neurodegeneration. Trends Neurosci., 2019, 42(5), 310-322.
[http://dx.doi.org/10.1016/j.tins.2019.03.003] [PMID: 31006494]
[235]
Parhizkar, S.; Arzberger, T.; Brendel, M.; Kleinberger, G.; Deussing, M.; Focke, C.; Nuscher, B.; Xiong, M.; Ghasemigharagoz, A.; Katzmarski, N.; Krasemann, S.; Lichtenthaler, S.F.; Müller, S.A.; Colombo, A.; Monasor, L.S.; Tahirovic, S.; Herms, J.; Willem, M.; Pettkus, N.; Butovsky, O.; Bartenstein, P.; Edbauer, D.; Rominger, A.; Ertürk, A.; Grathwohl, S.A.; Neher, J.J.; Holtzman, D.M.; Meyer-Luehmann, M.; Haass, C. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat. Neurosci., 2019, 22(2), 191-204.
[http://dx.doi.org/10.1038/s41593-018-0296-9] [PMID: 30617257]
[236]
Friedman, B.A.; Srinivasan, K.; Ayalon, G.; Meilandt, W.J.; Lin, H.; Huntley, M.A.; Cao, Y.; Lee, S.H.; Haddick, P.C.G.; Ngu, H.; Modrusan, Z.; Larson, J.L.; Kaminker, J.S.; van der Brug, M.P.; Hansen, D.V. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep., 2018, 22(3), 832-847.
[http://dx.doi.org/10.1016/j.celrep.2017.12.066] [PMID: 29346778]
[237]
Sala Frigerio, C.; Wolfs, L.; Fattorelli, N.; Thrupp, N.; Voytyuk, I.; Schmidt, I.; Mancuso, R.; Chen, W.T.; Woodbury, M.E.; Srivastava, G.; Möller, T.; Hudry, E.; Das, S.; Saido, T.; Karran, E.; Hyman, B.; Perry, V.H.; Fiers, M.; De Strooper, B. The major risk factors for Alzheimer’s disease: Age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep., 2019, 27(4), 1293-1306.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.03.099] [PMID: 31018141]
[238]
Ellwanger, D.C.; Wang, S.; Brioschi, S.; Shao, Z.; Green, L.; Case, R.; Yoo, D.; Weishuhn, D.; Rathanaswami, P.; Bradley, J.; Rao, S.; Cha, D.; Luan, P.; Sambashivan, S.; Gilfillan, S.; Hasson, S.A.; Foltz, I.N.; van Lookeren Campagne, M.; Colonna, M. Prior activation state shapes the microglia response to antihuman TREM2 in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2021, 118(3), e2017742118.
[http://dx.doi.org/10.1073/pnas.2017742118] [PMID: 33446504]
[239]
Magusali, N.; Graham, A.C.; Piers, T.M.; Panichnantakul, P.; Yaman, U.; Shoai, M.; Reynolds, R.H.; Botia, J.A.; Brookes, K.J.; Guetta-Baranes, T.; Bellou, E.; Bayram, S.; Sokolova, D.; Ryten, M.; Sala Frigerio, C.; Escott-Price, V.; Morgan, K.; Pocock, J.M.; Hardy, J.; Salih, D.A. A genetic link between risk for Alzheimer’s disease and severe COVID-19 outcomes via the OAS1 gene. Brain, 2021, 144(12), 3727-3741.
[http://dx.doi.org/10.1093/brain/awab337] [PMID: 34619763]
[240]
Guerreiro, R.; Bras, J. The age factor in Alzheimer’s disease. Genome Med., 2015, 7(1), 106.
[http://dx.doi.org/10.1186/s13073-015-0232-5] [PMID: 26482651]
[241]
Ou, M.; Zhu, J.; Ji, P.; Li, H.; Zhong, Z.; Li, B.; Pang, J.; Zhang, J.; Zheng, X. Risk factors of severe cases with COVID-19: A meta-analysis. Epidemiol. Infect., 2020, 148, e175.
[http://dx.doi.org/10.1017/S095026882000179X] [PMID: 32782035]
[242]
Di Stadio, A.; Bernitsas, E.; Ralli, M.; Severini, C.; Brenner, M.J.; Angelini, C. OAS1 gene, Spike protein variants and persistent COVID-19-related anosmia: May the olfactory disfunction be a harbinger of future neurodegenerative disease? Eur. Rev. Med. Pharmacol. Sci., 2022, 26(2), 347-349.
[http://dx.doi.org/10.26355/eurrev_202201_27858] [PMID: 35113409]
[243]
Schwabenland, M.; Salié, H.; Tanevski, J.; Killmer, S.; Lago, M.S.; Schlaak, A.E.; Mayer, L.; Matschke, J.; Püschel, K.; Fitzek, A.; Ondruschka, B.; Mei, H.E.; Boettler, T.; Neumann-Haefelin, C.; Hofmann, M.; Breithaupt, A.; Genc, N.; Stadelmann, C.; Saez-Rodriguez, J.; Bronsert, P.; Knobeloch, K.P.; Blank, T.; Thimme, R.; Glatzel, M.; Prinz, M.; Bengsch, B. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity, 2021, 54(7), 1594-1610.e11.
[http://dx.doi.org/10.1016/j.immuni.2021.06.002] [PMID: 34174183]
[244]
Bouayed, J.; Bohn, T. The link between microglia and the severity of COVID-19: The “two-hit” hypothesis. J. Med. Virol., 2021, 93(7), 4111-4113.
[http://dx.doi.org/10.1002/jmv.26984] [PMID: 33788265]
[245]
Hartmann, R.; Walko, G.; Justesen, J. Inhibition of 2′-5′ oligoadenylate synthetase by divalent metal ions. FEBS Lett., 2001, 507(1), 54-58.
[http://dx.doi.org/10.1016/S0014-5793(01)02918-0] [PMID: 11682059]
[246]
Blennow, K.; Zetterberg, H.; Fagan, A.M. Fluid biomarkers in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(9), a006221.
[http://dx.doi.org/10.1101/cshperspect.a006221] [PMID: 22951438]
[247]
McGrowder, D.A.; Miller, F.; Vaz, K.; Nwokocha, C.; Wilson-Clarke, C.; Anderson-Cross, M.; Brown, J.; Anderson-Jackson, L.; Williams, L.; Latore, L.; Thompson, R.; Alexander-Lindo, R. Cerebrospinal fluid biomarkers of Alzheimer’s disease: Current evidence and future perspectives. Brain Sci., 2021, 11(2), 215.
[http://dx.doi.org/10.3390/brainsci11020215] [PMID: 33578866]
[248]
Virhammar, J.; Nääs, A.; Fällmar, D.; Cunningham, J.L.; Klang, A.; Ashton, N.J.; Jackmann, S.; Westman, G.; Frithiof, R.; Blennow, K.; Zetterberg, H.; Kumlien, E.; Rostami, E. Biomarkers for central nervous system injury in cerebrospinal fluid are elevated in COVID-19 and associated with neurological symptoms and disease severity. Eur. J. Neurol., 2021, 28(10), 3324-3331.
[http://dx.doi.org/10.1111/ene.14703] [PMID: 33369818]
[249]
Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological associations of COVID-19. Lancet Neurol., 2020, 19(9), 767-783.
[http://dx.doi.org/10.1016/S1474-4422(20)30221-0]
[250]
Liotta, E.M.; Batra, A.; Clark, J.R.; Shlobin, N.A.; Hoffman, S.C.; Orban, Z.S.; Koralnik, I.J. Frequent neurologic manifestations and encephalopathy-associated morbidity in COVID-19 patients. Ann. Clin. Transl. Neurol., 2020, 7(11), 2221-2230.
[http://dx.doi.org/10.1002/acn3.51210] [PMID: 33016619]
[251]
Whittaker, A.; Anson, M.; Harky, A. Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol. Scand., 2020, 142(1), 14-22.
[http://dx.doi.org/10.1111/ane.13266] [PMID: 32412088]
[252]
Solomon, T. Neurological infection with SARS-CoV-2 — the story so far. Nat. Rev. Neurol., 2021, 17(2), 65-66.
[http://dx.doi.org/10.1038/s41582-020-00453-w] [PMID: 33414554]
[253]
Rathore, S.; Habes, M.; Iftikhar, M.A.; Shacklett, A.; Davatzikos, C. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage, 2017, 155, 530-548.
[http://dx.doi.org/10.1016/j.neuroimage.2017.03.057] [PMID: 28414186]
[254]
Nicholson, P.; Alshafai, L.; Krings, T. Neuroimaging findings in patients with COVID-19. AJNR Am. J. Neuroradiol., 2020, 41(8), 1380-1383.
[http://dx.doi.org/10.3174/ajnr.A6630] [PMID: 32527843]
[255]
Tae, W.S.; Ham, B.J.; Pyun, S.B.; Kang, S.H.; Kim, B.J. Current clinical applications of diffusion-tensor imaging in neurological disorders. J. Clin. Neurol., 2018, 14(2), 129-140.
[http://dx.doi.org/10.3988/jcn.2018.14.2.129] [PMID: 29504292]
[256]
Márquez, F.; Yassa, M.A. Neuroimaging biomarkers for Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 21.
[http://dx.doi.org/10.1186/s13024-019-0325-5] [PMID: 31174557]
[257]
Huang, Y.; Ling, Q.; Manyande, A.; Wu, D.; Xiang, B. Brain imaging changes in patients recovered from COVID-19: A narrative review. Front. Neurosci., 2022, 16, 855868.
[http://dx.doi.org/10.3389/fnins.2022.855868] [PMID: 35527821]
[258]
McMahon, P.J.; Panczykowski, D.M.; Yue, J.K.; Puccio, A.M.; Inoue, T.; Sorani, M.D.; Lingsma, H.F.; Maas, A.I.R.; Valadka, A.B.; Yuh, E.L.; Mukherjee, P.; Manley, G.T.; Okonkwo, D.O.; Casey, S.S.; Cheong, M.; Cooper, S.R.; Dams-O’Connor, K.; Gordon, W.A.; Hricik, A.J.; Lawless, K.; Menon, D.; Schnyer, D.M.; Vassar, M.J. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. J. Neurotrauma, 2015, 32(8), 527-533.
[http://dx.doi.org/10.1089/neu.2014.3635] [PMID: 25264814]
[259]
Kanberg, N.; Ashton, N.J.; Andersson, L.M.; Yilmaz, A.; Lindh, M.; Nilsson, S.; Price, R.W.; Blennow, K.; Zetterberg, H.; Gisslén, M. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology, 2020, 95(12), e1754-e1759.
[http://dx.doi.org/10.1212/WNL.0000000000010111] [PMID: 32546655]
[260]
Ameres, M.; Brandstetter, S.; Toncheva, A.A.; Kabesch, M.; Leppert, D.; Kuhle, J.; Wellmann, S. Association of neuronal injury blood marker neurofilament light chain with mild-to-moderate COVID-19. J. Neurol., 2020, 267(12), 3476-3478.
[http://dx.doi.org/10.1007/s00415-020-10050-y] [PMID: 32647900]
[261]
Kanberg, N.; Simrén, J.; Edén, A.; Andersson, L.M.; Nilsson, S.; Ashton, N.J.; Sundvall, P.D.; Nellgård, B.; Blennow, K.; Zetterberg, H.; Gisslén, M. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine, 2021, 70, 103512.
[http://dx.doi.org/10.1016/j.ebiom.2021.103512] [PMID: 34333238]
[262]
Myhre, P.L.; Prebensen, C.; Strand, H.; Røysland, R.; Jonassen, C.M.; Rangberg, A.; Sørensen, V.; Søvik, S.; Røsjø, H.; Svensson, M.; Erik Berdal, J.; Omland, T. Growth differentiation factor 15 provides prognostic information superior to established cardiovascular and inflammatory biomarkers in unselected patients hospitalized with COVID-19. Circulation, 2020, 142(22), 2128-2137.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050360] [PMID: 33058695]
[263]
Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; Luo, J.; Huang, Z.; Tu, S.; Zhao, Y.; Chen, L.; Xu, D.; Li, Y.; Li, C.; Peng, L.; Li, Y.; Xie, W.; Cui, D.; Shang, L.; Fan, G.; Xu, J.; Wang, G.; Wang, Y.; Zhong, J.; Wang, C.; Wang, J.; Zhang, D.; Cao, B. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet, 2021, 397(10270), 220-232.
[http://dx.doi.org/10.1016/S0140-6736(20)32656-8] [PMID: 33428867]
[264]
Miners, S.; Kehoe, P.G.; Love, S. Cognitive impact of COVID-19: Looking beyond the short term. Alzheimers Res. Ther., 2020, 12(1), 170.
[http://dx.doi.org/10.1186/s13195-020-00744-w] [PMID: 33380345]
[265]
Narayanan, S.; Shanker, A.; Khera, T.; Subramaniam, B. Neurofilament light: A narrative review on biomarker utility. Fac. Rev., 2021, 10, 46.
[http://dx.doi.org/10.12703/r/10-46] [PMID: 34131656]
[266]
Dhiman, K.; Gupta, V.B.; Villemagne, V.L.; Eratne, D.; Graham, P.L.; Fowler, C.; Bourgeat, P.; Li, Q.X.; Collins, S.; Bush, A.I.; Rowe, C.C.; Masters, C.L.; Ames, D.; Hone, E.; Blennow, K.; Zetterberg, H.; Martins, R.N. Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer’s disease. Alzheimers Dement. (Amst.), 2020, 12(1), e12005.
[http://dx.doi.org/10.1002/dad2.12005] [PMID: 32211500]
[267]
Ziff, O.J.; Ashton, N.J.; Mehta, P.R.; Brown, R.; Athauda, D.; Heaney, J.; Heslegrave, A.J.; Benedet, A.L.; Blennow, K.; Checkley, A.M.; Houlihan, C.F.; Gauthier, S.; Rosa-Neto, P.; Fox, N.C.; Schott, J.M.; Zetterberg, H.; Benjamin, L.A.; Paterson, R.W. Amyloid processing in COVID -19-associated neurological syndromes. J. Neurochem., 2022, 161(2), 146-157.
[http://dx.doi.org/10.1111/jnc.15585] [PMID: 35137414]
[268]
Danta, C.C. Calcium channel blockers: A possible potential therapeutic strategy for the treatment of Alzheimer’s dementia patients with SARS-CoV-2 infection. ACS Chem. Neurosci., 2020, 11(15), 2145-2148.
[http://dx.doi.org/10.1021/acschemneuro.0c00391] [PMID: 32662982]
[269]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Feldman, H.H.; Frisoni, G.B.; Hampel, H.; Jagust, W.J.; Johnson, K.A.; Knopman, D.S.; Petersen, R.C.; Scheltens, P.; Sperling, R.A.; Dubois, B. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 2016, 87(5), 539-547.
[http://dx.doi.org/10.1212/WNL.0000000000002923] [PMID: 27371494]
[270]
Allegri, R.F.; Chrem Méndez, P.; Calandri, I.; Cohen, G.; Martín, M.E.; Russo, M.J.; Crivelli, L.; Pertierra, L.; Tapajóz, F.; Clarens, M.F.; Campos, J.; Nahas, F.E.; Vázquez, S.; Surace, E.; Sevlever, G. Prognostic value of ATN Alzheimer biomarkers: 60-month follow-up results from the Argentine Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement. (Amst.), 2020, 12(1), e12026.
[http://dx.doi.org/10.1002/dad2.12026] [PMID: 32490138]
[271]
Hampel, H.; Cummings, J.; Blennow, K.; Gao, P.; Jack, C.R., Jr; Vergallo, A. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat. Rev. Neurol., 2021, 17(9), 580-589.
[http://dx.doi.org/10.1038/s41582-021-00520-w] [PMID: 34239130]
[272]
Abe, K.; Shang, J.; Shi, X.; Yamashita, T.; Hishikawa, N.; Takemoto, M.; Morihara, R.; Nakano, Y.; Ohta, Y.; Deguchi, K.; Ikeda, M.; Ikeda, Y.; Okamoto, K.; Shoji, M.; Takatama, M.; Kojo, M.; Kuroda, T.; Ono, K.; Kimura, N.; Matsubara, E.; Osakada, Y.; Wakutani, Y.; Takao, Y.; Higashi, Y.; Asada, K.; Senga, T.; Lee, L.J.; Tanaka, K. A new serum biomarker set to detect mild cognitive impairment and Alzheimer’s disease by peptidome technology. J. Alzheimers Dis., 2020, 73(1), 217-227.
[http://dx.doi.org/10.3233/JAD-191016] [PMID: 31771070]
[273]
Torretta, E.; Garziano, M.; Poliseno, M.; Capitanio, D.; Biasin, M.; Santantonio, T.A.; Clerici, M.; Lo Caputo, S.; Trabattoni, D.; Gelfi, C. Severity of COVID-19 patients predicted by serum sphingolipids signature. Int. J. Mol. Sci., 2021, 22(19), 10198.
[http://dx.doi.org/10.3390/ijms221910198] [PMID: 34638539]
[274]
den Hoedt, S.; Crivelli, S.M.; Leijten, F.P.J.; Losen, M.; Stevens, J.A.A.; Mané-Damas, M.; de Vries, H.E.; Walter, J.; Mirzaian, M.; Sijbrands, E.J.G.; Aerts, J.M.F.G.; Verhoeven, A.J.M.; Martinez-Martinez, P.; Mulder, M.T. Effects of sex, age, and apolipoprotein E genotype on brain ceramides and sphingosine-1-phosphate in Alzheimer’s disease and control mice. Front. Aging Neurosci., 2021, 13, 765252.
[http://dx.doi.org/10.3389/fnagi.2021.765252] [PMID: 34776936]
[275]
Marfia, G.; Navone, S.; Guarnaccia, L.; Campanella, R.; Mondoni, M.; Locatelli, M.; Barassi, A.; Fontana, L.; Palumbo, F.; Garzia, E.; Ciniglio Appiani, G.; Chiumello, D.; Miozzo, M.; Centanni, S.; Riboni, L. Decreased serum level of sphingosine-1-phosphate: A novel predictor of clinical severity in COVID-19. EMBO Mol. Med., 2021, 13(1), e13424.
[http://dx.doi.org/10.15252/emmm.202013424] [PMID: 33190411]
[276]
Törnquist, K.; Asghar, M.Y.; Srinivasan, V.; Korhonen, L.; Lindholm, D. Sphingolipids as modulators of SARS-CoV-2 infection. Front. Cell Dev. Biol., 2021, 9, 689854.
[http://dx.doi.org/10.3389/fcell.2021.689854] [PMID: 34222257]
[277]
Horton, R. Offline: COVID-19 is not a pandemic. Lancet, 2020, 396(10255), 874.
[http://dx.doi.org/10.1016/S0140-6736(20)32000-6] [PMID: 32979964]
[278]
Cortinovis, M.; Perico, N.; Remuzzi, G. Long-term follow-up of recovered patients with COVID-19. Lancet, 2021, 397(10270), 173-175.
[http://dx.doi.org/10.1016/S0140-6736(21)00039-8] [PMID: 33428868]
[279]
The Lancet. Facing up to long COVID. Lancet, 2020, 396(10266), 1861.
[http://dx.doi.org/10.1016/S0140-6736(20)32662-3] [PMID: 33308453]
[280]
Nath, A. Long-Haul COVID. Neurology, 2020, 95(13), 559-560.
[http://dx.doi.org/10.1212/WNL.0000000000010640] [PMID: 32788251]
[281]
Zhang, W.; Wang, K.; Yin, L.; Zhao, W.; Xue, Q.; Peng, M.; Min, B.; Tian, Q.; Leng, H.; Du, J.; Chang, H.; Yang, Y.; Li, W.; Shangguan, F.; Yan, T.; Dong, H.; Han, Y.; Wang, Y.; Cosci, F.; Wang, H. Mental health and psychosocial problems of medical health workers during the COVID-19 epidemic in China. Psychother. Psychosom., 2020, 89(4), 242-250.
[http://dx.doi.org/10.1159/000507639] [PMID: 32272480]
[282]
Mattioli, F.; Stampatori, C.; Righetti, F.; Sala, E.; Tomasi, C.; De Palma, G. Neurological and cognitive sequelae of Covid-19: A four month follow-up. J. Neurol., 2021, 268(12), 4422-4428.
[http://dx.doi.org/10.1007/s00415-021-10579-6] [PMID: 33932157]
[283]
Morin, L.; Savale, L.; Pham, T.; Colle, R.; Figueiredo, S.; Harrois, A.; Gasnier, M.; Lecoq, A.L.; Meyrignac, O.; Noel, N.; Baudry, E.; Bellin, M.F.; Beurnier, A.; Choucha, W.; Corruble, E.; Dortet, L.; Hardy-Leger, I.; Radiguer, F.; Sportouch, S.; Verny, C.; Wyplosz, B.; Zaidan, M.; Becquemont, L.; Montani, D.; Monnet, X. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA, 2021, 325(15), 1525-1534.
[http://dx.doi.org/10.1001/jama.2021.3331] [PMID: 33729425]
[284]
Costa-Filho, R.C.; Castro-Faria Neto, H.C.; Mengel, J.; Pelajo-Machado, M.; Martins, M.A.; Leite, É.T.; Mendonça-Filho, H.T.; de Souza, T.A.C.B.; Bello, G.B.; Leite, J.P.G. Should COVID-19 be branded to viral thrombotic fever? Mem. Inst. Oswaldo Cruz, 2021, 116, e200552.
[http://dx.doi.org/10.1590/0074-02760200552] [PMID: 33950107]
[285]
Erickson, M.A.; Rhea, E.M.; Knopp, R.C.; Banks, W.A. Interactions of SARS-CoV-2 with the blood-brain barrier. Int. J. Mol. Sci., 2021, 22(5), 2681.
[http://dx.doi.org/10.3390/ijms22052681] [PMID: 33800954]
[286]
Diener, H.C. COVID-19: Angriff auf psyche: Corona-pandemie. MMW Fortschr. Med., 2020, 162(16), 32.
[287]
Varatharaj, A.; Thomas, N.; Ellul, M.A.; Davies, N.W.S.; Pollak, T.A.; Tenorio, E.L.; Sultan, M.; Easton, A.; Breen, G.; Zandi, M.; Coles, J.P.; Manji, H.; Al-Shahi Salman, R.; Menon, D.K.; Nicholson, T.R.; Benjamin, L.A.; Carson, A.; Smith, C.; Turner, M.R.; Solomon, T.; Kneen, R.; Pett, S.L.; Galea, I.; Thomas, R.H.; Michael, B.D.; Allen, C.; Archibald, N.; Arkell, J.; Arthur-Farraj, P.; Baker, M.; Ball, H.; Bradley-Barker, V.; Brown, Z.; Bruno, S.; Carey, L.; Carswell, C.; Chakrabarti, A.; Choulerton, J.; Daher, M.; Davies, R.; Di Marco Barros, R.; Dima, S.; Dunley, R.; Dutta, D.; Ellis, R.; Everitt, A.; Fady, J.; Fearon, P.; Fisniku, L.; Gbinigie, I.; Gemski, A.; Gillies, E.; Gkrania-Klotsas, E.; Grigg, J.; Hamdalla, H.; Hubbett, J.; Hunter, N.; Huys, A-C.; Ihmoda, I.; Ispoglou, S.; Jha, A.; Joussi, R.; Kalladka, D.; Khalifeh, H.; Kooij, S.; Kumar, G.; Kyaw, S.; Li, L.; Littleton, E.; Macleod, M.; Macleod, M.J.; Madigan, B.; Mahadasa, V.; Manoharan, M.; Marigold, R.; Marks, I.; Matthews, P.; Mccormick, M.; Mcinnes, C.; Metastasio, A.; Milburn-McNulty, P.; Mitchell, C.; Mitchell, D.; Morgans, C.; Morris, H.; Morrow, J.; Mubarak Mohamed, A.; Mulvenna, P.; Murphy, L.; Namushi, R.; Newman, E.; Phillips, W.; Pinto, A.; Price, D.A.; Proschel, H.; Quinn, T.; Ramsey, D.; Roffe, C.; Ross Russell, A.; Samarasekera, N.; Sawcer, S.; Sayed, W.; Sekaran, L.; Serra-Mestres, J.; Snowdon, V.; Strike, G.; Sun, J.; Tang, C.; Vrana, M.; Wade, R.; Wharton, C.; Wiblin, L.; Boubriak, I.; Herman, K.; Plant, G. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry, 2020, 7(10), 875-882.
[http://dx.doi.org/10.1016/S2215-0366(20)30287-X] [PMID: 32593341]
[288]
Snyder, H.; de Erausquin, G.A.; Seshadri, S.; Brugha, T. International brain study: SARS-CoV-2 impact on behavior and cognition. Alzheimer's association international cohort study of chronic neurological sequelae of SARS-CoV-2. Alzheimer’s Association, 2021. Available from: https://www.alz.org/research/for_researchers/partnerships/sars-cov2-global-brain-study (Accessed on: 1 April 1st, 2022).
[289]
Brusco, L.I. Alzheimer Y COVID. ALZAR, Alzheimer Argentina, 2020. Available from: http://alzheimer.org.ar/ alzheimer-y-covid/ (Accessed on: 1 April 1st, 2022).
[290]
Erausquin, G.A.; Snyder, H.; Carrillo, M.; Hosseini, A.A.; Brugha, T.S.; Seshadri, S. The chronic neuropsychiatric sequelae of COVID-19: The need for a prospective study of viral impact on brain functioning. Alzheimers Dement., 2021, 17(6), 1056-1065.
[http://dx.doi.org/10.1002/alz.12255] [PMID: 33399270]
[291]
The Lancet Psychiatry. COVID-19 and mental health. Lancet Psychiatry, 2021, 8(2), 87.
[http://dx.doi.org/10.1016/S2215-0366(21)00005-5] [PMID: 33485416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy