Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Effects of GABAergic Agents on Multiple Sclerosis. A Narrative Review of In-vivo Models

Author(s): Еleni Stamoula, Alexandra Ainatzoglou, Ioannis Dardalas, Theofanis Vavilis, Vasileios-Periklis Stamatellos, Spyridon Siafis, Thomas Psathas, Ioanna Boskou and Georgios Papazisis*

Volume 22, Issue 10, 2023

Published on: 20 October, 2022

Page: [1439 - 1452] Pages: 14

DOI: 10.2174/1871527322666221003091444

Price: $65

conference banner
Abstract

Background: Multiple sclerosis (MS) is a lifelong deteriorating disease characterized by multiple heterogeneous symptoms. Being an autoimmune disease of the central nervous system, mainly affecting the myelin sheath of the nerves ordinarily results in neurological symptoms. GABA has numerous effects on the immune cells, altering cytokine production, cell migration and proliferation. Immune cells express GABA receptors making GABA an inflammation modulator. Therefore, GABAergic- associated agents could provide a compatible add-on therapy for MS patients alleviating their symptoms and providing better quality years.

Objective: This review aims to highlight and provide evidence of the potential benefits of a secondary treatment option in MS patients, aiming to better manage this disease.

Methods: We conducted a literature search through PubMed, Scopus and Google Scholar for GABA agonists, antagonists and modulators used in the in vivo model of experimental autoimmune encephalomyelitis (EAE), taking into consideration certain inclusion and exclusion criteria.

Results: In vivo studies for GABA-a and GABA-b agonists and modulators showed regulation of the autoimmune response in EAE mice. Increased preservation of myelinated sensitive fibers and diminished axonal damage in the CNS was also demonstrated. Further, decreased mononuclear inflammatory infiltration, pro-inflammatory cytokines reduction and reduced levels of Reactive oxygen species (ROS) were also reported. Biological results included decreased peak disease severity, duration, clinical scores and EAE incidence in the treatment groups.

Conclusion: GABA agonists and modulators efficiently challenged different aspects of disease pathophysiology in vivo models of EAE. The studies showed a significant relevance of neuroprotection via modulation of the autoimmune response in EAE rats, indicating that they should be considered proper therapeutic candidates for clinical use, while also further clinical studies could empower their administration in clinical practice.

Keywords: GABA, GABAergic, MS, EAE, CNS, immunomodulatory, neuroinflammation.

Graphical Abstract
[1]
Roberts E, Frankel S. γ-Aminobutyric acid in brain: Its formation from glutamic acid. J Biol Chem 1950; 187(1): 55-63.
[http://dx.doi.org/10.1016/S0021-9258(19)50929-2] [PMID: 14794689]
[2]
Erdö SL, Wolff JR. gamma-Aminobutyric acid outside the mammalian brain. J Neurochem 1990; 54(2): 363-72.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb01882.x] [PMID: 2405103]
[3]
Bhat R, Axtell R, Mitra A, et al. Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci USA 2010; 107(6): 2580-5.
[http://dx.doi.org/10.1073/pnas.0915139107] [PMID: 20133656]
[4]
Levite M, Ed. Nerve-Driven Immunity. Vienna: Springer Vienna 2012.
[http://dx.doi.org/10.1007/978-3-7091-0888-8]
[5]
Soghomonian JJ, Martin DL. Two isoforms of glutamate decarboxylase: Why? Trends Pharmacol Sci 1998; 19(12): 500-5.
[http://dx.doi.org/10.1016/S0165-6147(98)01270-X] [PMID: 9871412]
[6]
Dionisio L, De Rosa MJ, Bouzat C, Esandi MC. An intrinsic GABAergic system in human lymphocytes. Neuropharmacology 2011; 60(2-3): 513-9.
[http://dx.doi.org/10.1016/j.neuropharm.2010.11.007] [PMID: 21093461]
[7]
Tillakaratne NJ, Medina-Kauwe L, Gibson KM. gamma- Aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol 1995; 112(2): 247-63.
[8]
Höglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R. The repertoire of solute carriers of family 6: Identification of new human and rodent genes. Biochem Biophys Res Commun 2005; 336(1): 175-89.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.048] [PMID: 16125675]
[9]
Taniguchi H, Okada Y, Seguchi H, et al. High concentration of gamma-aminobutyric acid in pancreatic beta cells. Diabetes 1979; 28(7): 629-33.
[http://dx.doi.org/10.2337/diab.28.7.629] [PMID: 221297]
[10]
Wang Q, Liang X, Wang S. Intra-islet glucagon secretion and action in the regulation of glucose homeostasis. Front Physiol 2013; 3: 485.
[http://dx.doi.org/10.3389/fphys.2012.00485] [PMID: 23316165]
[11]
Bhandage AK, Barragan A. GABAergic signaling by cells of the immune system: More the rule than the exception. Cell Mol Life Sci 2021; 78(15): 5667-79.
[http://dx.doi.org/10.1007/s00018-021-03881-z] [PMID: 34152447]
[12]
Uusi-Oukari M, Korpi ER. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 2010; 62(1): 97-135.
[http://dx.doi.org/10.1124/pr.109.002063] [PMID: 20123953]
[13]
Olsen RW, Sieghart W. International union of pharmacology. LXX. Subtypes of γ-aminobutyric acid(A) receptors: Classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 2008; 60(3): 243-60.
[http://dx.doi.org/10.1124/pr.108.00505] [PMID: 18790874]
[14]
Jin Z, Jin Y, Kumar-Mendu S, Degerman E, Groop L, Birnir B. Insulin reduces neuronal excitability by turning on GABA(A) channels that generate tonic current. PLoS One 2011; 6(1)e16188
[http://dx.doi.org/10.1371/journal.pone.0016188] [PMID: 21264261]
[15]
Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014; 15(10): 637-54.
[http://dx.doi.org/10.1038/nrn3819] [PMID: 25234263]
[16]
Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 2004; 84(3): 835-67.
[http://dx.doi.org/10.1152/physrev.00036.2003] [PMID: 15269338]
[17]
Furr-Stimming E, Boyle A, Schiess M. Spasticity and intrathecal baclofen. Semin Neurol 2014; 34(5): 591-6.
[http://dx.doi.org/10.1055/s-0034-1396012] [PMID: 25520030]
[18]
Guilliams M, Ginhoux F, Jakubzick C, et al. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny. Nat Rev Immunol 2014; 14(8): 571-8.
[http://dx.doi.org/10.1038/nri3712] [PMID: 25033907]
[19]
Bhandage AK, Olivera GC, Kanatani S, et al. A motogenic GABAergic system of mononuclear phagocytes facilitates dissemination of coccidian parasites. In: Hu X, Rothlin CV, Eds. eLife. 2020; 9: p. e60528.
[http://dx.doi.org/10.7554/eLife.60528]
[20]
Goetz T, Arslan A, Wisden W, Wulff P. GABAA receptors: Structure and function in the basal ganglia. In: Tepper JM, Abercrombie ED, Bolam JP, Eds. Progress in Brain Research. Elsevier 2007; pp. 21-41.
[http://dx.doi.org/10.1016/S0079-6123(06)60003-4]
[21]
Davis AM, Penschuck S, Fritschy JM, McCarthy MM. Developmental switch in the expression of GABAA receptor subunits α1 and α2 in the hypothalamus and limbic system of the rat. Brain Res Dev Brain Res 2000; 119(1): 127-38.
[http://dx.doi.org/10.1016/S0165-3806(99)00150-9] [PMID: 10648879]
[22]
Kanatani S, Fuks JM, Olafsson EB, et al. Voltage-dependent calcium channel signaling mediates GABAA receptor-induced migratory activation of dendritic cells infected by Toxoplasma gondii. PLoS Pathog 2017; 13(12)e1006739
[http://dx.doi.org/10.1371/journal.ppat.1006739] [PMID: 29216332]
[23]
Kuhn SA, van Landeghem FKH, Zacharias R, et al. Microglia express GABA B receptors to modulate interleukin release. Mol Cell Neurosci 2004; 25(2): 312-22.
[http://dx.doi.org/10.1016/j.mcn.2003.10.023] [PMID: 15019947]
[24]
Lee M, Schwab C, Mcgeer PL. Astrocytes are GABAergic cells that modulate microglial activity. Glia 2011; 59(1): 152-65.
[http://dx.doi.org/10.1002/glia.21087] [PMID: 21046567]
[25]
Bhandage AK, Hellgren C, Jin Z, Olafsson EB, Sundström-Poromaa I, Birnir B. Expression of GABA receptors subunits in peripheral blood mononuclear cells is gender dependent, altered in pregnancy and modified by mental health. Acta Physiol (Oxf) 2015; 213(3): 575-85.
[http://dx.doi.org/10.1111/apha.12440] [PMID: 25529063]
[26]
Jin Z, Mendu SK, Birnir B. GABA is an effective immunomodulatory molecule. Amino Acids 2013; 45(1): 87-94.
[http://dx.doi.org/10.1007/s00726-011-1193-7] [PMID: 22160261]
[27]
Lozano-Ojalvo D, López-Fandiño R, López-Expósito I. PBMCderived T cells. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Eds. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Cham: Springer International Publishing 2015; pp. 169-180.
[http://dx.doi.org/10.1007/978-3-319-16104-4_16]
[28]
Köchl R, Thelen F, Vanes L, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol 2016; 17(9): 1075-83.
[http://dx.doi.org/10.1038/ni.3495] [PMID: 27400149]
[29]
Bhandage AK, Friedrich LM, Kanatani S, et al. GABAergic signaling in human and murine NK cells upon challenge with Toxoplasma gondii. J Leukoc Biol 2021; 110(4): 617-28.
[http://dx.doi.org/10.1002/JLB.3HI0720-431R] [PMID: 34028876]
[30]
Bhandage AK, Kanatani S, Barragan A. Toxoplasma-Induced Hypermigration of Primary Cortical Microglia Implicates GABAergic Signal-ing. Front Cell Infect Microbiol 2019; 9: 73.
[http://dx.doi.org/10.3389/fcimb.2019.00073] [PMID: 30949457]
[31]
Forkuo GS, Nieman AN, Yuan NY, et al. Alleviation of multiple asthmatic pathologic features with orally available and subtype selective GABA a receptor modulators. Mol Pharm 2017; 14(6): 2088-98.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00183] [PMID: 28440659]
[32]
Alam S, Laughton DL, Walding A, Wolstenholme AJ. Human peripheral blood mononuclear cells express GABAA receptor subunits. Mol Immunol 2006; 43(9): 1432-42.
[http://dx.doi.org/10.1016/j.molimm.2005.07.025] [PMID: 16213022]
[33]
Prud’homme GJ, Glinka Y, Hasilo C, Paraskevas S, Li X, Wang Q. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone. Transplantation 2013; 96(7): 616-23.
[http://dx.doi.org/10.1097/TP.0b013e31829c24be] [PMID: 23851932]
[34]
Kim JK, Kim YS, Lee HM, et al. GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infec-tions. Nat Commun 2018; 9(1): 4184.
[http://dx.doi.org/10.1038/s41467-018-06487-5] [PMID: 30305619]
[35]
Fontainhas AM, Wang M, Liang KJ, et al. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 2011; 6(1)e15973
[http://dx.doi.org/10.1371/journal.pone.0015973] [PMID: 21283568]
[36]
Rane MJ, Gozal D, Butt W, et al. γ-amino butyric acid type B receptors stimulate neutrophil chemotaxis during ischemia-reperfusion. J Immunol 2005; 174(11): 7242-9.
[http://dx.doi.org/10.4049/jimmunol.174.11.7242] [PMID: 15905570]
[37]
Wheeler DW, Thompson AJ, Corletto F, et al. Anaesthetic impairment of immune function is mediated via GABA(A) receptors. PLoS One 2011; 6(2)e17152
[http://dx.doi.org/10.1371/journal.pone.0017152] [PMID: 21390329]
[38]
Fuks JM, Arrighi RBG, Weidner JM, et al. GABAergic signaling is linked to a hypermigratory phenotype in dendritic cells infected by Toxoplasma gondii. PLoS Pathog 2012; 8(12)e1003051
[http://dx.doi.org/10.1371/journal.ppat.1003051] [PMID: 23236276]
[39]
Weidner JM, Barragan A. Tightly regulated migratory subversion of immune cells promotes the dissemination of Toxoplasma gondii. Int J Parasitol 2014; 44(2): 85-90.
[http://dx.doi.org/10.1016/j.ijpara.2013.09.006] [PMID: 24184911]
[40]
Reyes-García MG, Hernández-Hernández F, Hernández-Téllez B, García-Tamayo F. GABA (A) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. J Neuroimmunol 2007; 188(1-2): 64-8.
[http://dx.doi.org/10.1016/j.jneuroim.2007.05.013] [PMID: 17599468]
[41]
Soltani N, Qiu H, Aleksic M, et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci USA 2011; 108(28): 11692-7.
[http://dx.doi.org/10.1073/pnas.1102715108] [PMID: 21709230]
[42]
Wei M, Li L, Meng R, et al. Suppressive effect of diazepam on IFN-γ production by human T cells. Int Immunopharmacol 2010; 10(3): 267-71.
[http://dx.doi.org/10.1016/j.intimp.2009.11.009] [PMID: 19914403]
[43]
Bhandage AK, Jin Z, Korol SV, et al. GABA regulates release of inflammatory cytokines from peripheral blood mononuclear cells and CD4+ T cells and is immunosuppressive in type 1 diabetes. EBioMedicine 2018; 30: 283-94.
[http://dx.doi.org/10.1016/j.ebiom.2018.03.019] [PMID: 29627388]
[44]
Tian J, Chau C, Hales TG, Kaufman DL. GABAA receptors mediate inhibition of T cell responses. J Neuroimmunol 1999; 96(1): 21-8.
[http://dx.doi.org/10.1016/S0165-5728(98)00264-1] [PMID: 10227421]
[45]
Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler 2017; 23(8): 1123-36.
[http://dx.doi.org/10.1177/1352458517694432] [PMID: 28273775]
[46]
Popescu BFG, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: Where do we stand? Continuum 2013; 19(4 Multiple Sclerosis): 901-21.
[http://dx.doi.org/10.1212/01.CON.0000433291.23091.65]
[47]
Egg R, Reindl M, Deisenhammer F, Linington C, Berger T. Anti-MOG and anti-MBP antibody subclasses in multiple sclerosis. Mult Scler 2001; 7(5): 285-9.
[http://dx.doi.org/10.1177/135245850100700503] [PMID: 11724443]
[48]
Holmøy T, Hestvik ALK. Multiple sclerosis: Immunopathogenesis and controversies in defining the cause. Curr Opin Infect Dis 2008; 21(3): 271-8.
[http://dx.doi.org/10.1097/QCO.0b013e3282f88b48] [PMID: 18448972]
[49]
Giralt M, Molinero A, Hidalgo J. Active induction of experimental autoimmune encephalomyelitis (EAE) with MOG35–55 in the mouse. Methods Mol Biol 2018; 1791: 227-32.
[http://dx.doi.org/10.1007/978-1-4939-7862-5_17] [PMID: 30006713]
[50]
Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS. Handb Clin Neurol 2014; 122: 173-89.
[http://dx.doi.org/10.1016/B978-0-444-52001-2.00008-X] [PMID: 24507518]
[51]
Laaker C, Hsu M, Fabry Z, Miller SD, Karpus WJ. Experimental autoimmune encephalomyelitis in the mouse. Curr Protoc 2021; 1(12)e300
[http://dx.doi.org/10.1002/cpz1.300] [PMID: 34870897]
[52]
Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005; 128(11): 2705-12.
[http://dx.doi.org/10.1093/brain/awh641] [PMID: 16230320]
[53]
Kornek B, Storch MK, Weissert R, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: A comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 2000; 157(1): 267-76.
[http://dx.doi.org/10.1016/S0002-9440(10)64537-3] [PMID: 10880396]
[54]
Olerup O, Hillert J. HLA class II-associated genetic susceptibility in multiple sclerosis: A critical evaluation. Tissue Antigens 1991; 38(2): 1-15.
[http://dx.doi.org/10.1111/j.1399-0039.1991.tb02029.x] [PMID: 1926129]
[55]
Gilani AA, Dash RP, Jivrajani MN, Thakur SK, Nivsarkar M. Evaluation of GABAergic transmission modulation as a novel functional target for management of multiple sclerosis: Exploring inhibitory effect of GABA on glutamate-mediated excitotoxicity. Adv Pharmacol Sci 2014; 2014: 1-6.
[http://dx.doi.org/10.1155/2014/632376] [PMID: 24778644]
[56]
De Stefano N, Giorgio A. GABA: A new imaging biomarker of neurodegeneration in multiple sclerosis? Brain 2015; 138(9): 2467-8.
[http://dx.doi.org/10.1093/brain/awv213] [PMID: 26304149]
[57]
Cawley N, Solanky BS, Muhlert N, et al. Reduced gamma-aminobutyric acid concentration is associated with physical disability in pro-gressive multiple sclerosis. Brain 2015; 138(9): 2584-95.
[http://dx.doi.org/10.1093/brain/awv209] [PMID: 26304151]
[58]
Dutta R, McDonough J, Yin X, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 2006; 59(3): 478-89.
[http://dx.doi.org/10.1002/ana.20736] [PMID: 16392116]
[59]
Rossi S, Studer V, Motta C, et al. Inflammation inhibits GABA transmission in multiple sclerosis. Mult Scler 2012; 18(11): 1633-5.
[http://dx.doi.org/10.1177/1352458512440207] [PMID: 22419673]
[60]
Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 2005; 128(5): 1016-25.
[http://dx.doi.org/10.1093/brain/awh467] [PMID: 15758036]
[61]
Tisell A, Leinhard OD, Warntjes JBM, et al. Increased concentrations of glutamate and glutamine in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans. PLoS One 2013; 8(4)e61817
[http://dx.doi.org/10.1371/journal.pone.0061817] [PMID: 23613944]
[62]
Centonze D, Muzio L, Rossi S, et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalo-myelitis. J Neurosci 2009; 29(11): 3442-52.
[http://dx.doi.org/10.1523/JNEUROSCI.5804-08.2009] [PMID: 19295150]
[63]
Long P, Mercer A, Begum R, Stephens GJ, Sihra TS, Jovanovic JN. Nerve terminal GABAA receptors activate Ca2+/Calmodulin-dependent signaling to inhibit voltage-gated Ca2+ influx and glutamate release. J Biol Chem 2009; 284(13): 8726-37.
[http://dx.doi.org/10.1074/jbc.M805322200] [PMID: 19141616]
[64]
Rossi S, Muzio L, De Chiara V, et al. Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis. Brain Behav Immun 2011; 25(5): 947-56.
[http://dx.doi.org/10.1016/j.bbi.2010.10.004] [PMID: 20940040]
[65]
Cumiskey D, Curran BP, Herron CE, O’Connor JJ. A role for inflammatory mediators in the IL-18 mediated attenuation of LTP in the rat dentate gyrus. Neuropharmacology 2007; 52(8): 1616-23.
[http://dx.doi.org/10.1016/j.neuropharm.2007.03.006] [PMID: 17459425]
[66]
Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-α. Nature 2006; 440(7087): 1054-9.
[http://dx.doi.org/10.1038/nature04671] [PMID: 16547515]
[67]
Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necro-sis factor-alpha. J Neurosci 2005; 25(12): 3219-28.
[http://dx.doi.org/10.1523/JNEUROSCI.4486-04.2005] [PMID: 15788779]
[68]
Mizuno T, Zhang G, Takeuchi H, et al. Interferon‐γ directly induces neurotoxicity through a neuron specific, calcium‐permeable com-plex of IFN‐γ receptor and AMPA GluRl receptor. FASEB J 2008; 22(6): 1797-806.
[http://dx.doi.org/10.1096/fj.07-099499] [PMID: 18198214]
[69]
Paul AM, Branton WG, Walsh JG, et al. GABA transport and neuroinflammation are coupled in multiple sclerosis: Regulation of the GABA transporter-2 by ganaxolone. Neuroscience 2014; 273: 24-38.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.037] [PMID: 24814730]
[70]
Noorbakhsh F, Ellestad KK, Maingat F, et al. Impaired neurosteroid synthesis in multiple sclerosis. Brain 2011; 134(9): 2703-21.
[http://dx.doi.org/10.1093/brain/awr200] [PMID: 21908875]
[71]
Ravikumar B, Crawford D, Dellovade T, et al. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of multiple sclerosis. Neuropharmacology 2016; 108: 229-37.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.053] [PMID: 27039042]
[72]
Daugherty DJ, Selvaraj V, Chechneva OV, Liu XB, Pleasure DE, Deng W. A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol Med 2013; 5(6): 891-903.
[http://dx.doi.org/10.1002/emmm.201202124] [PMID: 23681668]
[73]
Núñez-Iglesias MJ, Novío S, Almeida-Dias A, Freire-Garabal M. Inhibitory effects of alprazolam on the development of acute experi-mental autoimmune encephalomyelitis in stressed rats. Pharmacol Biochem Behav 2010; 97(2): 350-6.
[http://dx.doi.org/10.1016/j.pbb.2010.09.002] [PMID: 20833196]
[74]
Vansant G, Trauger RJ, Cameron A, et al. Propofol hemisuccinate suppression of experimental autoimmune encephalomyelitis. Autoimmunity 2007; 40(3): 180-6.
[http://dx.doi.org/10.1080/08916930701204467] [PMID: 17453716]
[75]
Aggelakopoulou M, Kourepini E, Paschalidis N, Panoutsakopoulou V. ERβ in CD4 + T cells is crucial for ligand-mediated suppression of central nervous system autoimmunity. J Immunol 2016; 196(12): 4947-56.
[http://dx.doi.org/10.4049/jimmunol.1600246] [PMID: 27183630]
[76]
Falcón CR, Hurst NF, Vivinetto AL, et al. Diazepam impairs innate and adaptive immune responses and ameliorates experimental auto-immune encephalomyelitis. Front Immunol 2021; 12682612
[http://dx.doi.org/10.3389/fimmu.2021.682612] [PMID: 34354703]
[77]
Bibolini MJ, Chanaday NL, Báez NS, Degano AL, Monferran CG, Roth GA. Inhibitory role of diazepam on autoimmune inflammation in rats with experimental autoimmune encephalomyelitis. Neuroscience 2011; 199: 421-8.
[http://dx.doi.org/10.1016/j.neuroscience.2011.08.076] [PMID: 21964471]
[78]
Fernández Hurst N, Zanetti SR, Báez NS, Bibolini MJ, Bouzat C, Roth GA. Diazepam treatment reduces inflammatory cells and mediators in the central nervous system of rats with experimental autoimmune encephalomyelitis. J Neuroimmunol 2017; 313: 145-51.
[http://dx.doi.org/10.1016/j.jneuroim.2017.09.012] [PMID: 28992974]
[79]
Carmans S, Hendriks JJA, Slaets H, et al. Systemic treatment with the inhibitory neurotransmitter γ-aminobutyric acid aggravates experi-mental autoimmune encephalomyelitis by affecting proinflammatory immune responses. J Neuroimmunol 2013; 255(1-2): 45-53.
[http://dx.doi.org/10.1016/j.jneuroim.2012.11.001] [PMID: 23194644]
[80]
Silva GAA, Pradella F, Moraes A, Farias A, Santos LMB, Oliveira ALR. Impact of pregabalin treatment on synaptic plasticity and glial reactivity during the course of experimental autoimmune encephalomyelitis. Brain Behav 2014; 4(6): 925-35.
[http://dx.doi.org/10.1002/brb3.276] [PMID: 25365796]
[81]
Ghareghani M, Scavo L, Jand Y, et al. Melatonin therapy modulates cerebral metabolism and enhances remyelination by increasing PDK4 in a mouse model of multiple sclerosis. Front Pharmacol 2019; 10: 147-7.
[http://dx.doi.org/10.3389/fphar.2019.00147] [PMID: 30873027]
[82]
Noorbakhsh F, Baker GB, Power C. Allopregnanolone and neuroinflammation: A focus on multiple sclerosis. Front Cell Neurosci 2014; 8(JUN): 134.
[http://dx.doi.org/10.3389/fncel.2014.00134] [PMID: 24917787]
[83]
Allopregnanolone regenerative therapeutic for mild Alzheimer’s disease - Full text view. ClinicalTrialsgov Available from: https://clinicaltrials.gov/ct2/show/NCT04838301 [cited on: 2022 Feb 26].
[84]
Allopregnanolone. ALZFORUM Available from: https://www.alzforum.org/therapeutics/allopregnanolone [cited on: 2022 Feb 27].
[85]
Lyrica. National Multiple Sclerosis Society Available from: https://www.nationalmssociety.org/Treating-MS/Medications/Lyrica [cited on: 2022 Feb 27].
[86]
Bittner S, Höhn K, Göbel K, Kleinschnitz C, Wiendl H, Meuth SG. Pregabalin and gabapentin in multiple sclerosis. Nervenarzt 2011; 82(10): 1273-80.
[http://dx.doi.org/10.1007/s00115-011-3321-8] [PMID: 21647743]
[87]
Barros P, Sá MJ. Management of motor symptoms in multiple sclerosis. Eur Neurol Rev 2013; 8(2): 124-9.
[http://dx.doi.org/10.17925/ENR.2013.08.02.124]
[88]
Schroeder A, Linker RA, Lukas C, Kraus PH, Gold R. Successful treatment of cerebellar ataxia and tremor in multiple sclerosis with topiramate: A case report. Clin Neuropharmacol 2010; 33(6): 317-8.
[http://dx.doi.org/10.1097/WNF.0b013e3181f84a39] [PMID: 21079458]
[89]
Bandini F, Castello E, Mazzella L, Mancardi GL, Solaro C. Gabapentin but not vigabatrin is effective in the treatment of acquired nys-tagmus in multiple sclerosis: How valid is the GABAergic hypothesis? J Neurol Neurosurg Psychiatry 2001; 71(1): 107-10.
[http://dx.doi.org/10.1136/jnnp.71.1.107] [PMID: 11413274]
[90]
Sachais BA, Logue JN, Carey MS. Baclofen, a new antispastic drug. A controlled, multicenter trial in patients with multiple sclerosis. Arch Neurol 1977; 34(7): 422-8.
[http://dx.doi.org/10.1001/archneur.1977.00500190056008] [PMID: 327987]
[91]
Schmidt RT, Lee RH, Spehlmann R. Comparison of dantrolene sodium and diazepam in the treatment of spasticity. J Neurol Neurosurg Psychiatry 1976; 39(4): 350-6.
[http://dx.doi.org/10.1136/jnnp.39.4.350] [PMID: 778344]
[92]
A safety study of combination treatment with avonex and placebocontrolled dosing of topamax in relapsing-remitting multiple sclerosis - Full text view. ClinicalTrialsgov 2011.
[93]
Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011; 164(4): 1079-106.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01302.x] [PMID: 21371012]
[94]
Elgarf AA, Siebert DCB, Steudle F, et al. Different benzodiazepines bind with distinct binding modes to GABA A receptors. ACS Chem Biol 2018; 13(8): 2033-9.
[http://dx.doi.org/10.1021/acschembio.8b00144] [PMID: 29767950]
[95]
Simeone X, Koniuszewski F, Müllegger M, et al. A benzodiazepine ligand with improved gabaa receptor a5-subunit selectivity driven by interactions with loop C. Mol Pharmacol 2021; 99(1): 39-48.
[http://dx.doi.org/10.1124/molpharm.120.000067] [PMID: 33268553]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy