Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Meta-Analysis

Exosomes as Delivery Systems for Targeted Tumour Therapy: A Systematic Review and Meta-analysis of In vitro Studies

Author(s): Suleiman Alhaji Muhammad*, Jaafaru Sani Mohammed and Sulaiman Rabiu

Volume 11, Issue 1, 2023

Published on: 21 November, 2022

Page: [93 - 104] Pages: 12

DOI: 10.2174/2211738510666220930155253

Price: $65

Abstract

Background: Delivery systems with low immunogenicity and toxicity are believed to enhance the efficacy of specific targeted drug delivery to cancer cells. Exosomes are potential natural nanosystems that can enhance the delivery of therapeutic agents for targeted cancer therapy.

Objective: This study provides a precise effect size of exosomes as nanovesicles for in vitro delivery of anticancer agents.

Methods: In this systematic review and meta-analysis, the efficacy of exosomes as nanocarriers for the delivery of therapeutic molecules was investigated using the random-effects model. We did comprehensive literature searches through CINAHL, Cochrane, PubMed, Scopus, and Science Direct of in vitro studies that reported exosomes as delivery systems for cancer therapy.

Results: After the screening of eligible articles, a total of 50 studies were enrolled for the metaanalysis. The results showed that cancer cells treated with exosome-loaded anticancer agents for at least 6 h significantly decreased cell viability and increased cytotoxicity with the standardized mean difference (SMD) of -1.47 (-2.18, -0.76; (p<0.0001) and -1.66 (-2.71, -0.61; p<0.002). Exosomes effectively delivered drugs and exogenous miRNAs, siRNAs, viruses, and enzymes to cancer cells in vitro.

Conclusion: This meta-analysis provides evidence of exosomes as efficient nanocarriers for the delivery of anticancer drugs.

Keywords: Cancer cells, cytotoxicity, drug delivery vehicles, exosomes, in vitro studies, immunotherapy, anticancer agents.

Graphical Abstract
[1]
Bai R, Huang H, Li M, Chu M. Temporal trends in the incidence and mortality of skin malignant melanoma in China from 1990 to 2019. J Oncol 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/9989824] [PMID: 34475955]
[2]
Mihor A, Tomsic S, Zagar T, Lokar K, Zadnik V. Socioeconomic inequalities in cancer incidence in Europe: A comprehensive review of population-based epidemiological studies. Radiol Oncol 2020; 54(1): 1-13.
[http://dx.doi.org/10.2478/raon-2020-0008] [PMID: 32074075]
[3]
Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021; 127(16): 3029-30.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[4]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Butler J, Finley C, Norell CH, et al. New approaches to cancer care in a COVID-19 world. Lancet Oncol 2020; 21(7): e339-40.
[http://dx.doi.org/10.1016/S1470-2045(20)30340-5] [PMID: 32615112]
[6]
Gupta J, Ahuja A, Gupta R. Green approaches for cancers management: An effective tool for health care. Anticancer Agents Med Chem 2022; 22(1): 101-14.
[http://dx.doi.org/10.2174/1871520621666210119091826] [PMID: 33463475]
[7]
Manocha E, Caruso A, Caccuri F. Viral proteins as emerging cancer therapeutics. Cancers 2021; 13(9): 2199.
[http://dx.doi.org/10.3390/cancers13092199] [PMID: 34063663]
[8]
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic acid-based approaches for tumor therapy. Cells 2020; 9(9): 2061.
[http://dx.doi.org/10.3390/cells9092061] [PMID: 32917034]
[9]
Josephs SF, Ichim TE, Prince SM, et al. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med 2018; 16(1): 242.
[http://dx.doi.org/10.1186/s12967-018-1611-7] [PMID: 30170620]
[10]
Gao S, Yang X, Xu J, Qiu N, Zhai G. Nanotechnology for boosting cancer immunotherapy and remodeling tumor microenvironment: The horizons in cancer treatment. ACS Nano 2021; 15(8): 12567-603.
[http://dx.doi.org/10.1021/acsnano.1c02103] [PMID: 34339170]
[11]
Muhammad SA. Are extracellular vesicles new hope in clinical drug delivery for neurological disorders? Neurochem Int 2021; 144: 104955.
[http://dx.doi.org/10.1016/j.neuint.2021.104955] [PMID: 33412233]
[12]
Hu Q, Su H, Li J, et al. Clinical applications of exosome membrane proteins. Precis Clin Med 2020; 3(1): 54-66.
[http://dx.doi.org/10.1093/pcmedi/pbaa007] [PMID: 32257533]
[13]
Sharma S, Masud MK, Kaneti YV, et al. Extracellular vesicle nanoarchitectonics for novel drug delivery applications. Small 2021; 17(42): 2102220.
[http://dx.doi.org/10.1002/smll.202102220] [PMID: 34216426]
[14]
Weng J, Tong HHY, Chow SF. In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics 2020; 12(8): 732.
[http://dx.doi.org/10.3390/pharmaceutics12080732] [PMID: 32759786]
[15]
Muhammad SA, Abbas AY, Imam MU, Saidu Y, Bilbis LS. Efficacy of stem cell secretome in the treatment of traumatic brain injury: A systematic review and meta-analysis of preclinical studies. Mol Neurobiol 2022; 59(5): 2894-909.
[http://dx.doi.org/10.1007/s12035-022-02759-w] [PMID: 35230664]
[16]
Aqil F, Jeyabalan J, Agrawal AK, et al. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct 2017; 8(11): 4100-7.
[http://dx.doi.org/10.1039/C7FO00882A] [PMID: 28991298]
[17]
Aqil F, Munagala R, Jeyabalan J, Agrawal AK, Gupta R. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J 2017; 19(6): 1691-702.
[http://dx.doi.org/10.1208/s12248-017-0154-9] [PMID: 29047044]
[18]
Bai L, Liu Y, Guo K, et al. Ultrasound facilitates naturally equipped exosomes derived from macrophages and blood serum for orthotopic glioma treatment. ACS Appl Mater Interfaces 2019; 11(16): 14576-87.
[http://dx.doi.org/10.1021/acsami.9b00893] [PMID: 30900870]
[19]
Bellavia D, Raimondo S, Calabrese G, et al. Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics 2017; 7(5): 1333-45.
[http://dx.doi.org/10.7150/thno.17092] [PMID: 28435469]
[20]
Coccè V, Franzè S, Brini A, et al. in vitro anticancer activity of Extracellular Vesicles (EVs) secreted by gingival mesenchymal stromal cells primed with paclitaxel. Pharmaceutics 2019; 11(2): 61.
[http://dx.doi.org/10.3390/pharmaceutics11020061] [PMID: 30717104]
[21]
Erkan EP, Senfter D, Madlener S, et al. Extracellular vesicle-mediated suicide mRNA/protein delivery inhibits glioblastoma tumor growth in vivo. Cancer Gene Ther 2017; 24(1): 38-44.
[http://dx.doi.org/10.1038/cgt.2016.78] [PMID: 27982017]
[22]
Fonsato V, Collino F, Herrera MB, et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 2012; 30(9): 1985-98.
[http://dx.doi.org/10.1002/stem.1161] [PMID: 22736596]
[23]
Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 2015; 205: 35-44.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.029] [PMID: 25483424]
[24]
Garofalo M, Saari H, Somersalo P, et al. Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J Control Release 2018; 283: 223-34.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.015] [PMID: 29864473]
[25]
Garofalo M, Villa A, Rizzi N, Kuryk L, Mazzaferro V, Ciana P. Systemic administration and targeted delivery of immunogenic oncolytic adenovirus encapsulated in extracellular vesicles for cancer therapies. Viruses 2018; 10(10): 558.
[http://dx.doi.org/10.3390/v10100558] [PMID: 30322158]
[26]
Gomari H, Forouzandeh Moghadam M, Soleimani M. Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. OncoTargets Ther 2018; 11: 5753-62.
[http://dx.doi.org/10.2147/OTT.S173110] [PMID: 30254468]
[27]
Guo L, Zhang Y, Wei R, Zhang X, Wang C, Feng M. Proinflammatory macrophage-derived microvesicles exhibit tumor tropism dependent on CCL2/CCR2 signaling axis and promote drug delivery via SNARE-mediated membrane fusion. Theranostics 2020; 10(15): 6581-98.
[http://dx.doi.org/10.7150/thno.45528] [PMID: 32550891]
[28]
Hatzidaki E, Vlachou I, Elka A, et al. The use of serum extracellular vesicles for novel small molecule inhibitor cell delivery. Anticancer Drugs 2019; 30(3): 271-80.
[http://dx.doi.org/10.1097/CAD.0000000000000717] [PMID: 30489291]
[29]
He C, Ali JD, Xu H, et al. Epithelial cell -derived microvesicles: A safe delivery platform of CRISPR/Cas9 conferring synergistic anti-tumor effect with sorafenib. Exp Cell Res 2020; 392(2): 112040.
[http://dx.doi.org/10.1016/j.yexcr.2020.112040] [PMID: 32380039]
[30]
Ingato D, Edson JA, Zakharian M, Kwon YJ. Cancer cell-derived, drug-loaded nanovesicles induced by sulfhydryl-blocking for effective and safe cancer therapy. ACS Nano 2018; 12(9): 9568-77.
[http://dx.doi.org/10.1021/acsnano.8b05377] [PMID: 30130093]
[31]
Jia G, Han Y, An Y, et al. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018; 178: 302-16.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.029] [PMID: 29982104]
[32]
Kanchanapally R, Deshmukh SK, Chavva SR, et al. Drug-loaded exosomal preparations from different cell types exhibit distinctive loading capability, yield, and antitumor efficacies: A comparative analysis. Int J Nanomedicine 2019; 14: 531-41.
[http://dx.doi.org/10.2147/IJN.S191313] [PMID: 30666112]
[33]
Ke C, Hou H, Li J, et al. Extracellular vesicle delivery of trail eradicates resistant tumor growth in combination with CDK inhibition by dinaciclib. Cancers 2020; 12(5): 1157.
[http://dx.doi.org/10.3390/cancers12051157] [PMID: 32375399]
[34]
Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release 2017; 266: 8-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.013] [PMID: 28916446]
[35]
Iessi E, Logozzi M, Lugini L, et al. Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: A new prototype for theranostics of tumors. J Enzyme Inhib Med Chem 2017; 32(1): 648-57.
[http://dx.doi.org/10.1080/14756366.2017.1292263] [PMID: 28262028]
[36]
Li Y, Gao Y, Gong C, et al. A33 antibody-functionalized exosomes for targeted delivery of doxorubicin against colorectal cancer. Nanomedicine 2018; 14(7): 1973-85.
[http://dx.doi.org/10.1016/j.nano.2018.05.020] [PMID: 29935333]
[37]
Li G, Wang J, Xu M, et al. Engineered exosome for NIR-triggered drug delivery and superior synergistic chemo-phototherapy in a glioma model. Appl Mater Today 2020; 20: 100723.
[http://dx.doi.org/10.1016/j.apmt.2020.100723]
[38]
Li S, Wu Y, Ding F, et al. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. Nanoscale 2020; 12(19): 10854-62.
[http://dx.doi.org/10.1039/D0NR00523A] [PMID: 32396590]
[39]
Li YJ, Wu JY, Wang JM, Hu XB, Cai JX, Xiang DX. Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. Acta Biomater 2020; 101: 519-30.
[http://dx.doi.org/10.1016/j.actbio.2019.10.022] [PMID: 31629893]
[40]
Li D, Yao S, Zhou Z, Shi J, Huang Z, Wu Z. Hyaluronan decoration of milk exosomes directs tumor-specific delivery of doxorubicin. Carbohydr Res 2020; 493: 108032.
[http://dx.doi.org/10.1016/j.carres.2020.108032] [PMID: 32417443]
[41]
Liu Y, Bai L, Guo K, et al. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy. Theranostics 2019; 9(18): 5261-81.
[http://dx.doi.org/10.7150/thno.33183] [PMID: 31410214]
[42]
Liu J, Ye Z, Xiang M, et al. Functional extracellular vesicles engineered with lipid-grafted hyaluronic acid effectively reverse cancer drug resistance. Biomaterials 2019; 223: 119475.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119475] [PMID: 31520888]
[43]
Liu H, Shen M, Zhao D, Ru D, Duan Y, Ding C, et al. The effect of triptolide-loaded exosomes on the proliferation and apoptosis of human ovarian cancer SKOV3 cells. BioMed Res Int 2019; 2019: e259580.
[44]
Ma J, Zhang Y, Tang K, et al. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res 2016; 26(6): 713-27.
[http://dx.doi.org/10.1038/cr.2016.53] [PMID: 27167569]
[45]
Martins-Marques T, Pinho MJ, Zuzarte M, et al. Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the anti-tumour therapeutic approach with doxorubicin. J Extracell Vesicles 2016; 5(1): 32538.
[http://dx.doi.org/10.3402/jev.v5.32538] [PMID: 27702427]
[46]
Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett 2016; 371(1): 48-61.
[http://dx.doi.org/10.1016/j.canlet.2015.10.020] [PMID: 26604130]
[47]
Nie H, Xie X, Zhang D, et al. Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer. Nanoscale 2020; 12(2): 877-87.
[http://dx.doi.org/10.1039/C9NR09011H] [PMID: 31833519]
[48]
Pan S, Pei L, Zhang A, et al. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials 2020; 230: 119606.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119606] [PMID: 31806405]
[49]
Peng J, Zhao J, Zhao Y, et al. HeLa cell-derived paclitaxel-loaded microparticles efficiently inhibit the growth of cervical carcinoma. Int J Nanomedicine 2020; 15: 6409-20.
[http://dx.doi.org/10.2147/IJN.S246659] [PMID: 32922008]
[50]
Ran L, Tan X, Li Y, et al. Delivery of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy. Biomaterials 2016; 89: 56-66.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.025] [PMID: 26950165]
[51]
Salarpour S, Forootanfar H, Pournamdari M, Ahmadi-Zeidabadi M, Esmaeeli M, Pardakhty A. Paclitaxel incorporated exosomes derived from glioblastoma cells: Comparative study of two loading techniques. Daru 2019; 27(2): 533-9.
[http://dx.doi.org/10.1007/s40199-019-00280-5] [PMID: 31317441]
[52]
Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 2013; 11(1): 88.
[http://dx.doi.org/10.1186/1478-811X-11-88] [PMID: 24245560]
[53]
Srivastava A, Amreddy N, Babu A, et al. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep 2016; 6(1): 38541.
[http://dx.doi.org/10.1038/srep38541] [PMID: 27941871]
[54]
Tang K, Zhang Y, Zhang H, et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun 2012; 3(1): 1282.
[http://dx.doi.org/10.1038/ncomms2282] [PMID: 23250412]
[55]
Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014; 35(7): 2383-90.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[56]
Wang Y, Chen X, Tian B, et al. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics 2017; 7(5): 1360-72.
[http://dx.doi.org/10.7150/thno.16532] [PMID: 28435471]
[57]
Wang P, Wang H, Huang Q, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics 2019; 9(6): 1714-27.
[http://dx.doi.org/10.7150/thno.30716] [PMID: 31037133]
[58]
Wang C, Guan W, Peng J, Chen Y, Xu G, Dou H. Gene/paclitaxel co-delivering nanocarriers prepared by framework-induced self-assembly for the inhibition of highly drug-resistant tumors. Acta Biomater 2020; 103: 247-58.
[http://dx.doi.org/10.1016/j.actbio.2019.12.015] [PMID: 31846802]
[59]
Wei H, Chen J, Wang S, et al. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int J Nanomedicine 2019; 14: 8603-10.
[http://dx.doi.org/10.2147/IJN.S218988] [PMID: 31802872]
[60]
Xin L, Yuan YW, Liu C, et al. Preparation of internalizing rgd-modified recombinant methioninase exosome active targeting vector and antitumor effect evaluation. Dig Dis Sci 2021; 66: 1045-53.
[PMID: 32323072]
[61]
Yuan Z, Kolluri KK, Gowers KHC, Janes SM. TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. J Extracell Vesicles 2017; 6(1): 1265291.
[http://dx.doi.org/10.1080/20013078.2017.1265291] [PMID: 28326166]
[62]
Zhang Y, Li L, Yu J, et al. Microvesicle-mediated delivery of transforming growth factor β1 siRNA for the suppression of tumor growth in mice. Biomaterials 2014; 35(14): 4390-400.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.003] [PMID: 24565517]
[63]
Zhang D, Qin X, Wu T, Qiao Q, Song Q, Zhang Z. Extracellular vesicles based self-grown gold nanopopcorn for combinatorial chemo-photothermal therapy. Biomaterials 2019; 197: 220-8.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.024] [PMID: 30669014]
[64]
Zhang Y, Liu Y, Zhang W, et al. Isolated cell-bound membrane vesicles (CBMVs) as a novel class of drug nanocarriers. J Nanobiotechnology 2020; 18(1): 69.
[http://dx.doi.org/10.1186/s12951-020-00625-2] [PMID: 32375799]
[65]
Zhupanyn P, Ewe A, Büch T, et al. Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA delivery in vitro and in vivo. J Control Release 2020; 319: 63-76.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.032] [PMID: 31866504]
[66]
Maeda H, Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor‐selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med 2018; 7(1): 11.
[http://dx.doi.org/10.1186/s40169-018-0185-6] [PMID: 29541939]
[67]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3(1): 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[68]
Kim H, Jang H, Cho H, et al. Recent advances in exosome-based drug delivery for cancer therapy. Cancers 2021; 13(17): 4435.
[http://dx.doi.org/10.3390/cancers13174435] [PMID: 34503245]
[69]
Zheng Z, Li Z, Xu C, Guo B, Guo P. Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping. J Control Release 2019; 311-312: 43-9.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.021] [PMID: 31446085]
[70]
Shehzad A, Ul-Islam M, Wahid F, Lee YS. Multifunctional polymeric nanocurcumin for cancer therapy. J Nanosci Nanotechnol 2014; 14(1): 803-14.
[http://dx.doi.org/10.1166/jnn.2014.9103] [PMID: 24730299]
[71]
Wong PT, Choi SK. Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev 2015; 115(9): 3388-432.
[http://dx.doi.org/10.1021/cr5004634] [PMID: 25914945]
[72]
Seow Y, Wood MJ. Biological gene delivery vehicles: Beyond viral vectors. Mol Ther 2009; 17(5): 767-77.
[http://dx.doi.org/10.1038/mt.2009.41] [PMID: 19277019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy