Mini-Review Article

MicroRNAs as a New Target for Alzheimer's Disease Treatment

Author(s): Behrouz Shademan*, Cigir Biray Avci, Vahidreza Karamad, Fatma Sogutlu and Alireza Nourazarian

Volume 12, Issue 1, 2023

Published on: 18 November, 2022

Page: [3 - 12] Pages: 10

DOI: 10.2174/2211536611666220928154015

Price: $65

Abstract

Alzheimer's disease (AD) is the most common progressive neurodegenerative disease associated with advanced age. It is characterized by cognitive decline and memory loss and accounts for most cases of dementia in older people. AD can be rooted in genetic, epigenetic, or environmental causes. No drugs or other therapeutic agents prevent or delay AD progression. MicroRNAs (miRNAs) are short and uncoded RNAs that can bind to 200 RNAs approximately. By inhibiting or destroying specific messenger RNAs (mRNAs), they control gene expression and broadly affect cellular functions. MiRNAs play important roles in regulating neuronal growth, neuronal differentiation, dendritic spine morphology, and synaptic flexibility in the nervous system. The expression levels of miRNAs are changed in neurological diseases, including AD, suggesting that they play an essential role in the pathogenesis of the disease. Therefore, targeting disrupted miRNAs may be a novel therapeutic approach against AD and offers multiple solutions, including harnessing the beneficial effects of beta-amyloid, reducing tau protein, reducing neuronal cell death, and protecting synapses in AD.

Keywords: MicroRNA, Alzheimer's disease, tau protein, Neurodegenerative disease, Huntington's disease, Parkinson’s disease.

Graphical Abstract
[1]
Moya-Alvarado G, Gershoni-Emek N, Perlson E, Bronfman FC. Neurodegeneration and Alzheimer’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? Mol Cell Proteomics 2016; 15(2): 409-25.
[http://dx.doi.org/10.1074/mcp.R115.053330] [PMID: 26657538]
[2]
Shademan B, Biray Avci C, Nikanfar M, Nourazarian A. Application of next-generation sequencing in neurodegenerative diseases: Opportunities and challenges. Neuromolecular Med 2021; 23(2): 225-35.
[http://dx.doi.org/10.1007/s12017-020-08601-7] [PMID: 32399804]
[3]
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s disease. BioMed Res Int 2016; 2016: 1-17.
[http://dx.doi.org/10.1155/2016/2589276] [PMID: 27547756]
[4]
Shademan B, Karamad V, Nourazarian A, et al. MicroRNAs as targets for cancer diagnosis: Interests and limitations. Adv Pharm Bull 2022. Available from:
[http://dx.doi.org/10.34172/apb.2023.047]
[5]
Luqmani YA, Khajah MA. MicroRNA in breast cancer-Gene regulators and targets for novel therapies. A Concise Rev Mol Pathol. Breast Cancer 2015.
[http://dx.doi.org/10.5772/59428]
[6]
Saito K, Ishizuka A, Siomi H, Siomi MC. Processing of premicroRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 2005; 3(7): e235.
[http://dx.doi.org/10.1371/journal.pbio.0030235] [PMID: 15918769]
[7]
Catanesi M, d’Angelo M, Tupone MG, et al. MicroRNAs dysregulation and mitochondrial dysfunction in neurodegenerative diseases. Int J Mol Sci 2020; 21(17): 5986.
[http://dx.doi.org/10.3390/ijms21175986] [PMID: 32825273]
[8]
Specjalski K, Jassem E. MicroRNAs: potential biomarkers and targets of therapy in allergic diseases? Arch Immunol Ther Exp (Warsz) 2019; 67(4): 213-23.
[http://dx.doi.org/10.1007/s00005-019-00547-4] [PMID: 31139837]
[9]
Miya Shaik M, Tamargo I, Abubakar M, Kamal M, Greig N, Gan S. The role of microRNAs in Alzheimer’s disease and their therapeutic potentials. Genes (Basel) 2018; 9(4): 174.
[http://dx.doi.org/10.3390/genes9040174] [PMID: 29561798]
[10]
Radaghdam S, Karamad V, Nourazarian A, Shademan B. khaki-khatibi F, Nikanfar M. Molecular mechanisms of sex hormones in the development and progression of Alzheimer’s disease. Neurosci Lett 2021; 764: 136221.
[http://dx.doi.org/10.1016/j.neulet.2021.136221] [PMID: 34500000]
[11]
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 2020; 15(1): 40.
[http://dx.doi.org/10.1186/s13024-020-00391-7] [PMID: 32677986]
[12]
Zhou Y, Sun Y, Ma QH, Liu Y. Alzheimer’s disease: Amyloid-based pathogenesis and potential therapies. Cell Stress 2018; 2(7): 150-61.
[http://dx.doi.org/10.15698/cst2018.07.143] [PMID: 31225482]
[13]
Bird TD. Genetic aspects of Alzheimer disease. Genet Med 2008; 10(4): 231-9.
[http://dx.doi.org/10.1097/GIM.0b013e31816b64dc] [PMID: 18414205]
[14]
Chen G, Xu T, Yan Y, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38(9): 1205-35.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[15]
Stakos DA, Stamatelopoulos K, Bampatsias D, et al. The Alzheimer’s disease amyloid-beta hypothesis in cardiovascular aging and disease: JACC focus seminar. J Am Coll Cardiol 2020; 75(8): 952-67.
[http://dx.doi.org/10.1016/j.jacc.2019.12.033] [PMID: 32130931]
[16]
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Aβ in Alzheimer’s disease: Reassessing the role of microglia and monocytes. Cell Mol Life Sci 2017; 74(12): 2167-201.
[http://dx.doi.org/10.1007/s00018-017-2463-7] [PMID: 28197669]
[17]
Games D, Adams D, Alessandrini R, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 1995; 373(6514): 523-7.
[http://dx.doi.org/10.1038/373523a0] [PMID: 7845465]
[18]
Suárez-Calvet M, Belbin O, Pera M, et al. Autosomal-dominant Alzheimer’s disease mutations at the same codon of amyloid precursor protein differentially alter Aβ production. J Neurochem 2014; 128(2): 330-9.
[http://dx.doi.org/10.1111/jnc.12466] [PMID: 24117942]
[19]
Lacor PN, Buniel MC, Furlow PW, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 2007; 27(4): 796-807.
[http://dx.doi.org/10.1523/JNEUROSCI.3501-06.2007] [PMID: 17251419]
[20]
Barbier P, Zejneli O, Martinho M, et al. Role of tau as a microtubule-associated protein: Structural and functional aspects. Front Aging Neurosci 2019; 11: 204.
[http://dx.doi.org/10.3389/fnagi.2019.00204] [PMID: 31447664]
[21]
Duggal P, Mehan S. Neuroprotective approach of anti-cancer microtubule stabilizers against tauopathy associated dementia: Current status of clinical and preclinical findings. J Alzheimers Dis Rep 2019; 3(1): 179-218.
[http://dx.doi.org/10.3233/ADR-190125] [PMID: 31435618]
[22]
Šimić G, Babić Leko M, Wray S, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 2016; 6(1): 6.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[23]
Gao YL, Wang N, Sun FR, Cao XP, Zhang W, Yu JT. Tau in neurodegenerative disease. Ann Transl Med 2018; 6(10): 9.
[http://dx.doi.org/10.21037/atm.2018.04.23]
[24]
Paula VJR. Guimarمes FM, Diniz BS, Forlenza OV. Neurobiological pathways to Alzheimer’s disease: Amyloid-beta, TAU protein or both? Dement Neuropsychol 2009; 3(3): 188-94.
[http://dx.doi.org/10.1590/S1980-57642009DN30300003] [PMID: 29213627]
[25]
Gunel NS, Birden N, Kurt CC, et al. Effect of valproic acid on miRNAs affecting histone deacetylase in a model of anaplastic thyroid cancer. Mol Biol Rep 2021; 48(8): 6085-91.
[http://dx.doi.org/10.1007/s11033-021-06616-2] [PMID: 34374891]
[26]
Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014; 2014: 1-15.
[http://dx.doi.org/10.1155/2014/970607] [PMID: 25180174]
[27]
Chen X, Liang H, Zhang J, Zen K, Zhang CY. Horizontal transfer of microRNAs: Molecular mechanisms and clinical applications. Protein Cell 2012; 3(1): 28-37.
[http://dx.doi.org/10.1007/s13238-012-2003-z] [PMID: 22314808]
[28]
Lekka E, Hall J. Noncoding RNA s in disease. FEBS Lett 2018; 592(17): 2884-900.
[http://dx.doi.org/10.1002/1873-3468.13182] [PMID: 29972883]
[29]
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1(1): 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[30]
Shademan B, Nourazarian A, Nikanfar M, Biray Avci C, Hasanpour M, Isazadeh A. Investigation of the miRNA146a and miRNA155 gene expression levels in patients with multiple sclerosis. J Clin Neurosci 2020; 78: 189-93.
[http://dx.doi.org/10.1016/j.jocn.2020.04.071] [PMID: 32331943]
[31]
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci 2018; 8(9): 177.
[http://dx.doi.org/10.3390/brainsci8090177] [PMID: 30223579]
[32]
Chen D, Hu S, Wu Z, Liu J, Li S. The role of MiR-132 in regulating neural stem cell proliferation, differentiation and neuronal maturation. Cell Physiol Biochem 2018; 47(6): 2319-30.
[http://dx.doi.org/10.1159/000491543] [PMID: 29982261]
[33]
Adlakha YK, Saini N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 2014; 13(1): 33.
[http://dx.doi.org/10.1186/1476-4598-13-33] [PMID: 24555688]
[34]
Ristori E, Lopez-Ramirez MA, Narayanan A, et al. Dicer-miR-107 interaction regulates biogenesis of specific miRNAs crucial for neurogenesis. Dev Cell 2015; 32(5): 546-60.
[http://dx.doi.org/10.1016/j.devcel.2014.12.013] [PMID: 25662174]
[35]
Hollins SL, Cairns MJ. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 2016; 143: 61-81.
[http://dx.doi.org/10.1016/j.pneurobio.2016.06.005] [PMID: 27317386]
[36]
Sharma S, Lu HC. microRNAs in neurodegeneration: Current findings and potential impacts. J Alzheimers Dis Parkinsonism 2018; 8(1): 420.
[http://dx.doi.org/10.4172/2161-0460.1000420] [PMID: 29862137]
[37]
Kou X, Chen D, Chen N. The regulation of microRNAs in Alzheimer’s disease. Front Neurol 2020; 11: 288.
[http://dx.doi.org/10.3389/fneur.2020.00288] [PMID: 32362867]
[38]
Schipper HM, Maes OC, Chertkow HM, Wang E. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 2007; 1: GRSB-S361.
[http://dx.doi.org/10.4137/GRSB.S361]
[39]
Harris JP, Burrell JC, Struzyna LA, et al. Emerging regenerative medicine and tissue engineering strategies for Parkinson’s disease. NPJ Parkinsons Dis 2020; 6(1): 4.
[http://dx.doi.org/10.1038/s41531-019-0105-5] [PMID: 31934611]
[40]
Harraz MM, Dawson TM, Dawson VL. MicroRNAs in Parkinson’s disease. J Chem Neuroanat 2011; 42(2): 127-30.
[http://dx.doi.org/10.1016/j.jchemneu.2011.01.005]
[41]
Sanchez-Simon FM, Zhang XX, Loh HH, Law PY, Rodriguez RE. Morphine regulates dopaminergic neuron differentiation via miR-133b. Mol Pharmacol 2010; 78(5): 935-42.
[http://dx.doi.org/10.1124/mol.110.066837] [PMID: 20716624]
[42]
Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AY. Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J Bioenerg Biomembr 2019; 51(3): 175-88.
[http://dx.doi.org/10.1007/s10863-019-09798-4] [PMID: 31054074]
[43]
Chen Y, Gao C, Sun Q, et al. MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Front Aging Neurosci 2017; 9: 232.
[http://dx.doi.org/10.3389/fnagi.2017.00232] [PMID: 28785216]
[44]
Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett 2015; 589(3): 319-25.
[http://dx.doi.org/10.1016/j.febslet.2014.12.014] [PMID: 25541488]
[45]
Rüb U, Seidel K, Heinsen H, Vonsattel JP, den Dunnen WF, Korf HW. Huntington’s disease (HD): The neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol 2016; 26(6): 726-40.
[http://dx.doi.org/10.1111/bpa.12426] [PMID: 27529157]
[46]
Pajarillo E, Rizor A, Son DS, Aschner M, Lee E. The transcription factor REST up-regulates tyrosine hydroxylase and antiapoptotic genes and protects dopaminergic neurons against manganese toxicity. J Biol Chem 2020; 295(10): 3040-54.
[http://dx.doi.org/10.1074/jbc.RA119.011446] [PMID: 32001620]
[47]
Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P. Bjöِrkqvist M. Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 2011; 20(11): 2225-37.
[http://dx.doi.org/10.1093/hmg/ddr111] [PMID: 21421997]
[48]
Amakiri N, Kubosumi A, Tran J, Reddy PH. Amyloid beta and microRNAs in Alzheimer’s disease. Front Neurosci 2019; 13: 430.
[http://dx.doi.org/10.3389/fnins.2019.00430] [PMID: 31130840]
[49]
Shah P, Cho SK, Thulstrup PW, et al. MicroRNA biomarkers in neurodegenerative diseases and emerging nanosensors technology. J Mov Disord 2017; 10(1): 18-28.
[http://dx.doi.org/10.14802/jmd.16037] [PMID: 28122423]
[50]
Kao YC, Wang IF, Tsai KJ. miRNA-34c overexpression causes dendritic loss and memory decline. Int J Mol Sci 2018; 19(8): 2323.
[http://dx.doi.org/10.3390/ijms19082323] [PMID: 30096777]
[51]
Wang X, Liu D, Huang HZ, et al. A novel microRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in Alzheimer’s disease. Biologic psychiatry 2018; 83(5): 395-405.
[http://dx.doi.org/10.1016/j.biopsych.2017.07.023]
[52]
Wang M, Qin L, Tang B. MicroRNAs in Alzheimer’s disease. Front Genet 2019; 10: 153.
[http://dx.doi.org/10.3389/fgene.2019.00153] [PMID: 30881384]
[53]
Hu YK, Wang X, Li L, Du YH, Ye HT, Li CY. MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull 2013; 29(6): 745-51.
[http://dx.doi.org/10.1007/s12264-013-1348-5] [PMID: 23740209]
[54]
Chopra N, Wang R, Maloney B, et al. MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry 2020; 1-22.
[http://dx.doi.org/10.1038/s41380-019-0610-2] [PMID: 31942037]
[55]
Fang M, Wang J, Zhang X, et al. The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 2012; 209(1): 94-105.
[http://dx.doi.org/10.1016/j.toxlet.2011.11.032] [PMID: 22178568]
[56]
Reddy PH, Tonk S, Kumar S, et al. A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease. Biochem Biophys Res Commun 2017; 483(4): 1156-65.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.067] [PMID: 27524239]
[57]
Turab Naqvi AA, Hasan GM, Hassan MI. Targeting Tau hyperphosphorylation via kinase inhibition: Strategy to address Alzheimer’s disease. Curr Top Med Chem 2020; 20(12): 1059-73.
[http://dx.doi.org/10.2174/1568026620666200106125910] [PMID: 31903881]
[58]
Schonrock N, Humphreys DT, Preiss T. , Göِtz J. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β. J Mol Neurosci 2012; 46(2): 324-35.
[http://dx.doi.org/10.1007/s12031-011-9587-2] [PMID: 21720722]
[59]
Basavaraju M, de Lencastre A. Alzheimer’s disease: Presence and role of microRNAs. Biomol Concepts 2016; 7(4): 241-52.
[http://dx.doi.org/10.1515/bmc-2016-0014] [PMID: 27505094]
[60]
Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 2007; 18(3): 297-300.
[http://dx.doi.org/10.1097/WNR.0b013e3280148e8b] [PMID: 17314675]
[61]
Baumann V, Winkler J. miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem 2014; 6(17): 1967-84.
[http://dx.doi.org/10.4155/fmc.14.116] [PMID: 25495987]
[62]
Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci 2020; 21(5): 1723.
[http://dx.doi.org/10.3390/ijms21051723] [PMID: 32138313]
[63]
Walayat A, Yang M, Xiao D. Therapeutic implication of miRNA in human disease. In: Antisense therapy. IntechOpen 2018.
[http://dx.doi.org/10.5772/intechopen.82738]
[64]
Nguyen DD, Chang S. Development of novel therapeutic agents by inhibition of oncogenic microRNAs. Int J Mol Sci 2017; 19(1): 65.
[http://dx.doi.org/10.3390/ijms19010065] [PMID: 29280958]
[65]
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol 2018; 15(3): 338-52.
[http://dx.doi.org/10.1080/15476286.2018.1445959] [PMID: 29570036]
[66]
Ottosen S, Parsley TB, Yang L, et al. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel antihepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother 2015; 59(1): 599-608.
[http://dx.doi.org/10.1128/AAC.04220-14] [PMID: 25385103]
[67]
Ge P, Zhang J, Zhou L, et al. CircRNA expression profile and functional analysis in testicular tissue of patients with non-obstructive azoospermia. Reprod Biol Endocrinol 2019; 17(1): 100.
[http://dx.doi.org/10.1186/s12958-019-0541-4] [PMID: 31775841]
[68]
Barta T, Peskova L, Hampl A. miRNAsong: A web-based tool for generation and testing of miRNA sponge constructs in silico. Sci Rep 2016; 6(1): 36625.
[http://dx.doi.org/10.1038/srep36625] [PMID: 27857164]
[69]
Ono K. Functions of microRNA-33a/b and microRNA therapeutics. J Cardiol 2016; 67(1): 28-33.
[http://dx.doi.org/10.1016/j.jjcc.2015.10.017]
[70]
Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9(10): 775-89.
[http://dx.doi.org/10.1038/nrd3179] [PMID: 20885409]
[71]
Wang Z. The principles of MiRNA-masking antisense oligonucleotides technology. In: MicroRNA and Cancer. Totowa, NJ: Hum Press 2011; pp. 43-9.
[http://dx.doi.org/10.1007/978-1-60761-863-8_3]
[72]
Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigen 2019; 11(1): 1-24.
[http://dx.doi.org/10.1186/s13148-018-0587-8]
[73]
Barbu MG, Condrat CE, Thompson DC, et al. MicroRNA involvement in signaling pathways during viral infection. Front Cell Dev Biol 2020; 8: 143.
[http://dx.doi.org/10.3389/fcell.2020.00143] [PMID: 32211411]
[74]
Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A. Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed 2008; 47(39): 7482-4.
[http://dx.doi.org/10.1002/anie.200801555] [PMID: 18712719]
[75]
Segal M, Slack FJ. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin Drug Discov 2020; 15(9): 987-91.
[http://dx.doi.org/10.1080/17460441.2020.1765770] [PMID: 32421364]
[76]
Imani S, Wu RC, Fu J. MicroRNA-34 family in breast cancer: From research to therapeutic potential. J Cancer 2018; 9(20): 3765-75.
[http://dx.doi.org/10.7150/jca.25576] [PMID: 30405848]
[77]
Hasakova K, Reis R, Vician M, Zeman M, Herichova I. Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression. PLoS One 2019; 14(10): e0224396.
[http://dx.doi.org/10.1371/journal.pone.0224396] [PMID: 31658284]
[78]
Chen Y, Zhao H, Tan Z, Zhang C, Fu X. Bottleneck limitations for microRNA-based therapeutics from bench to the bedside. Pharmazie 2015; 70(3): 147-54.
[PMID: 25980175]
[79]
Purow B. The elephant in the room: Do microRNA-based therapies have a realistic chance of succeeding for brain tumors such as glioblastoma? J Neurooncol 2011; 103(3): 429-36.
[http://dx.doi.org/10.1007/s11060-010-0449-5]
[80]
Gulyaeva LF, Kushlinskiy NE. Regulatory mechanisms of microRNA expression. J Transl Med 2016; 14(1): 143.
[http://dx.doi.org/10.1186/s12967-016-0893-x] [PMID: 27197967]
[81]
Chen P, Edelman JD, Gharib SA. Comparative evaluation of miRNA expression between in vitro and in vivo airway epithelium demonstrates widespread differences. Am J Pathol 2013; 183(5): 1405-10.
[http://dx.doi.org/10.1016/j.ajpath.2013.07.007] [PMID: 24001474]
[82]
Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA therapeutics in cancer—an emerging concept. EBioMedicine 2016; 12: 34-42.
[http://dx.doi.org/10.1016/j.ebiom.2016.09.017] [PMID: 27720213]
[83]
Wood H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat Rev Neurol 2018; 14(10): 570.
[http://dx.doi.org/10.1038/s41582-018-0065-0]
[84]
Ma R, Yi B, Piazza GA, Xi Y. Mechanistic role of MicroRNA in cancer chemoprevention by nonsteroidal anti-inflammatory drugs. Curr Pharmacol Rep 2015; 1(3): 154-60.
[http://dx.doi.org/10.1007/s40495-014-0011-9] [PMID: 26213681]
[85]
Wang G, Huang Y, Wang LL, et al. MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Sci Rep 2016; 6(1): 26697.
[http://dx.doi.org/10.1038/srep26697] [PMID: 27221467]
[86]
Cheng HS, Sivachandran N, Lau A, et al. Micro RNA ‐146 represses endothelial activation by inhibiting pro‐inflammatory pathways. EMBO Mol Med 2013; 5(7): 1017-34.
[http://dx.doi.org/10.1002/emmm.201202318] [PMID: 23733368]
[87]
Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory microRNAs and their potential for inflammatory diseases treatment. Front Immunol 2018; 9: 1377.
[http://dx.doi.org/10.3389/fimmu.2018.01377] [PMID: 29988529]
[88]
Zhou Y, Wang ZF, Li W, et al. Retracted: Protective effects of microRNA‐330 on amyloid β‐protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer’s disease by targeting VAV1 via the MAPK signaling pathway. J Cell Biochem 2018; 119(7): 5437-48.
[http://dx.doi.org/10.1002/jcb.26700] [PMID: 29369410]
[89]
An F, Gong G, Wang Y, Bian M, Yu L, Wei C. MiR-124 acts as a target for Alzheimer’s disease by regulating BACE1. Oncotarget 2017; 8(69): 114065-71.
[http://dx.doi.org/10.18632/oncotarget.23119] [PMID: 29371969]
[90]
Burak K, Lamoureux L, Boese A, et al. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptomatic prion disease. Neurobiol Dis 2018; 112: 1-13.
[http://dx.doi.org/10.1016/j.nbd.2017.12.011] [PMID: 29277556]
[91]
Parsi S, Smith PY, Goupil C, Dorval V, Hébert SS. Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for Alzheimer’s disease. Mol Ther Nucleic Acids 2015; 4: e256.
[http://dx.doi.org/10.1038/mtna.2015.33] [PMID: 26440600]
[92]
Feng MG, Liu CF, Chen L, et al. MiR-21 attenuates apoptosis-triggered by amyloid-β via modulating PDCD4/PI3K/AKT/GSK-3β pathway in SH-SY5Y cells. Biomed Pharmacother 2018; 101: 1003-7.
[http://dx.doi.org/10.1016/j.biopha.2018.02.043] [PMID: 29635890]
[93]
Yang G, Song Y, Zhou X, et al. MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol Med Rep 2015; 12(2): 3081-8.
[http://dx.doi.org/10.3892/mmr.2015.3728] [PMID: 25955795]
[94]
Smith PY, Delay C, Girard J, et al. MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum Mol Genet 2011; 20(20): 4016-24.
[http://dx.doi.org/10.1093/hmg/ddr330] [PMID: 21807765]
[95]
Geekiyanage H, Chan C. MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β novel targets in sporadic Alzheimer’s disease. J Neurosci 2011; 31(41): 14820-30.
[http://dx.doi.org/10.1523/JNEUROSCI.3883-11.2011] [PMID: 21994399]
[96]
Lu Y, Tan L, Wang X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease. Neurosci Bull 2019; 35(5): 877-88.
[http://dx.doi.org/10.1007/s12264-019-00361-0] [PMID: 30887246]
[97]
Hébert SS, Horré K, Nicolaï L, et al. MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis 2009; 33(3): 422-8.
[http://dx.doi.org/10.1016/j.nbd.2008.11.009] [PMID: 19110058]
[98]
Santa-Maria I, Alaniz ME, Renwick N, et al. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Invest 2015; 125(2): 681-6.
[http://dx.doi.org/10.1172/JCI78421] [PMID: 25574843]
[99]
Delay C, Calon F, Mathews P, Hébert SS. Alzheimer-specific variants in the 3'UTR of amyloid precursor protein affect microRNA function. Mol Neurodegener 2011; 6(1): 70.
[http://dx.doi.org/10.1186/1750-1326-6-70] [PMID: 21982160]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy