Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Antiviral Activity of Bee Products

Author(s): Theodoros Kontogiannis, Tilemachos G. Dimitriou, Nikos Asoutis Didaras and Dimitris Mossialos*

Volume 28, Issue 35, 2022

Published on: 03 October, 2022

Page: [2867 - 2878] Pages: 12

DOI: 10.2174/1381612828666220928110103

Price: $65

Abstract

Honey bees provide many products exerting a wide range of benefits to humans. Honey, propolis, royal jelly, beeswax, bee venom, bee pollen and bee bread have been used as natural medicines since ancient times because of their therapeutic effects. These products have demonstrated healing properties against wounds, diabetes, gastrointestinal diseases, cancer, asthma, neurological diseases, bacterial and viral infections. The antibacterial and antibiofilm activity of honey bee products is widely studied, and a huge body of evidence supports it. On the other hand, their antiviral effect has not been extensively studied. However, recent research has demonstrated their potential against various viral infections including SARS-CoV-2. Hence, honey bee products could be alternatives to treat viral diseases, especially when there is no effective treatment available. This narrative review aims to present up-to-date data (including ongoing clinical trials) regarding the antiviral activity of honey bee products, aiming to elucidate how honey bee product supplementation contributes to antiviral treatment.

Keywords: Antiviral, bee products, honey, propolis, royal jelly, bee bread, pollen.

[1]
Webster TC. Honey bee, Apis mellifera (Hymenoptera: Apidae) Encyclopedia of Entomology Dordrecht. Dordrecht: Springer 2008; pp. 1835-40.
[http://dx.doi.org/10.1007/978-1-4020-6359-6_1376]
[2]
Trumbeckaite S, Dauksiene J, Bernatoniene J, Janulis V. Knowledge, attitudes, and usage of apitherapy for disease prevention and treatment among undergraduate pharmacy students in Lithuania. Evid Based Complement Alternat Med 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/172502] [PMID: 26697094]
[3]
Kuropatnicki AK, Szliszka E, Krol W. Historical aspects of propolis research in modern times. Evid Based Complement Alternat Med 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/964149] [PMID: 23710243]
[4]
Yucel B, Topal E, Kosoglu M. Bee products as functional food. In: Waisundara V, Shiomi NR, Eds. Superfood and Functional Food - An Overview of Their Processing and Utilization. London: InTech 2017.
[http://dx.doi.org/10.5772/65477]
[5]
Samarghandian S, Farkhondeh T, Samini F. Honey and health: A review of recent clinical research. Pharmacognosy Res 2017; 9(2): 121-7.
[http://dx.doi.org/10.4103/0974-8490.204647] [PMID: 28539734]
[6]
Nolan VC, Harrison J, Cox JAG. Dissecting the antimicrobial composition of honey. Antibiotics (Basel) 2019; 8(4): 251.
[http://dx.doi.org/10.3390/antibiotics8040251] [PMID: 31817375]
[7]
Stagos D, Soulitsiotis N, Tsadila C, et al. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. Int J Mol Med 2018; 42(2): 726-34.
[http://dx.doi.org/10.3892/ijmm.2018.3656] [PMID: 29749429]
[8]
Tsavea E, Mossialos D. Antibacterial activity of honeys produced in Mount Olympus area against nosocomial and foodborne pathogens is mainly attributed to hydrogen peroxide and proteinaceous compounds. J Apic Res 2019; 58(5): 756-63.
[http://dx.doi.org/10.1080/00218839.2019.1649570]
[9]
Ahmed S, Sulaiman SA, Baig AA, et al. Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxid Med Cell Longev 2018; 2018: 1-19.
[http://dx.doi.org/10.1155/2018/8367846] [PMID: 29492183]
[10]
Tsadila C, Nikolaidis M, Dimitriou TG, et al. Antibacterial activity and characterization of bacteria isolated from diverse types of greek honey against nosocomial and foodborne pathogens. Appl Sci (Basel) 2021; 11(13): 5801.
[http://dx.doi.org/10.3390/app11135801]
[11]
Veiga RS, De Mendonça S, Mendes PB, et al. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. J Appl Microbiol 2017; 122(4): 911-20.
[http://dx.doi.org/10.1111/jam.13400] [PMID: 28066967]
[12]
Fontana R, Mendes MA, Souza BM, et al. Jelleines: A family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides 2004; 25(6): 919-28.
[http://dx.doi.org/10.1016/j.peptides.2004.03.016] [PMID: 15203237]
[13]
Vezeteu TV, Bobiş O, Moritz RFA, Buttstedt A. Food to some, poison to others - Honeybee royal jelly and its growth inhibiting effect on European Foulbrood bacteria. MicrobiologyOpen 2017; 6(1): e00397.
[http://dx.doi.org/10.1002/mbo3.397] [PMID: 27743422]
[14]
Choi JH, Jang AY, Lin S, et al. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol Med Rep 2015; 12(5): 6483-90.
[http://dx.doi.org/10.3892/mmr.2015.4275] [PMID: 26330195]
[15]
Leandro LF, Mendes CA, Casemiro LA, et al. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. An Acad Bras Cienc 2015; 87(1): 147-55.
[16]
Didaras NA, Kafantaris I, Dimitriou TG, et al. Biological properties of bee bread collected from apiaries located across Greece. Antibiotics (Basel) 2021; 10(5): 555.
[http://dx.doi.org/10.3390/antibiotics10050555] [PMID: 34068740]
[17]
Didaras NA, Karatasou K, Dimitriou TG, Amoutzias GD, Mossialos D. Antimicrobial activity of bee-collected pollen and beebread: State of the art and future perspectives. Antibiotics (Basel) 2020; 9(11): 811.
[http://dx.doi.org/10.3390/antibiotics9110811] [PMID: 33202560]
[18]
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science 1999; 284(5418): 1318-22.
[http://dx.doi.org/10.1126/science.284.5418.1318]
[19]
De Marco S, Piccioni M, Pagiotti R, Pietrella D. Antibiofilm and antioxidant activity of propolis and bud poplar resins versus Pseudomonas aeruginosa. Evid Based Complement Alternat Med 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/5163575] [PMID: 28127379]
[20]
Lu J, Cokcetin NN, Burke CM, et al. Honey can inhibit and eliminate biofilms produced by Pseudomonas aeruginosa. Sci Rep 2019; 9(1): 18160.
[http://dx.doi.org/10.1038/s41598-019-54576-2] [PMID: 31796774]
[21]
Susilowati H, Murakami K, Yumoto H, et al. Royal jelly inhibits Pseudomonas aeruginosa adherence and reduces excessive inflammatory responses in human epithelial cells. BioMed Res Int 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/3191752] [PMID: 29075644]
[22]
Pleeging CCF, Coenye T, Mossialos D, et al. Synergistic antimicrobial activity of supplemented medical-grade honey against Pseudomonas aeruginosa biofilm formation and eradication. Antibiotics (Basel) 2020; 9(12): 866.
[http://dx.doi.org/10.3390/antibiotics9120866] [PMID: 33291554]
[23]
Socarras K, Theophilus P, Torres J, Gupta K, Sapi E. Antimicrobial activity of bee venom and melittin against Borrelia burgdorferi. Antibiotics (Basel) 2017; 6(4): 31.
[http://dx.doi.org/10.3390/antibiotics6040031] [PMID: 29186026]
[24]
Eteraf-Oskouei T, Najafi M. Traditional and modern uses of natural honey in human diseases: A review. Iran J Basic Med Sci 2013; 16(6): 731-42.
[http://dx.doi.org/10.22038/IJBMS.2013.988] [PMID: 23997898]
[25]
da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. Honey: Chemical composition, stability and authenticity. Food Chem 2016; 196: 309-23.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.051] [PMID: 26593496]
[26]
Watanabe K, Rahmasari R, Matsunaga A, Haruyama T, Kobayashi N. Anti-influenza viral effects of honey in vitro: Potent high activity of manuka honey. Arch Med Res 2014; 45(5): 359-65.
[http://dx.doi.org/10.1016/j.arcmed.2014.05.006] [PMID: 24880005]
[27]
Fukuyama S, Kawaoka Y. The pathogenesis of influenza virus infections: The contributions of virus and host factors. Curr Opin Immunol 2011; 23(4): 481-6.
[http://dx.doi.org/10.1016/j.coi.2011.07.016] [PMID: 21840185]
[28]
Behbahani M. Anti-HIV-1 activity of eight monofloral iranian honey types. PLoS One 2014; 9(10): e108195.
[http://dx.doi.org/10.1371/journal.pone.0108195]
[29]
Obossou EK, Shikamoto Y, Hoshino Y, et al. Effect of manuka honey on human immunodeficiency virus type 1 reverse transcriptase activity. Nat Prod Res 2022; 36(6): 1552-7.
[http://dx.doi.org/10.1080/14786419.2021.1880403] [PMID: 33550857]
[30]
Wan Yusuf WN, Wan Mohammad WMZ, Gan SH, Mustafa M, Abd Aziz CB, Sulaiman SA. Tualang honey ameliorates viral load, CD4 counts and improves quality of life in asymptomatic human immunodeficiency virus infected patients. J Tradit Complement Med 2019; 9(4): 249-56.
[http://dx.doi.org/10.1016/j.jtcme.2018.05.003] [PMID: 31453119]
[31]
Barkhadle NI, Mohamud R, Mat Jusoh TNA, Shueb RH. In vitro evaluation of anti-chikungunya virus activities of tualang honey. Trop Biomed 2021; 38(1): 42-9.
[http://dx.doi.org/10.47665/tb.38.1.008] [PMID: 33797523]
[32]
Hashemipour MA, Tavakolineghad Z, Arabzadeh SAM, Iranmanesh Z, Nassab SAHG. Antiviral activities of honey, royal jelly, and acyclovir against HSV-1. Wounds 2014; 26(2): 47-54.
[PMID: 25860226]
[33]
Shahzad A, Cohrs RJ. In vitro antiviral activity of honey against varicella zoster virus (VZV): A translational medicine study for potential remedy for shingles. Transl Biomed 2012; 3(2): 2.
[http://dx.doi.org/10.3823/434] [PMID: 22822475]
[34]
Kalediene L, Baz M, Liubaviciute A, et al. Antiviral effect of honey extract Camelyn against SARS-CoV-2. J Adv Biotechnol Exp Ther 2021; 4(3): 290.
[http://dx.doi.org/10.5455/jabet.2021.d129]
[35]
Whitley RJ. Herpesviruses. In: Baron S, Ed. Medical Microbiology. (4th ed.), Galveston, TX: University of Texas Medical Branch at Galveston 1996.
[36]
Al-Waili NS. Topical honey application vs. acyclovir for the treatment of recurrent herpes simplex lesions. Med Sci Monit 2004; 10(8): MT94-8.
[PMID: 15278008]
[37]
Semprini A, Singer J, Braithwaite I, et al. Kanuka honey versus aciclovir for the topical treatment of herpes simplex labialis: A randomised controlled trial. BMJ Open 2019; 9(5): e026201.
[http://dx.doi.org/10.1136/bmjopen-2018-026201] [PMID: 31092654]
[38]
Abdel-Naby Awad OG, Hamad AMH. Honey can help in herpes simplex gingivostomatitis in children: Prospective randomized double blind placebo controlled clinical trial. Am J Otolaryngol 2018; 39(6): 759-63.
[http://dx.doi.org/10.1016/j.amjoto.2018.09.007] [PMID: 30227969]
[39]
Naik PP, Mossialos D, Wijk B, Novakova P, Wagener FADTG, Cremers NAJ. Medical-grade honey outperforms conventional treatments for healing cold sores-A clinical study. Pharmaceuticals (Basel) 2021; 14(12): 1264.
[http://dx.doi.org/10.3390/ph14121264] [PMID: 34959664]
[40]
Abdulrhman M, Shatla R, Mohamed S. The effects of honey supplementation on Egyptian children with hepatitis A: A randomized double blinded placebo controlled pilot study. J Apither 2016; 1(1): 23.
[http://dx.doi.org/10.5455/ja.20160702011113]
[41]
Ashraf S, Ashraf S, Ashraf M, et al. Honey and Nigella sativa Against COVID-19 in Pakistan (HNS-COVID-PK): A multi-center placebo-controlled randomized clinical Trial. medRxiv 2020; 2020.10.30.20217364.
[http://dx.doi.org/10.1101/2020.10.30.20217364]
[42]
Ashraf S, Ashraf S, Akmal R, et al. Prophylactic potential of honey and Nigella sativa L. against hospital and community-based SARS-CoV-2 spread: A structured summary of a study protocol for a randomised controlled trial. Trials 2021; 22(1): 618.
[http://dx.doi.org/10.1186/s13063-021-05510-3] [PMID: 34526081]
[43]
Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls. StatPearls Publishing 2022.
[44]
Silva-Carvalho R, Baltazar F, Almeida-Aguiar C. Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evid Based Complement Alternat Med 2015; 2015: 1-29.
[http://dx.doi.org/10.1155/2015/206439] [PMID: 26106433]
[45]
Wagh VD. Propolis: A wonder bees product and its pharmacological potentials. Adv Pharmacol Sci 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/308249] [PMID: 24382957]
[46]
Gekker G, Hu S, Spivak M, Lokensgard JR, Peterson PK. Anti-HIV-1 activity of propolis in CD4+ lymphocyte and microglial cell cultures. J Ethnopharmacol 2005; 102(2): 158-63.
[http://dx.doi.org/10.1016/j.jep.2005.05.045] [PMID: 16046088]
[47]
Shimizu T, Hino A, Tsutsumi A, Park YK, Watanabe W, Kurokawa M. Anti-influenza virus activity of propolis in vitro and its efficacy against influenza infection in mice. Antivir Chem Chemother 2008; 19(1): 7-13.
[http://dx.doi.org/10.1177/095632020801900102] [PMID: 18610553]
[48]
Búfalo MC, Figueiredo AS, de Sousa JPB, Candeias JMG, Bastos JK, Sforcin JM. Anti-poliovirus activity of Baccharis dracunculifolia and propolis by cell viability determination and real-time PCR. J Appl Microbiol 2009; 107(5): 1669-80.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04354.x] [PMID: 19457040]
[49]
Silva-Beltrán NP, Balderrama-Carmona AP, Umsza-Guez MA, Souza Machado BA. Antiviral effects of Brazilian green and red propolis extracts on Enterovirus surrogates. Environ Sci Pollut Res Int 2020; 27(23): 28510-7.
[http://dx.doi.org/10.1007/s11356-019-07458-z] [PMID: 31889278]
[50]
Labská K, Plodková H, Pumannová M, Sensch KH. Antiviral activity of propolis special extract GH 2002 against Varicella zoster virus in vitro. Pharmazie 2018; 73(12): 733-6.
[http://dx.doi.org/10.1691/ph.2018.8672] [PMID: 30522559]
[51]
Yildirim A, Duran GG, Duran N, et al. Antiviral activity of hatay propolis against replication of herpes simplex virus type 1 and type 2. Med Sci Monit 2016; 22: 422-30.
[http://dx.doi.org/10.12659/MSM.897282] [PMID: 26856414]
[52]
Demir S, Atayoglu AT, Galeotti F, et al. Antiviral activity of different extracts of standardized propolis preparations against HSV. Antivir Ther 2020; 25(7): 353-63.
[http://dx.doi.org/10.3851/IMP3383] [PMID: 33620334]
[53]
Schnitzler P, Neuner A, Nolkemper S, et al. Antiviral activity and mode of action of propolis extracts and selected compounds. Phytother Res 2010; 24(S1) (Suppl. 1): S20-8.
[http://dx.doi.org/10.1002/ptr.2868] [PMID: 19472427]
[54]
Nolkemper S, Reichling J, Sensch KH, Schnitzler P. Mechanism of herpes simplex virus type 2 suppression by propolis extracts. Phytomedicine 2010; 17(2): 132-8.
[http://dx.doi.org/10.1016/j.phymed.2009.07.006] [PMID: 19682876]
[55]
Bankova V, Galabov AS, Antonova D, Vilhelmova N, Di Perri B. Chemical composition of Propolis Extract ACF® and activity against herpes simplex virus. Phytomedicine 2014; 21(11): 1432-8.
[http://dx.doi.org/10.1016/j.phymed.2014.04.026] [PMID: 25022206]
[56]
Sartori G, Pesarico AP, Pinton S, et al. Protective effect of brown Brazilian propolis against acute vaginal lesions caused by herpes simplex virus type 2 in mice: Involvement of antioxidant and anti-inflammatory mechanisms. Cell Biochem Funct 2012; 30(1): 1-10.
[http://dx.doi.org/10.1002/cbf.1810] [PMID: 22025285]
[57]
González-Búrquez MJ, González-Díaz FR, García-Tovar CG, et al. Comparison between in vitro antiviral effect of mexican propolis and three commercial flavonoids against canine distemper virus. Evid Based Complement Alternat Med 2018; 2018: 1-9.
[http://dx.doi.org/10.1155/2018/7092416] [PMID: 30174714]
[58]
Martella V, Elia G, Buonavoglia C. Canine distemper virus. Vet Clin North Am Small Anim Pract 2008; 38(4): 787-97. [vii-viii.]
[http://dx.doi.org/10.1016/j.cvsm.2008.02.007] [PMID: 18501278]
[59]
Guler HI, Tatar G, Yildiz O, Belduz AO, Kolayli S. Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study. Arch Microbiol 2021; 203(6): 3557-64.
[http://dx.doi.org/10.1007/s00203-021-02351-1] [PMID: 33950349]
[60]
Maruta H, He H. PAK1-blockers: Potential therapeutics against COVID-19. Med Drug Discov 2020; 6: 100039.
[http://dx.doi.org/10.1016/j.medidd.2020.100039] [PMID: 32313880]
[61]
Berretta AA, Silveira MAD, Cóndor Capcha JM, De Jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease. Biomed Pharmacother 2020; 131: 110622.
[http://dx.doi.org/10.1016/j.biopha.2020.110622] [PMID: 32890967]
[62]
Bilir O, Guler E, Kocak AO, Atas I. Evaluation of the effect of anatolian propolis on covid-19 in healthcare professionals : Effect of anatolian propolis on COVID-19. Sci Prepr 2021.
[http://dx.doi.org/10.14293/S2199-1006.1.SOR-.PPZR1OD.v1]
[63]
Silveira MAD, De Jong D, Berretta AA, et al. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomed Pharmacother 2021; 138: 111526.
[http://dx.doi.org/10.1016/j.biopha.2021.111526] [PMID: 34311528]
[64]
Kosari M, Noureddini M, Khamechi SP, et al. The effect of propolis plus Hyoscyamus niger L. methanolic extract on clinical symptoms in patients with acute respiratory syndrome suspected to COVID ‐19: A clinical trial. Phytother Res 2021; 35(7): 4000-6.
[http://dx.doi.org/10.1002/ptr.7116] [PMID: 33860587]
[65]
Miryan M, Soleimani D, Dehghani L, et al. The effect of propolis supplementation on clinical symptoms in patients with coronavirus (COVID-19): A structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21(1): 996.
[http://dx.doi.org/10.1186/s13063-020-04934-7] [PMID: 33272309]
[66]
Değer B. Investigation of clinical effectiveness of propolis extracts as food supplements in patients with SARS-CoV-2(COVID-19). NCT04916821: 2021.
[67]
Abedini A, Shafaghi S, Ameri Ahmad Z, et al. N-Chromosome royal jelly, propolis and bee pollen supplementation improve the clinical conditions of COVID-19 patients: A randomized controlled trial. Trad Integr Med 2022; 6(4): 360-9.
[http://dx.doi.org/10.18502/tim.v6i4.8269]
[68]
Esposito C, Garzarella EU, Bocchino B, et al. A standardized polyphenol mixture extracted from poplar-type propolis for remission of symptoms of uncomplicated upper respiratory tract infection (URTI): A monocentric, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 2021; 80: 153368.
[http://dx.doi.org/10.1016/j.phymed.2020.153368] [PMID: 33091857]
[69]
Kunugi H, Mohammed Ali A. Royal jelly and its components promote healthy aging and longevity: From animal models to humans. Int J Mol Sci 2019; 20(19): 4662.
[http://dx.doi.org/10.3390/ijms20194662] [PMID: 31547049]
[70]
Habashy NH, Abu-Serie MM. Major royal-jelly protein 2 and its isoform X1 are two novel safe inhibitors for hepatitis C and B viral entry and replication. Int J Biol Macromol 2019; 141: 1072-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.080] [PMID: 31520705]
[71]
Habashy NH, Abu-Serie MM. The potential antiviral effect of major royal jelly protein2 and its isoform X1 against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Insight on their sialidase activity and molecular docking. J Funct Foods 2020; 75: 104282.
[http://dx.doi.org/10.1016/j.jff.2020.104282] [PMID: 33199981]
[72]
Cornara L, Biagi M, Xiao J, Burlando B. Therapeutic properties of bioactive compounds from different honeybee products. Front Pharmacol 2017; 8(JUN): 412.
[http://dx.doi.org/10.3389/fphar.2017.00412] [PMID: 28701955]
[73]
Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier JM, Fajloun Z. Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules 2019; 24(16): 2997.
[http://dx.doi.org/10.3390/molecules24162997] [PMID: 31430861]
[74]
Uddin MB, Lee BH, Nikapitiya C, et al. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J Microbiol 2016; 54(12): 853-66.
[http://dx.doi.org/10.1007/s12275-016-6376-1] [PMID: 27888461]
[75]
Hassan M, Mohamed ALY, Amer M, Hammad K, Riad S. Monitoring of the antiviral potential of bee venom and wax extracts against Adeno-7 (DNA) and Rift Valley fever virus (RNA) viruses models. J Egypt Soc Parasitol 2015; 45(1): 193-8.
[http://dx.doi.org/10.21608/jesp.2015.89742] [PMID: 26012234]
[76]
Fratini F, Cilia G, Turchi B, Felicioli A. Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pac J Trop Med 2016; 9(9): 839-43.
[http://dx.doi.org/10.1016/j.apjtm.2016.07.003] [PMID: 27633295]
[77]
Mărgăoan R, Stranț M, Varadi A, et al. Bee collected pollen and bee bread: Bioactive constituents and health benefits. Antioxidants 2019; 8(12): 568.
[http://dx.doi.org/10.3390/antiox8120568] [PMID: 31756937]
[78]
Didaras NA, Dimitriou T, Daskou M, Karatasou K, Mossialos D. In vitro assessment of the antiviral activity of greek bee bread and bee collected pollen against enterovirus D68. J Microbiol Biotechnol Food Sci 2022; 11(4): e4859.
[http://dx.doi.org/10.55251/jmbfs.4859]
[79]
Lee IK, Hwang B, Kim DW, et al. Characterization of neuraminidase inhibitors in Korean papaver rhoeas bee pollen contributing to anti-influenza activities in vitro. Planta Med 2016; 82(6): 524-9.
[http://dx.doi.org/10.1055/s-0041-111631] [PMID: 26848705]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy