Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Targeting the Renin-Angiotensin System (RAS) for Neuropsychiatric Disorders

Author(s): Aline Silva de Miranda*, Danielle S. Macedo, Natalia P. Rocha and Antonio L. Teixeira*

Volume 22, Issue 1, 2024

Published on: 23 January, 2023

Page: [107 - 122] Pages: 16

DOI: 10.2174/1570159X20666220927093815

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Neuropsychiatric disorders, such as mood disorders, schizophrenia, and Alzheimer’s disease (AD) and related dementias, are associated to significant morbidity and mortality worldwide. The pathophysiological mechanisms of neuropsychiatric disorders remain to be fully elucidated, which has hampered the development of effective therapies. The Renin Angiotensin System (RAS) is classically viewed as a key regulator of cardiovascular and renal homeostasis. The discovery that RAS components are expressed in the brain pointed out a potential role for this system in central nervous system (CNS) pathologies. The understanding of RAS involvement in the pathogenesis of neuropsychiatric disorders may contribute to identifying novel therapeutic targets.

Aims: We aim to report current experimental and clinical evidence on the role of RAS in physiology and pathophysiology of mood disorders, schizophrenia, AD and related dementias. We also aim to discuss bottlenecks and future perspectives that can foster the development of new related therapeutic strategies.

Conclusion: The available evidence supports positive therapeutic effects for neuropsychiatric disorders with the inhibition/antagonism of the ACE/Ang II/AT1 receptor axis or the activation of the ACE2/Ang-(1-7)/Mas receptor axis. Most of this evidence comes from pre-clinical studies and clinical studies lag much behind, hampering a potential translation into clinical practice.

Keywords: Renin-angiotensin system, brain, angiotensin-converting enzyme, neuropsychiatry, Schizophrenia, mood disorder, Alzheimer’s disease, dementia.

Graphical Abstract
[1]
Kahn, R.S.; Sommer, I.E.; Murray, R.M.; Meyer-Lindenberg, A.; Weinberger, D.R.; Cannon, T.D.; O’Donovan, M.; Correll, C.U.; Kane, J.M.; van Os, J.; Insel, T.R. Schizophrenia. Nat. Rev. Dis. Primers, 2015, 1(1), 15067.
[http://dx.doi.org/10.1038/nrdp.2015.67] [PMID: 27189524]
[2]
James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abdollahpour, I.; Abdulkader, R.S.; Abebe, Z.; Abera, S.F.; Abil, O.Z.; Abraha, H.N.; Abu-Raddad, L.J.; Abu-Rmeileh, N.M.E.; Accrombessi, M.M.K.; Acharya, D.; Acharya, P.; Ackerman, I.N.; Adamu, A.A.; Adebayo, O.M.; Adekanmbi, V.; Adetokunboh, O.O.; Adib, M.G.; Adsuar, J.C.; Afanvi, K.A.; Afarideh, M.; Afshin, A.; Agarwal, G.; Agesa, K.M.; Aggarwal, R.; Aghayan, S.A.; Agrawal, S.; Ahmadi, A.; Ahmadi, M.; Ahmadieh, H.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemiju, T.; Akseer, N.; Al-Aly, Z.; Al-Eyadhy, A.; Al-Mekhlafi, H.M.; Al-Raddadi, R.M.; Alahdab, F.; Alam, K.; Alam, T.; Alashi, A.; Alavian, S.M.; Alene, K.A.; Alijanzadeh, M.; Alizadeh-Navaei, R.; Aljunid, S.M.; Alkerwi, A.; Alla, F.; Allebeck, P.; Alouani, M.M.L.; Altirkawi, K.; Alvis-Guzman, N.; Amare, A.T.; Aminde, L.N.; Ammar, W.; Amoako, Y.A.; Anber, N.H.; Andrei, C.L.; Androudi, S.; Animut, M.D.; Anjomshoa, M.; Ansha, M.G.; Antonio, C.A.T.; Anwari, P.; Arabloo, J.; Arauz, A.; Aremu, O.; Ariani, F.; Armoon, B.; Ärnlöv, J.; Arora, A.; Artaman, A.; Aryal, K.K.; Asayesh, H.; Asghar, R.J.; Ataro, Z.; Atre, S.R.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayer, R.; Azzopardi, P.S.; Babazadeh, A.; Badali, H.; Badawi, A.; Bali, A.G.; Ballesteros, K.E.; Ballew, S.H.; Banach, M.; Banoub, J.A.M.; Banstola, A.; Barac, A.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Barrero, L.H.; Baune, B.T.; Bazargan-Hejazi, S.; Bedi, N.; Beghi, E.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Belachew, A.B.; Belay, Y.A.; Bell, M.L.; Bello, A.K.; Bensenor, I.M.; Bernabe, E.; Bernstein, R.S.; Beuran, M.; Beyranvand, T.; Bhala, N.; Bhattarai, S.; Bhaumik, S.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bikbov, B.; Bilano, V.; Bililign, N.; Bin Sayeed, M.S.; Bisanzio, D.; Blacker, B.F.; Blyth, F.M.; Bou-Orm, I.R.; Boufous, S.; Bourne, R.; Brady, O.J.; Brainin, M.; Brant, L.C.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Briant, P.S.; Briggs, A.M.; Briko, A.N.; Britton, G.; Brugha, T.; Buchbinder, R.; Busse, R.; Butt, Z.A.; Cahuana-Hurtado, L.; Cano, J.; Cárdenas, R.; Carrero, J.J.; Carter, A.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castillo, R.J.; Castro, F.; Catalá-López, F.; Cercy, K.M.; Cerin, E.; Chaiah, Y.; Chang, A.R.; Chang, H-Y.; Chang, J-C.; Charlson, F.J.; Chattopadhyay, A.; Chattu, V.K.; Chaturvedi, P.; Chiang, P.P-C.; Chin, K.L.; Chitheer, A.; Choi, J-Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Cicuttini, F.M.; Ciobanu, L.G.; Cirillo, M.; Claro, R.M.; Collado-Mateo, D.; Cooper, C.; Coresh, J.; Cortesi, P.A.; Cortinovis, M.; Costa, M.; Cousin, E.; Criqui, M.H.; Cromwell, E.A.; Cross, M.; Crump, J.A.; Dadi, A.F.; Dandona, L.; Dandona, R.; Dargan, P.I.; Daryani, A.; Das Gupta, R.; Das Neves, J.; Dasa, T.T.; Davey, G.; Davis, A.C.; Davitoiu, D.V.; De Courten, B.; De La Hoz, F.P.; De Leo, D.; De Neve, J-W.; Degefa, M.G.; Degenhardt, L.; Deiparine, S.; Dellavalle, R.P.; Demoz, G.T.; Deribe, K.; Dervenis, N.; Des Jarlais, D.C.; Dessie, G.A.; Dey, S.; Dharmaratne, S.D.; Dinberu, M.T.; Dirac, M.A.; Djalalinia, S.; Doan, L.; Dokova, K.; Doku, D.T.; Dorsey, E.R.; Doyle, K.E.; Driscoll, T.R.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Duncan, B.B.; Duraes, A.R.; Ebrahimi, H.; Ebrahimpour, S.; Echko, M.M.; Edvardsson, D.; Effiong, A.; Ehrlich, J.R.; El Bcheraoui, C.; El Sayed Zaki, M.; El-Khatib, Z.; Elkout, H.; Elyazar, I.R.F.; Enayati, A.; Endries, A.Y.; Er, B.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Fakhim, H.; Fallah Omrani, V.; Faramarzi, M.; Fareed, M.; Farhadi, F.; Farid, T.A.; Farinha, C.S.E.; Farioli, A.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fentahun, N.; Fereshtehnejad, S-M.; Fernandes, E.; Fernandes, J.C.; Ferrari, A.J.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fitzmaurice, C.; Foigt, N.A.; Foreman, K.J.; Fox, J.; Frank, T.D.; Fukumoto, T.; Fullman, N.; Fürst, T.; Furtado, J.M.; Futran, N.D.; Gall, S.; Ganji, M.; Gankpe, F.G.; Garcia-Basteiro, A.L.; Gardner, W.M.; Gebre, A.K.; Gebremedhin, A.T.; Gebremichael, T.G.; Gelano, T.F.; Geleijnse, J.M.; Genova-Maleras, R.; Geramo, Y.C.D.; Gething, P.W.; Gezae, K.E.; Ghadiri, K.; Ghasemi, F.K.; Ghasemi-Kasman, M.; Ghimire, M.; Ghosh, R.; Ghoshal, A.G.; Giampaoli, S.; Gill, P.S.; Gill, T.K.; Ginawi, I.A.; Giussani, G.; Gnedovskaya, E.V.; Goldberg, E.M.; Goli, S.; Gómez-Dantés, H.; Gona, P.N.; Gopalani, S.V.; Gorman, T.M.; Goulart, A.C.; Goulart, B.N.G.; Grada, A.; Grams, M.E.; Grosso, G.; Gugnani, H.C.; Guo, Y.; Gupta, P.C.; Gupta, R.; Gupta, R.; Gupta, T.; Gyawali, B.; Haagsma, J.A.; Hachinski, V.; Hafezi-Nejad, N.; Haghparast Bidgoli, H.; Hagos, T.B.; Hailu, G.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Hasan, M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hawley, C.N.; Hay, R.J.; Hay, S.I.; Hedayatizadeh-Omran, A.; Heibati, B.; Hendrie, D.; Henok, A.; Herteliu, C.; Heydarpour, S.; Hibstu, D.T.; Hoang, H.T.; Hoek, H.W.; Hoffman, H.J.; Hole, M.K.; Homaie Rad, E.; Hoogar, P.; Hosgood, H.D.; Hosseini, S.M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Hu, G.; Huang, J.J.; Huynh, C.K.; Iburg, K.M.; Ikeda, C.T.; Ileanu, B.; Ilesanmi, O.S.; Iqbal, U.; Irvani, S.S.N.; Irvine, C.M.S.; Islam, S.M.S.; Islami, F.; Jacobsen, K.H.; Jahangiry, L.; Jahanmehr, N.; Jain, S.K.; Jakovljevic, M.; Javanbakht, M.; Jayatilleke, A.U.; Jeemon, P.; Jha, R.P.; Jha, V.; Ji, J.S.; Johnson, C.O.; Jonas, J.B.; Jozwiak, J.J.; Jungari, S.B.; Jürisson, M.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kalani, R.; Kanchan, T.; Karami, M.; Karami Matin, B.; Karch, A.; Karema, C.; Karimi, N.; Karimi, S.M.; Kasaeian, A.; Kassa, D.H.; Kassa, G.M.; Kassa, T.D.; Kassebaum, N.J.; Katikireddi, S.V.; Kawakami, N.; Karyani, A.K.; Keighobadi, M.M.; Keiyoro, P.N.; Kemmer, L.; Kemp, G.R.; Kengne, A.P.; Keren, A.; Khader, Y.S.; Khafaei, B.; Khafaie, M.A.; Khajavi, A.; Khalil, I.A.; Khan, E.A.; Khan, M.S.; Khan, M.A.; Khang, Y-H.; Khazaei, M.; Khoja, A.T.; Khosravi, A.; Khosravi, M.H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, C-I.; Kim, D.; Kim, P.; Kim, Y-E.; Kim, Y.J.; Kimokoti, R.W.; Kinfu, Y.; Kisa, A.; Kissimova-Skarbek, K.; Kivimäki, M.; Knudsen, A.K.S.; Kocarnik, J.M.; Kochhar, S.; Kokubo, Y.; Kolola, T.; Kopec, J.A.; Kosen, S.; Kotsakis, G.A.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.A.; Krishan, K.; Krohn, K.J.; Kuate, Defo B.; Kucuk Bicer, B.; Kumar, G.A.; Kumar, M.; Kyu, H.H.; Lad, D.P.; Lad, S.D.; Lafranconi, A.; Lalloo, R.; Lallukka, T.; Lami, F.H.; Lansingh, V.C.; Latifi, A.; Lau, K.M-M.; Lazarus, J.V.; Leasher, J.L.; Ledesma, J.R.; Lee, P.H.; Leigh, J.; Leung, J.; Levi, M.; Lewycka, S.; Li, S.; Li, Y.; Liao, Y.; Liben, M.L.; Lim, L-L.; Lim, S.S.; Liu, S.; Lodha, R.; Looker, K.J.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Low, N.; Lozano, R.; Lucas, T.C.D.; Lucchesi, L.R.; Lunevicius, R.; Lyons, R.A.; Ma, S.; Macarayan, E.R.K.; Mackay, M.T.; Madotto, F.; Magdy Abd El Razek, H.; Magdy Abd El Razek, M.; Maghavani, D.P.; Mahotra, N.B.; Mai, H.T.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mamun, A.A.; Manda, A-L.; Manguerra, H.; Manhertz, T.; Mansournia, M.A.; Mantovani, L.G.; Mapoma, C.C.; Maravilla, J.C.; Marcenes, W.; Marks, A.; Martins-Melo, F.R.; Martopullo, I.; März, W.; Marzan, M.B.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mathur, M.R.; Matsushita, K.; Maulik, P.K.; Mazidi, M.; McAlinden, C.; McGrath, J.J.; McKee, M.; Mehndiratta, M.M.; Mehrotra, R.; Mehta, K.M.; Mehta, V.; Mejia-Rodriguez, F.; Mekonen, T.; Melese, A.; Melku, M.; Meltzer, M.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Mensah, G.A.; Mereta, S.T.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Mezerji, N.M.G.; Miazgowski, B.; Miazgowski, T.; Millear, A.I.; Miller, T.R.; Miltz, B.; Mini, G.K.; Mirarefin, M.; Mirrakhimov, E.M.; Misganaw, A.T.; Mitchell, P.B.; Mitiku, H.; Moazen, B.; Mohajer, B.; Mohammad, K.A.; Mohammadifard, N.; Mohammadnia-Afrouzi, M.; Mohammed, M.A.; Mohammed, S.; Mohebi, F.; Moitra, M.; Mokdad, A.H.; Molokhia, M.; Monasta, L.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morgado-Da-Costa, J.; Morrison, S.D.; Moschos, M.M.; Mountjoy-Venning, W.C.; Mousavi, S.M.; Mruts, K.B.; Muche, A.A.; Muchie, K.F.; Mueller, U.O.; Muhammed, O.S.; Mukhopadhyay, S.; Muller, K.; Mumford, J.E.; Murhekar, M.; Musa, J.; Musa, K.I.; Mustafa, G.; Nabhan, A.F.; Nagata, C.; Naghavi, M.; Naheed, A.; Nahvijou, A.; Naik, G.; Naik, N.; Najafi, F.; Naldi, L.; Nam, H.S.; Nangia, V.; Nansseu, J.R.; Nascimento, B.R.; Natarajan, G.; Neamati, N.; Negoi, I.; Negoi, R.I.; Neupane, S.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, A.Q.; Nguyen, H.T.; Nguyen, H.L.T.; Nguyen, H.T.; Nguyen, L.H.; Nguyen, M.; Nguyen, N.B.; Nguyen, S.H.; Nichols, E.; Ningrum, D.N.A.; Nixon, M.R.; Nolutshungu, N.; Nomura, S.; Norheim, O.F.; Noroozi, M.; Norrving, B.; Noubiap, J.J.; Nouri, H.R.; Nourollahpour Shiadeh, M.; Nowroozi, M.R.; Nsoesie, E.O.; Nyasulu, P.S.; Odell, C.M.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I-H.; Oladimeji, O.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Olsen, H.E.; Olusanya, B.O.; Ong, K.L.; Ong, S.K.; Oren, E.; Ortiz, A.; Ota, E.; Otstavnov, S.S.; Øverland, S.; Owolabi, M.O.; P A, M.; Pacella, R.; Pakpour, A.H.; Pana, A.; Panda-Jonas, S.; Parisi, A.; Park, E-K.; Parry, C.D.H.; Patel, S.; Pati, S.; Patil, S.T.; Patle, A.; Patton, G.C.; Paturi, V.R.; Paulson, K.R.; Pearce, N.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Pham, H.Q.; Phillips, M.R.; Pigott, D.M.; Pillay, J.D.; Piradov, M.A.; Pirsaheb, M.; Pishgar, F.; Plana-Ripoll, O.; Plass, D.; Polinder, S.; Popova, S.; Postma, M.J.; Pourshams, A.; Poustchi, H.; Prabhakaran, D.; Prakash, S.; Prakash, V.; Purcell, C.A.; Purwar, M.B.; Qorbani, M.; Quistberg, D.A.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi, K.; Rahimi-Movaghar, A.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.; Rahman, M.A.; Rahman, S.U.; Rai, R.K.; Rajati, F.; Ram, U.; Ranjan, P.; Ranta, A.; Rao, P.C.; Rawaf, D.L.; Rawaf, S.; Reddy, K.S.; Reiner, R.C.; Reinig, N.; Reitsma, M.B.; Remuzzi, G.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, S.; Rezai, M.S.; Ribeiro, A.L.P.; Roberts, N.L.S.; Robinson, S.R.; Roever, L.; Ronfani, L.; Roshandel, G.; Rostami, A.; Roth, G.A.; Roy, A.; Rubagotti, E.; Sachdev, P.S.; Sadat, N.; Saddik, B.; Sadeghi, E.; Saeedi, M.S.; Safari, H.; Safari, Y.; Safari-Faramani, R.; Safdarian, M.; Safi, S.; Safiri, S.; Sagar, R.; Sahebkar, A.; Sahraian, M.A.; Sajadi, H.S.; Salam, N.; Salama, J.S.; Salamati, P.; Saleem, K.; Saleem, Z.; Salimi, Y.; Salomon, J.A.; Salvi, S.S.; Salz, I.; Samy, A.M.; Sanabria, J.; Sang, Y.; Santomauro, D.F.; Santos, I.S.; Santos, J.V.; Santric, M.M.M.; Sao Jose, B.P.; Sardana, M.; Sarker, A.R.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Saxena, S.; Saylan, M.; Schaeffner, E.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Schwendicke, F.; Scott, J.G.; Sekerija, M.; Sepanlou, S.G.; Serván-Mori, E.; Seyedmousavi, S.; Shabaninejad, H.; Shafieesabet, A.; Shahbazi, M.; Shaheen, A.A.; Shaikh, M.A.; Shams-Beyranvand, M.; Shamsi, M.; Shamsizadeh, M.; Sharafi, H.; Sharafi, K.; Sharif, M.; Sharif-Alhoseini, M.; Sharma, M.; Sharma, R.; She, J.; Sheikh, A.; Shi, P.; Shibuya, K.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shishani, K.; Shiue, I.; Shokraneh, F.; Shoman, H.; Shrime, M.G.; Si, S.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silva, J.P.; Silveira, D.G.A.; Singam, N.S.V.; Singh, J.A.; Singh, N.P.; Singh, V.; Sinha, D.N.; Skiadaresi, E.; Slepak, E.L.N.; Sliwa, K.; Smith, D.L.; Smith, M.; Soares Filho, A.M.; Sobaih, B.H.; Sobhani, S.; Sobngwi, E.; Soneji, S.S.; Soofi, M.; Soosaraei, M.; Sorensen, R.J.D.; Soriano, J.B.; Soyiri, I.N.; Sposato, L.A.; Sreeramareddy, C.T.; Srinivasan, V.; Stanaway, J.D.; Stein, D.J.; Steiner, C.; Steiner, T.J.; Stokes, M.A.; Stovner, L.J.; Subart, M.L.; Sudaryanto, A.; Sufiyan, M.B.; Sunguya, B.F.; Sur, P.J.; Sutradhar, I.; Sykes, B.L.; Sylte, D.O.; Tabarés-Seisdedos, R.; Tadakamadla, S.K.; Tadesse, B.T.; Tandon, N.; Tassew, S.G.; Tavakkoli, M.; Taveira, N.; Taylor, H.R.; Tehrani-Banihashemi, A.; Tekalign, T.G.; Tekelemedhin, S.W.; Tekle, M.G.; Temesgen, H.; Temsah, M-H.; Temsah, O.; Terkawi, A.S.; Teweldemedhin, M.; Thankappan, K.R.; Thomas, N.; Tilahun, B.; To, Q.G.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Torre, A.E.; Tortajada-Girbés, M.; Touvier, M.; Tovani-Palone, M.R.; Towbin, J.A.; Tran, B.X.; Tran, K.B.; Troeger, C.E.; Truelsen, T.C.; Tsilimbaris, M.K.; Tsoi, D.; Tudor Car, L.; Tuzcu, E.M.; Ukwaja, K.N.; Ullah, I.; Undurraga, E.A.; Unutzer, J.; Updike, R.L.; Usman, M.S.; Uthman, O.A.; Vaduganathan, M.; Vaezi, A.; Valdez, P.R.; Varughese, S.; Vasankari, T.J.; Venketasubramanian, N.; Villafaina, S.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.; Vollset, S.E.; Vosoughi, K.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Waller, S.G.; Wang, Y.; Wang, Y-P.; Weiderpass, E.; Weintraub, R.G.; Weiss, D.J.; Weldegebreal, F.; Weldegwergs, K.G.; Werdecker, A.; West, T.E.; Whiteford, H.A.; Widecka, J.; Wijeratne, T.; Wilner, L.B.; Wilson, S.; Winkler, A.S.; Wiyeh, A.B.; Wiysonge, C.S.; Wolfe, C.D.A.; Woolf, A.D.; Wu, S.; Wu, Y-C.; Wyper, G.M.A.; Xavier, D.; Xu, G.; Yadgir, S.; Yadollahpour, A.; Yahyazadeh Jabbari, S.H.; Yamada, T.; Yan, L.L.; Yano, Y.; Yaseri, M.; Yasin, Y.J.; Yeshaneh, A.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yoon, S-J.; Yotebieng, M.; Younis, M.Z.; Yousefifard, M.; Yu, C.; Zadnik, V.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zare, Z.; Zeleke, A.J.; Zenebe, Z.M.; Zhang, K.; Zhao, Z.; Zhou, M.; Zodpey, S.; Zucker, I.; Vos, T.; Murray, C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1789-1858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[3]
Villarroel, M.A.; Terlizzi, E.P. Symptoms of depression among adults: United States, 2019. NCHS Data Brief, 2020, (379), 1-8.
[PMID: 33054920]
[4]
Datta, S.; Suryadevara, U.; Cheong, J. Mood disorders. Continuum (Minneap. Minn.), 2021, 27(6), 1712-1737.
[http://dx.doi.org/10.1212/CON.0000000000001051] [PMID: 34881733]
[5]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[6]
Novick, D.M.; Swartz, H.A.; Frank, E. Suicide attempts in bipolar I and bipolar II disorder: A review and meta-analysis of the evidence. Bipolar Disord., 2010, 12(1), 1-9.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00786.x] [PMID: 20148862]
[7]
Hasin, D.S.; Sarvet, A.L.; Meyers, J.L.; Saha, T.D.; Ruan, W.J.; Stohl, M.; Grant, B.F. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry, 2018, 75(4), 336-346.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.4602] [PMID: 29450462]
[8]
WHO. Schizophrenia. 2022.
[9]
Ghneim, M.; Diaz, J.J., Jr Dementia and the critically ill older adult. Crit. Care Clin., 2021, 37(1), 191-203.
[http://dx.doi.org/10.1016/j.ccc.2020.08.010] [PMID: 33190770]
[10]
Mitchell, S.L. Advanced dementia. N. Engl. J. Med., 2015, 372(26), 2533-2540.
[http://dx.doi.org/10.1056/NEJMcp1412652] [PMID: 26107053]
[11]
Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current concepts and treatments of schizophrenia. Molecules, 2018, 23(8), 2087.
[http://dx.doi.org/10.3390/molecules23082087] [PMID: 30127324]
[12]
Fabbri, C.; Kasper, S.; Zohar, J.; Souery, D.; Montgomery, S.; Albani, D.; Forloni, G.; Ferentinos, P.; Rujescu, D.; Mendlewicz, J.; De Ronchi, D.; Riva, M.A.; Lewis, C.M.; Serretti, A. Drug repositioning for treatment-resistant depression: Hypotheses from a pharmacogenomic study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104, 110050.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110050] [PMID: 32738352]
[13]
Colpo, G.D.; Leboyer, M.; Dantzer, R.; Trivedi, M.H.; Teixeira, A.L. Immune-based strategies for mood disorders: Facts and challenges. Expert Rev. Neurother., 2018, 18(2), 139-152.
[http://dx.doi.org/10.1080/14737175.2018.1407242] [PMID: 29179585]
[14]
Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin systems. Physiol. Rev., 2006, 86(3), 747-803.
[http://dx.doi.org/10.1152/physrev.00036.2005] [PMID: 16816138]
[15]
Fyhrquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med., 2008, 264(3), 224-236.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01981.x] [PMID: 18793332]
[16]
Simões e Silva, A.C.; Teixeira, M.M. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol. Res., 2016, 107, 154-162.
[http://dx.doi.org/10.1016/j.phrs.2016.03.018] [PMID: 26995300]
[17]
Rodrigues Prestes, T.R.; Rocha, N.P.; Miranda, A.S.; Teixeira, A.L. Simoes-E-Silva, A.C. The anti-inflammatory potential of ACE2/Angiotensin-(1-7)/mas receptor axis: Evidence from basic and clinical research. Curr. Drug Targets, 2017, 18(11), 1301-1313.
[PMID: 27469342]
[18]
Kamo, T.; Akazawa, H.; Komuro, I. Pleiotropic effects of angiotensin II receptor signaling in cardiovascular homeostasis and aging. Int. Heart J., 2015, 56(3), 249-254.
[http://dx.doi.org/10.1536/ihj.14-429] [PMID: 25912907]
[19]
Rocha, N.P.; Toledo, A.; Corgosinho, L.T.S.; de Souza, L.C.; Guimarães, H.C.; Resende, E.P.F.; Braz, N.F.T.; Gomes, K.B.; Simoes e Silva, A.C.; Caramelli, P.; Teixeira, A.L. Cerebrospinal fluid levels of angiotensin-converting enzyme are associated with amyloid-β42 burden in Alzheimer’s disease. J. Alzheimers Dis., 2018, 64(4), 1085-1090.
[http://dx.doi.org/10.3233/JAD-180282] [PMID: 30040721]
[20]
Rocha, N.P.; Simoes e Silva, A.C.; Prestes, T.R.R.; Feracin, V.; Machado, C.A.; Ferreira, R.N.; Teixeira, A.L.; de Miranda, A.S. RAS in the central nervous system: Potential role in neuropsychiatric disorders. Curr. Med. Chem., 2018, 25(28), 3333-3352.
[http://dx.doi.org/10.2174/0929867325666180226102358] [PMID: 29484978]
[21]
de Miranda, A.S.; Teixeira, A.L. Coronavirus disease-2019 conundrum: RAS blockade and geriatric-associated neuropsychiatric disorders. Front. Med. (Lausanne), 2020, 7, 515.
[http://dx.doi.org/10.3389/fmed.2020.00515] [PMID: 32850927]
[22]
Lakatta, E.G. The reality of getting old. Nat. Rev. Cardiol., 2018, 15(9), 499-500.
[http://dx.doi.org/10.1038/s41569-018-0068-y] [PMID: 30065260]
[23]
AlGhatrif, M.; Cingolani, O.; Lakatta, E.G. The dilemma of coronavirus disease 2019, aging, and cardiovascular disease. JAMA Cardiol., 2020, 5(7), 747-748.
[http://dx.doi.org/10.1001/jamacardio.2020.1329] [PMID: 32242886]
[24]
Lavoie, J.L.; Sigmund, C.D. Minireview: Overview of the renin-angiotensin system--an endocrine and paracrine system. Endocrinology, 2003, 144(6), 2179-2183.
[http://dx.doi.org/10.1210/en.2003-0150] [PMID: 12746271]
[25]
Guo, D.F.; Sun, Y.L.; Hamet, P.; Inagami, T. The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res., 2001, 11(3), 165-180.
[http://dx.doi.org/10.1038/sj.cr.7290083] [PMID: 11642401]
[26]
Simões e Silva, A.C.; Flynn, J.T. The renin-angiotensin-aldosterone system in 2011: Role in hypertension and chronic kidney disease. Pediatr. Nephrol., 2012, 27(10), 1835-1845.
[http://dx.doi.org/10.1007/s00467-011-2002-y] [PMID: 21947887]
[27]
Santos, R.A.S.; Ferreira, A.J.; Simões e Silva, A.C. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp. Physiol., 2008, 93(5), 519-527.
[http://dx.doi.org/10.1113/expphysiol.2008.042002] [PMID: 18310257]
[28]
Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem., 2000, 275(43), 33238-33243.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[29]
Santos, R.A.S.; Silva, A.C.S.; Maric, C.; Silva, D.M.R.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.B.; Lopes, M.T.; Bader, M.; Mendes, E.P.; Lemos, V.S.; Campagnole-Santos, M.J.; Schultheiss, H.P.; Speth, R.; Walther, T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8258-8263.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[30]
Saavedra, J.M. Brain angiotensin II: New developments, unanswered questions and therapeutic opportunities. Cell. Mol. Neurobiol., 2005, 25(3-4), 485-512.
[http://dx.doi.org/10.1007/s10571-005-4011-5] [PMID: 16075377]
[31]
Braga, V.A.; Medeiros, I.A.; Ribeiro, T.P.; França-Silva, M.S.; Botelho-Ono, M.S.; Guimarães, D.D. Angiotensin-II-induced reactive oxygen species along the SFO-PVN-RVLM pathway: Implications in neurogenic hypertension. Braz. J. Med. Biol. Res., 2011, 44(9), 871-876.
[http://dx.doi.org/10.1590/S0100-879X2011007500088] [PMID: 21755262]
[32]
Ando, H.; Zhou, J.; Macova, M.; Imboden, H.; Saavedra, J.M. Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke, 2004, 35(7), 1726-1731.
[http://dx.doi.org/10.1161/01.STR.0000129788.26346.18] [PMID: 15143297]
[33]
Nishimura, Y.; Ito, T.; Hoe, K.L.; Saavedra, J.M. Chronic peripheral administration of the angiotensin II AT1 receptor antagonist Candesartan blocks brain AT1 receptors. Brain Res., 2000, 871(1), 29-38.
[http://dx.doi.org/10.1016/S0006-8993(00)02377-5] [PMID: 10882779]
[34]
Blezer, E.L.A.; Nicolay, K.; Bär, P.R.D.; Goldschmeding, R.; Jansen, G.H.; Koomans, H.A.; Joles, J.A. Enalapril prevents imminent and reduces manifest cerebral edema in stroke-prone hypertensive rats. Stroke, 1998, 29(8), 1671-1678.
[http://dx.doi.org/10.1161/01.STR.29.8.1671] [PMID: 9707211]
[35]
Nishimura, Y.; Ito, T.; Saavedra, J.M. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke, 2000, 31(10), 2478-2486.
[http://dx.doi.org/10.1161/01.STR.31.10.2478] [PMID: 11022082]
[36]
Ito, T.; Yamakawa, H.; Bregonzio, C.; Terrón, J.A.; Falcón-Neri, A.; Saavedra, J.M. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke, 2002, 33(9), 2297-2303.
[http://dx.doi.org/10.1161/01.STR.0000027274.03779.F3] [PMID: 12215602]
[37]
Yamakawa, H.; Jezova, M.; Ando, H.; Saavedra, J.M. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J. Cereb. Blood Flow Metab., 2003, 23(3), 371-380.
[http://dx.doi.org/10.1097/01.WCB.0000047369.05600.03] [PMID: 12621312]
[38]
Dahlöf, B.; Devereux, R.B.; Kjeldsen, S.E.; Julius, S.; Beevers, G.; de Faire, U.; Fyhrquist, F.; Ibsen, H.; Kristiansson, K.; Lederballe-Pedersen, O.; Lindholm, L.H.; Nieminen, M.S.; Omvik, P.; Oparil, S.; Wedel, H. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet, 2002, 359(9311), 995-1003.
[http://dx.doi.org/10.1016/S0140-6736(02)08089-3] [PMID: 11937178]
[39]
Schrader, J.; Lüders, S.; Kulschewski, A.; Hammersen, F.; Plate, K.; Berger, J.; Zidek, W.; Dominiak, P.; Diener, H.C. Morbidity and mortality after stroke, eprosartan compared with nitrendipine for secondary prevention: Principal results of a prospective randomized controlled study (MOSES). Stroke, 2005, 36(6), 1218-1224.
[http://dx.doi.org/10.1161/01.STR.0000166048.35740.a9] [PMID: 15879332]
[40]
Julius, S.; Nesbitt, S.D.; Egan, B.M.; Weber, M.A.; Michelson, E.L.; Kaciroti, N.; Black, H.R.; Grimm, R.H., Jr; Messerli, F.H.; Oparil, S.; Schork, M.A. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N. Engl. J. Med., 2006, 354(16), 1685-1697.
[http://dx.doi.org/10.1056/NEJMoa060838] [PMID: 16537662]
[41]
Li, J.M.; Mogi, M.; Iwanami, J.; Min, L.J.; Tsukuda, K.; Sakata, A.; Fujita, T.; Iwai, M.; Horiuchi, M. Temporary pretreatment with the angiotensin II type 1 receptor blocker, valsartan, prevents ischemic brain damage through an increase in capillary density. Stroke, 2008, 39(7), 2029-2036.
[http://dx.doi.org/10.1161/STROKEAHA.107.503458] [PMID: 18436887]
[42]
Schiavone, M.T.; Santos, R.A.; Brosnihan, K.B.; Khosla, M.C.; Ferrario, C.M. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc. Natl. Acad. Sci. USA, 1988, 85(11), 4095-4098.
[http://dx.doi.org/10.1073/pnas.85.11.4095] [PMID: 3375255]
[43]
Block, C.H.; Santos, R.A.S.; Brosnihan, K.B.; Ferrario, C.M. Immunocytochemical localization of angiotensin-(1-7) in the rat forebrain. Peptides, 1988, 9(6), 1395-1401.
[http://dx.doi.org/10.1016/0196-9781(88)90208-2] [PMID: 3247256]
[44]
Campagnole-Santos, M.J.; Heringer, S.B.; Batista, E.N.; Khosla, M.C.; Santos, R.A. Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. Am. J. Physiol., 1992, 263(1 Pt 2), R89-R94.
[PMID: 1636797]
[45]
Heringer-Walther, S.; Batista, É.N.; Walther, T.; Khosla, M.C.; Santos, R.A.S.; Campagnole-Santos, M.J. Baroreflex improvement in shr after ace inhibition involves angiotensin-(1-7). Hypertension, 2001, 37(5), 1309-1314.
[http://dx.doi.org/10.1161/01.HYP.37.5.1309] [PMID: 11358946]
[46]
Chaves, G.Z.; Caligiorne, S.M.; Santos, R.A.S.; Khosla, M.C.; Campagnole-Santos, M.J. Modulation of the baroreflex control of heart rate by angiotensin-(1-7) at the nucleus tractus solitarii of normotensive and spontaneously hypertensive rats. J. Hypertens., 2000, 18(12), 1841-1848.
[http://dx.doi.org/10.1097/00004872-200018120-00019] [PMID: 11132609]
[47]
Yamazato, M.; Ferreira, A.J.; Yamazato, Y.; Diez-Freire, C.; Yuan, L.; Gillies, R.; Raizada, M.K. Gene transfer of angiotensin-converting enzyme 2 in the nucleus tractus solitarius improves baroreceptor heart rate reflex in spontaneously hypertensive rats. J. Renin Angiotensin Aldosterone Syst., 2011, 12(4), 456-461.
[http://dx.doi.org/10.1177/1470320311412809] [PMID: 21719524]
[48]
Jiang, T.; Gao, L.; Shi, J.; Lu, J.; Wang, Y.; Zhang, Y. Angiotensin-(1-7) modulates renin-angiotensin system associated with reducing oxidative stress and attenuating neuronal apoptosis in the brain of hypertensive rats. Pharmacol. Res., 2013, 67(1), 84-93.
[http://dx.doi.org/10.1016/j.phrs.2012.10.014] [PMID: 23127917]
[49]
Regenhardt, R.W.; Mecca, A.P.; Desland, F.; Ritucci-Chinni, P.F.; Ludin, J.A.; Greenstein, D.; Banuelos, C.; Bizon, J.L.; Reinhard, M.K.; Sumners, C. Centrally administered angiotensin-(1-7) increases the survival of stroke-prone spontaneously hypertensive rats. Exp. Physiol., 2014, 99(2), 442-453.
[http://dx.doi.org/10.1113/expphysiol.2013.075242] [PMID: 24142453]
[50]
Leong, D.S.; Terrón, J.A.; Falcón-Neri, A.; Armando, I.; Ito, T.; Jöhren, O.; Tonelli, L.H.; Hoe, K.L.; Saavedra, J.M. Restraint stress modulates brain, pituitary and adrenal expression of angiotensin II AT(1A), AT(1B) and AT(2) receptors. Neuroendocrinology, 2002, 75(4), 227-240.
[http://dx.doi.org/10.1159/000054714] [PMID: 11979053]
[51]
Sapolsky, R.M. The possibility of neurotoxicity in the hippocampus in major depression: A primer on neuron death. Biol. Psychiatry, 2000, 48(8), 755-765.
[http://dx.doi.org/10.1016/S0006-3223(00)00971-9] [PMID: 11063972]
[52]
Baghai, T.C.; Binder, E.B.; Schule, C.; Salyakina, D.; Eser, D.; Lucae, S.; Zwanzger, P.; Haberger, C.; Zill, P.; Ising, M.; Deiml, T.; Uhr, M.; Illig, T.; Wichmann, H-E.; Modell, S.; Nothdurfter, C.; Holsboer, F.; Müller-Myhsok, B.; Möller, H-J.; Rupprecht, R.; Bondy, B. Polymorphisms in the angiotensin-converting enzyme gene are associated with unipolar depression, ACE activity and hypercortisolism. Mol. Psychiatry, 2006, 11(11), 1003-1015.
[http://dx.doi.org/10.1038/sj.mp.4001884] [PMID: 16924268]
[53]
Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci., 2012, 13(1), 22-37.
[http://dx.doi.org/10.1038/nrn3138] [PMID: 22127301]
[54]
Chetty, S.; Friedman, A.R.; Taravosh-Lahn, K.; Kirby, E.D.; Mirescu, C.; Guo, F.; Krupik, D.; Nicholas, A.; Geraghty, A.C.; Krishnamurthy, A.; Tsai, M-K.; Covarrubias, D.; Wong, A.T.; Francis, D.D.; Sapolsky, R.M.; Palmer, T.D.; Pleasure, D.; Kaufer, D. Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol. Psychiatry, 2014, 19(12), 1275-1283.
[http://dx.doi.org/10.1038/mp.2013.190] [PMID: 24514565]
[55]
Castren, E.; Saavedra, J.M. Repeated stress increases the density of angiotensin II binding sites in rat paraventricular nucleus and subfornical organ. Endocrinology, 1988, 122(1), 370-372.
[http://dx.doi.org/10.1210/endo-122-1-370] [PMID: 3335214]
[56]
Yang, G.; Wan, Y.; Zhu, Y. Angiotensin II--an important stress hormone. Neurosignals, 1996, 5(1), 1-8.
[http://dx.doi.org/10.1159/000109168] [PMID: 8739318]
[57]
Wincewicz, D.; Braszko, J. Validation of brain angiotensin system blockade as a novel drug target in pharmacological treatment of neuropsychiatric disorders. Pharmacopsychiatry, 2017, 50(6), 233-247.
[http://dx.doi.org/10.1055/s-0043-112345] [PMID: 28641333]
[58]
Qadri, F.; Culman, J.; Veltmar, A.; Maas, K.; Rascher, W.; Unger, T. Angiotensin II-induced vasopressin release is mediated through alpha-1 adrenoceptors and angiotensin II AT1 receptors in the supraoptic nucleus. J. Pharmacol. Exp. Ther., 1993, 267(2), 567-574.
[PMID: 8246129]
[59]
Jezova, D.; Skultetyova, I.; Tokarev, D.I.; Bakos, P.; Vigas, M. Vasopressin and oxytocin in stress. Ann. N. Y. Acad. Sci., 1995, 771(1 Stress), 192-203.
[http://dx.doi.org/10.1111/j.1749-6632.1995.tb44681.x] [PMID: 8597399]
[60]
Schnider, P.; Bissantz, C.; Bruns, A.; Dolente, C.; Goetschi, E.; Jakob-Roetne, R.; Künnecke, B.; Mueggler, T.; Muster, W.; Parrott, N.; Pinard, E.; Ratni, H.; Risterucci, C.; Rogers-Evans, M.; von Kienlin, M.; Grundschober, C. Discovery of balovaptan, a vasopressin 1a receptor antagonist for the treatment of autism spectrum disorder. J. Med. Chem., 2020, 63(4), 1511-1525.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01478] [PMID: 31951127]
[61]
Saavedra, J.M.; Ando, H.; Armando, I.; Baiardi, G.; Bregonzio, C.; Jezova, M.; Zhou, J. Brain angiotensin II, an important stress hormone: Regulatory sites and therapeutic opportunities. Ann. N. Y. Acad. Sci., 2004, 1018(1), 76-84.
[http://dx.doi.org/10.1196/annals.1296.009] [PMID: 15240355]
[62]
Khoury, N.M.; Marvar, P.J.; Gillespie, C.F.; Wingo, A.; Schwartz, A.; Bradley, B.; Kramer, M.; Ressler, K.J. The renin-angiotensin pathway in posttraumatic stress disorder: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are associated with fewer traumatic stress symptoms. J. Clin. Psychiatry, 2012, 73(6), 849-855.
[http://dx.doi.org/10.4088/JCP.11m07316] [PMID: 22687631]
[63]
Marvar, P.J.; Goodman, J.; Fuchs, S.; Choi, D.C.; Banerjee, S.; Ressler, K.J. Angiotensin type 1 receptor inhibition enhances the extinction of fear memory. Biol. Psychiatry, 2014, 75(11), 864-872.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.024] [PMID: 24094510]
[64]
Raasch, W.; Wittmershaus, C.; Dendorfer, A.; Voges, I.; Pahlke, F.; Dodt, C.; Dominiak, P.; Jöhren, O. Angiotensin II inhibition reduces stress sensitivity of hypothalamo-pituitary-adrenal axis in spontaneously hypertensive rats. Endocrinology, 2006, 147(7), 3539-3546.
[http://dx.doi.org/10.1210/en.2006-0198] [PMID: 16574788]
[65]
Augusto, M.L. Activation of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis attenuates the cardiac reactiv- ity to acute emotional stress. Am. J. Physiol. Heart Circ. Physiol., 2013, H1057-H1067.
[66]
Zhu, D.; Tong, Q.; Liu, W.; Tian, M.; Xie, W.; Ji, L.; Shi, J. Angiotensin (1-7) protects against stress-induced gastric lesions in rats. Biochem. Pharmacol., 2014, 87(3), 467-476.
[http://dx.doi.org/10.1016/j.bcp.2013.10.026] [PMID: 24231511]
[67]
Oscar, C.G.; Müller-Ribeiro, F.C.F.; de Castro, L.G.; Martins Lima, A.; Campagnole-Santos, M.J.; Santos, R.A.S.; Xavier, C.H.; Fontes, M.A.P. Angiotensin-(1-7) in the basolateral amygdala attenuates the cardiovascular response evoked by acute emotional stress. Brain Res., 2015, 1594, 183-189.
[http://dx.doi.org/10.1016/j.brainres.2014.11.006] [PMID: 25446442]
[68]
Lazaroni, T.L.N.; Bastos, C.P.; Moraes, M.F.D.; Santos, R.S.; Pereira, G.S. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice. Neurobiol. Learn. Mem., 2016, 127, 27-33.
[http://dx.doi.org/10.1016/j.nlm.2015.11.012] [PMID: 26642920]
[69]
Moura Santos, D.; Ribeiro Marins, F.; Limborço-Filho, M.; de Oliveira, M.L.; Hamamoto, D.; Xavier, C.H.; Moreira, F.A.; Santos, R.A.S.; Campagnole-Santos, M.J.; Peliky Fontes, M.A. Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior. Stress, 2017, 20(2), 189-196.
[http://dx.doi.org/10.1080/10253890.2017.1296949] [PMID: 28288545]
[70]
Saavedra, J.M. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders. Clin. Sci. (Lond.), 2012, 123(10), 567-590.
[http://dx.doi.org/10.1042/CS20120078] [PMID: 22827472]
[71]
Ren, L.; Lu, X.; Danser, A.H.J. Revisiting the brain renin-angiotensin system—focus on novel therapies. Curr. Hypertens. Rep., 2019, 21(4), 28.
[http://dx.doi.org/10.1007/s11906-019-0937-8] [PMID: 30949864]
[72]
Gong, X.; Hu, H.; Qiao, Y.; Xu, P.; Yang, M.; Dang, R.; Han, W.; Guo, Y.; Chen, D.; Jiang, P. The involvement of renin-angiotensin system in lipopolysaccharide-induced behavioral changes, neuroinflammation, and disturbed insulin signaling. Front. Pharmacol., 2019, 10, 318.
[http://dx.doi.org/10.3389/fphar.2019.00318] [PMID: 31001119]
[73]
Saavedra, J.M.; Sánchez-Lemus, E.; Benicky, J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications. Psychoneuroendocrinology, 2011, 36(1), 1-18.
[http://dx.doi.org/10.1016/j.psyneuen.2010.10.001] [PMID: 21035950]
[74]
Timaru-Kast, R.; Wyschkon, S.; Luh, C.; Schaible, E.V.; Lehmann, F.; Merk, P.; Werner, C.; Engelhard, K.; Thal, S.C. Delayed inhibition of angiotensin II receptor type 1 reduces secondary brain damage and improves functional recovery after experimental brain trauma. Crit. Care Med., 2012, 40(3), 935-944.
[http://dx.doi.org/10.1097/CCM.0b013e31822f08b9] [PMID: 21926585]
[75]
Villapol, S.; Balarezo, M.G.; Affram, K.; Saavedra, J.M.; Symes, A.J. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain, 2015, 138(11), 3299-3315.
[http://dx.doi.org/10.1093/brain/awv172] [PMID: 26115674]
[76]
Valenzuela, R.; Costa-Besada, M.A.; Iglesias-Gonzalez, J.; Perez-Costas, E.; Villar-Cheda, B.; Garrido-Gil, P.; Melendez-Ferro, M.; Soto-Otero, R.; Lanciego, J.L.; Henrion, D.; Franco, R.; Labandeira-Garcia, J.L. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis., 2016, 7(10), e2427.
[http://dx.doi.org/10.1038/cddis.2016.327] [PMID: 27763643]
[77]
Hammer, A.; Stegbauer, J.; Linker, R.A. Macrophages in neuroinflammation: Role of the renin-angiotensin-system. Pflugers Arch., 2017, 469(3-4), 431-444.
[http://dx.doi.org/10.1007/s00424-017-1942-x] [PMID: 28190090]
[78]
Du, Y.C.; Xu, J.Y.; Zhang, S.J. Effects of angiotensin II receptor antagonist on expression of collagen III, collagen V, and transforming growth factor beta1 in the airway walls of sensitized rats. Chin. Med. J. (Engl.), 2004, 117(6), 908-912.
[PMID: 15198897]
[79]
Dagenais, N.J.; Jamali, F. Protective effects of angiotensin II interruption: Evidence for antiinflammatory actions. Pharmacotherapy, 2005, 25(9), 1213-1229.
[http://dx.doi.org/10.1592/phco.2005.25.9.1213] [PMID: 16164395]
[80]
Ferrari, A.J.; Stockings, E.; Khoo, J.P.; Erskine, H.E.; Degenhardt, L.; Vos, T.; Whiteford, H.A. The prevalence and burden of bipolar disorder: Findings from the Global Burden of Disease Study 2013. Bipolar Disord., 2016, 18(5), 440-450.
[http://dx.doi.org/10.1111/bdi.12423] [PMID: 27566286]
[81]
Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J. Psychiatr. Res., 2020, 126, 134-140.
[http://dx.doi.org/10.1016/j.jpsychires.2019.08.002] [PMID: 31439359]
[82]
Harmer, C.J.; Duman, R.S.; Cowen, P.J. How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry, 2017, 4(5), 409-418.
[http://dx.doi.org/10.1016/S2215-0366(17)30015-9] [PMID: 28153641]
[83]
Braszko, J.J.; Karwowska-Polecka, W.; Halicka, D.; Gard, P.R. Captopril and enalapril improve cognition and depressed mood in hypertensive patients. J. Basic Clin. Physiol. Pharmacol., 2003, 14(4), 323-343.
[http://dx.doi.org/10.1515/JBCPP.2003.14.4.323] [PMID: 15198305]
[84]
Tanaka, J.; Kariya, K.; Nomura, M. Angiotensin II reduces serotonin release in the rat subfornical organ area. Peptides, 2003, 24(6), 881-887.
[http://dx.doi.org/10.1016/S0196-9781(03)00164-5] [PMID: 12948840]
[85]
Nasr, S.J.; Crayton, J.W.; Agarwal, B.; Wendt, B.; Kora, R. Lower frequency of antidepressant use in patients on renin-angiotensin-aldosterone system modifying medications. Cell. Mol. Neurobiol., 2011, 31(4), 615-618.
[http://dx.doi.org/10.1007/s10571-011-9656-7] [PMID: 21301954]
[86]
Ahola, A.J.; Harjutsalo, V.; Forsblom, C.; Groop, P.H. Renin-angiotensin-aldosterone-blockade is associated with decreased use of antidepressant therapy in patients with type 1 diabetes and diabetic nephropathy. Acta Diabetol., 2014, 51(4), 529-533.
[http://dx.doi.org/10.1007/s00592-013-0547-x] [PMID: 24436029]
[87]
Ping, G.; Qian, W.; Song, G.; Zhaochun, S. Valsartan reverses depressive/anxiety-like behavior and induces hippocampal neurogenesis and expression of BDNF protein in unpredictable chronic mild stress mice. Pharmacol. Biochem. Behav., 2014, 124, 5-12.
[http://dx.doi.org/10.1016/j.pbb.2014.05.006] [PMID: 24844704]
[88]
Aswar, U.; Chepurwar, S.; Shintre, S.; Aswar, M. Telmisartan attenuates diabetes induced depression in rats. Pharmacol. Rep., 2017, 69(2), 358-364.
[http://dx.doi.org/10.1016/j.pharep.2016.12.004] [PMID: 28189098]
[89]
Ayyub, M.; Najmi, A.K.; Akhtar, M. Protective effect of irbesartan an angiotensin (AT1) receptor antagonist in unpredictable chronic mild stress induced depression in mice. Drug Res. (Stuttg.), 2017, 67(1), 59-64.
[PMID: 27756096]
[90]
Zubenko, G.S.; Nixon, R.A. Mood-elevating effect of captopril in depressed patients. Am. J. Psychiatry, 1984, 141(1), 110-111.
[http://dx.doi.org/10.1176/ajp.141.1.110] [PMID: 6318579]
[91]
Deicken, R.F. Captopril treatment of depression. Biol. Psychiatry, 1986, 21(14), 1425-1428.
[http://dx.doi.org/10.1016/0006-3223(86)90334-3] [PMID: 3539210]
[92]
Cohen, B.M.; Zubenko, G.S. Captopril in the treatment of recurrent major depression. J. Clin. Psychopharmacol., 1988, 8(2), 143-144.
[http://dx.doi.org/10.1097/00004714-198804000-00018] [PMID: 3286687]
[93]
Germain, L.; Chouinard, G. Treatment of recurrent unipolar major depression with captopril. Biol. Psychiatry, 1988, 23(6), 637-641.
[http://dx.doi.org/10.1016/0006-3223(88)90010-8] [PMID: 3281718]
[94]
Germain, L.; Chouinard, G. Captopril treatment of major depression with serial measurements of blood cortisol concentrations. Biol. Psychiatry, 1989, 25(4), 489-493.
[http://dx.doi.org/10.1016/0006-3223(89)90203-5] [PMID: 2649159]
[95]
Pavlatou, M.G.; Mastorakos, G.; Lekakis, I.; Liatis, S.; Vamvakou, G.; Zoumakis, E.; Papassotiriou, I.; Rabavilas, A.D.; Katsilambros, N.; Chrousos, G.P. Chronic administration of an angiotensin II receptor antagonist resets the hypothalamic-pituitary-adrenal (HPA) axis and improves the affect of patients with diabetes mellitus type 2: Preliminary results. Stress, 2008, 11(1), 62-72.
[http://dx.doi.org/10.1080/10253890701476621] [PMID: 17853061]
[96]
Arinami, T.; Liming, L.; Mitsushio, H.; Itokawa, M.; Hamaguchi, H.; Toru, M. An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol. Psychiatry, 1996, 40(11), 1122-1127.
[http://dx.doi.org/10.1016/S0006-3223(95)00597-8] [PMID: 8931914]
[97]
Saab, Y.B.; Gard, P.R.; Yeoman, M.S.; Mfarrej, B.; El-Moalem, H.; Ingram, M.J. Renin-angiotensin-system gene polymorphisms and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(5), 1113-1118.
[http://dx.doi.org/10.1016/j.pnpbp.2007.04.002] [PMID: 17499413]
[98]
Martin, P.; Massol, J.; Puech, A.J. Captopril as an antidepressant? Effects on the learned helplessness paradigm in rats. Biol. Psychiatry, 1990, 27(9), 968-974.
[http://dx.doi.org/10.1016/0006-3223(90)90034-Y] [PMID: 2185850]
[99]
Okuyama, S.; Sakagawa, T.; Sugiyama, F.; Fukamizu, A.; Murakami, K. Reduction of depressive-like behavior in mice lacking angiotensinogen. Neurosci. Lett., 1999, 261(3), 167-170.
[http://dx.doi.org/10.1016/S0304-3940(99)00002-6] [PMID: 10081975]
[100]
Voigt, J.P.; Hörtnagl, H.; Rex, A.; van Hove, L.; Bader, M.; Fink, H. Brain angiotensin and anxiety-related behavior: The transgenic rat TGR(ASrAOGEN)680. Brain Res., 2005, 1046(1-2), 145-156.
[http://dx.doi.org/10.1016/j.brainres.2005.03.048] [PMID: 15869747]
[101]
Kangussu, L.M.; Almeida-Santos, A.F.; Bader, M.; Alenina, N.; Fontes, M.A.P.; Santos, R.A.S.; Aguiar, D.C.; Campagnole-Santos, M.J. Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen. Behav. Brain Res., 2013, 257, 25-30.
[http://dx.doi.org/10.1016/j.bbr.2013.09.003] [PMID: 24016839]
[102]
Almeida-Santos, A.F.; Kangussu, L.M.; Moreira, F.A.; Santos, R.A.S.; Aguiar, D.C.; Campagnole-Santos, M.J. Anxiolytic- and antidepressant-like effects of angiotensin-(1-7) in hypertensive transgenic (mRen2)27 rats. Clin. Sci. (Lond.), 2016, 130(14), 1247-1255.
[http://dx.doi.org/10.1042/CS20160116] [PMID: 27129185]
[103]
Meira-Lima, I.V.; Pereira, A.C.; Mota, G.F.A.; Krieger, J.E.; Vallada, H. Angiotensinogen and angiotensin converting enzyme gene polymorphisms and the risk of bipolar affective disorder in humans. Neurosci. Lett., 2000, 293(2), 103-106.
[http://dx.doi.org/10.1016/S0304-3940(00)01512-3] [PMID: 11027844]
[104]
Sanches, M.; Colpo, G.D.; Cuellar, V.A.; Bockmann, T.; Rogith, D.; Soares, J.C.; Teixeira, A.L. Decreased plasma levels of angiotensin-converting enzyme among patients with bipolar disorder. Front. Neurosci., 2021, 15, 617888.
[http://dx.doi.org/10.3389/fnins.2021.617888] [PMID: 33642980]
[105]
de Souza Gomes, J.A.; de Souza, G.C.; Berk, M.; Cavalcante, L.M.; de Sousa, F.C.F.; Budni, J.; de Lucena, D.F.; Quevedo, J.; Carvalho, A.F.; Macêdo, D. Antimanic-like activity of candesartan in mice: Possible involvement of antioxidant, anti-inflammatory and neurotrophic mechanisms. Eur. Neuropsychopharmacol., 2015, 25(11), 2086-2097.
[http://dx.doi.org/10.1016/j.euroneuro.2015.08.005] [PMID: 26321203]
[106]
Henriksen, M.G.; Nordgaard, J.; Jansson, L.B. Genetics of schizophrenia: Overview of methods, findings and limitations. Front. Hum. Neurosci., 2017, 11, 322.
[http://dx.doi.org/10.3389/fnhum.2017.00322] [PMID: 28690503]
[107]
Hui, L.; Wu, J.Q.; Ye, M.J.; Zheng, K.; He, J.C.; Zhang, X.; Liu, J.H.; Tian, H.J.; Gong, B.H.; Chen, D.C.; Lv, M.H.; Soares, J.C.; Zhang, X.Y. Association of angiotensin-converting enzyme gene polymorphism with schizophrenia and depressive symptom severity in a Chinese population. Hum. Psychopharmacol., 2015, 30(2), 100-107.
[http://dx.doi.org/10.1002/hup.2460] [PMID: 25694211]
[108]
Crescenti, A.; Gassó, P.; Mas, S.; Abellana, R.; Deulofeu, R.; Parellada, E.; Bernardo, M.; Lafuente, A. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene is associated with schizophrenia in a Spanish population. Psychiatry Res., 2009, 165(1-2), 175-180.
[http://dx.doi.org/10.1016/j.psychres.2008.04.024] [PMID: 18986708]
[109]
Gadelha, A.; Yonamine, C.M.; Nering, M.; Rizzo, L.B.; Noto, C.; Cogo-Moreira, H.; Teixeira, A.L.; Bressan, R.; Maes, M.; Brietzke, E.; Hayashi, M.A.F. Angiotensin converting enzyme activity is positively associated with IL-17a levels in patients with schizophrenia. Psychiatry Res., 2015, 229(3), 702-707.
[http://dx.doi.org/10.1016/j.psychres.2015.08.018] [PMID: 26296754]
[110]
Gadelha, A.; Vendramini, A.M.; Yonamine, C.M.; Nering, M.; Berberian, A.; Suiama, M.A.; Oliveira, V.; Lima-Landman, M.T.; Breen, G.; Bressan, R.A.; Abílio, V.; Hayashi, M A F. Convergent evidences from human and animal studies implicate angiotensin I-converting enzyme activity in cognitive performance in schizophrenia. Transl. Psychiatry, 2015, 5(12), e691.
[http://dx.doi.org/10.1038/tp.2015.181] [PMID: 26645626]
[111]
Nani, J.V.; Dal Mas, C.; Yonamine, C.M.; Ota, V.K.; Noto, C.; Belangero, S.I.; Mari, J.J.; Bressan, R.; Cordeiro, Q.; Gadelha, A.; Hayashi, M.A.F. A study in first-episode psychosis patients: Does angiotensin I-converting enzyme (ACE) activity associated with genotype predict symptoms severity reductions after treatment with the atypical antipsychotic risperidone? Int. J. Neuropsychopharmacol., 2020, 23(11), 721-730.
[http://dx.doi.org/10.1093/ijnp/pyaa050] [PMID: 32696960]
[112]
Mohite, S.; de Campos-Carli, S.M.; Rocha, N.P.; Sharma, S.; Miranda, A.S.; Barbosa, I.G.; Salgado, J.V.; Simoes-e-Silva, A.C.; Teixeira, A.L. Lower circulating levels of angiotensin-converting enzyme (ACE) in patients with schizophrenia. Schizophr. Res., 2018, 202, 50-54.
[http://dx.doi.org/10.1016/j.schres.2018.06.023] [PMID: 29925475]
[113]
Chauquet, S.; Zhu, Z.; O’Donovan, M.C.; Walters, J.T.R.; Wray, N.R.; Shah, S. Association of antihypertensive drug target genes with psychiatric disorders. JAMA Psychiatry, 2021, 78(6), 623-631.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.0005] [PMID: 33688928]
[114]
Veeneman, R.R.; Vermeulen, J.M.; Abdellaoui, A.; Sanderson, E.; Wootton, R.E.; Tadros, R.; Bezzina, C.R.; Denys, D.; Munafò, M.R.; Verweij, K.J.H.; Treur, J.L. Exploring the relationship between schizophrenia and cardiovascular disease: A genetic correlation and multivariable mendelian randomization study. Schizophr. Bull., 2022, 48(2), 463-473.
[http://dx.doi.org/10.1093/schbul/sbab132] [PMID: 34730178]
[115]
Elkahloun, A.G.; Hafko, R.; Saavedra, J.M. An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer’s disease. Alzheimers Res. Ther., 2016, 8(1), 5.
[http://dx.doi.org/10.1186/s13195-015-0167-5] [PMID: 26822027]
[116]
Vasconcelos, G.S.; dos Santos Júnior, M.A.; Monte, A.S.; da Silva, F.E.R.; Lima, C.N.C.; Moreira, L.N. A.B.; Medeiros, I.S.; Teixeira, A.L.; de Lucena, D.F.; Vasconcelos, S.M.M.; Macedo, D.S. Low-dose candesartan prevents schizophrenia-like behavioral alterations in a neurodevelopmental two-hit model of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 111, 110348.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110348] [PMID: 33984421]
[117]
Thakur, K.S.; Prakash, A.; Bisht, R.; Bansal, P.K. Beneficial effect of candesartan and lisinopril against haloperidol-induced tardive dyskinesia in rat. J. Renin Angiotensin Aldosterone Syst., 2015, 16(4), 917-929.
[http://dx.doi.org/10.1177/1470320313515038] [PMID: 24464858]
[118]
Gorelick, P.B. Role of inflammation in cognitive impairment: Results of observational epidemiological studies and clinical trials. Ann. N. Y. Acad. Sci., 2010, 1207(1), 155-162.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05726.x] [PMID: 20955439]
[119]
Zakrocka, I.; Targowska-Duda, K.M.; Wnorowski, A.; Kocki, T. Jóźwiak, K.; Turski, W.A.; Angiotensin, I.I. Angiotensin II type 1 receptor blockers inhibit KAT II activity in the brain—its possible clinical applications. Neurotox. Res., 2017, 32(4), 639-648.
[http://dx.doi.org/10.1007/s12640-017-9781-2] [PMID: 28733707]
[120]
Linderholm, K.R.; Skogh, E.; Olsson, S.K.; Dahl, M.L.; Holtze, M.; Engberg, G.; Samuelsson, M.; Erhardt, S. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr. Bull., 2012, 38(3), 426-432.
[http://dx.doi.org/10.1093/schbul/sbq086] [PMID: 20729465]
[121]
Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 2020.
[PMID: 32157811]
[122]
Alzheimer’s Association. FY19-21 strategic plan. 2019. Available from: https://www.alz.org/media/Documents/strategic-plan-fy2019-2021.pdf
[123]
Selkoe, D.J. Alzheimer’s disease: Genotypes, phenotypes, and treatments. Science, 1997, 275(5300), 630-631.
[http://dx.doi.org/10.1126/science.275.5300.630] [PMID: 9019820]
[124]
Clinton, L.K.; Blurton-Jones, M.; Myczek, K.; Trojanowski, J.Q.; LaFerla, F.M. Synergistic Interactions between Abeta, tau, and α-synuclein: Acceleration of neuropathology and cognitive decline. J. Neurosci., 2010, 30(21), 7281-7289.
[http://dx.doi.org/10.1523/JNEUROSCI.0490-10.2010] [PMID: 20505094]
[125]
Giasson, B.I.; Lee, V.M.Y.; Trojanowski, J.Q. Interactions of amyloidogenic proteins. Neuromolecular Med., 2003, 4(1-2), 49-58.
[http://dx.doi.org/10.1385/NMM:4:1-2:49] [PMID: 14528052]
[126]
Walker, L.; McAleese, K.E.; Thomas, A.J.; Johnson, M.; Martin-Ruiz, C.; Parker, C.; Colloby, S.J.; Jellinger, K.; Attems, J. Neuropathologically mixed Alzheimer’s and Lewy body disease: Burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol., 2015, 129(5), 729-748.
[http://dx.doi.org/10.1007/s00401-015-1406-3] [PMID: 25758940]
[127]
Kovacs, G.G.; Alafuzoff, I.; Al-Sarraj, S.; Arzberger, T.; Bogdanovic, N.; Capellari, S.; Ferrer, I.; Gelpi, E.; Kövari, V.; Kretzschmar, H.; Nagy, Z.; Parchi, P.; Seilhean, D.; Soininen, H.; Troakes, C.; Budka, H. Mixed brain pathologies in dementia: The BrainNet Europe consortium experience. Dement. Geriatr. Cogn. Disord., 2008, 26(4), 343-350.
[http://dx.doi.org/10.1159/000161560] [PMID: 18849605]
[128]
Barker, W.W.; Luis, C.A.; Kashuba, A.; Luis, M.; Harwood, D.G.; Loewenstein, D.; Waters, C.; Jimison, P.; Shepherd, E.; Sevush, S.; Graff-Radford, N.; Newland, D.; Todd, M.; Miller, B.; Gold, M.; Heilman, K.; Doty, L.; Goodman, I.; Robinson, B.; Pearl, G.; Dickson, D.; Duara, R. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis. Assoc. Disord., 2002, 16(4), 203-212.
[http://dx.doi.org/10.1097/00002093-200210000-00001] [PMID: 12468894]
[129]
Buchhave, P.; Minthon, L.; Zetterberg, H.; Wallin, A.K.; Blennow, K.; Hansson, O. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch. Gen. Psychiatry, 2012, 69(1), 98-106.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.155] [PMID: 22213792]
[130]
Braak, E.; Griffing, K.; Arai, K.; Bohl, J.; Bratzke, H.; Braak, H. Neuropathology of Alzheimer’s disease: What is new since A. Alzheimer? Eur. Arch. Psychiatry Clin. Neurosci., 1999, 249(Suppl. 3), 14-22.
[131]
dos Santos Picanco, L.C.; Ozela, P.F.; de Fatima de Brito Brito, M.; Pinheiro, A.A.; Padilha, E.C.; Braga, F.S.; de Paula da Silva, C.H.T.; dos Santos, C.B.R.; Rosa, J.M.C.; da Silva Hage-Melim, L.I. Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr. Med. Chem., 2018, 25(26), 3141-3159.
[http://dx.doi.org/10.2174/0929867323666161213101126] [PMID: 30191777]
[132]
Wright, J.W.; Harding, J.W. The brain renin-angiotensin system: A diversity of functions and implications for CNS diseases. Pflugers Arch., 2013, 465(1), 133-151.
[http://dx.doi.org/10.1007/s00424-012-1102-2] [PMID: 22535332]
[133]
Baltatu, O.C.; Campos, L.A.; Bader, M. Local renin-angiotensin system and the brain—A continuous quest for knowledge. Peptides, 2011, 32(5), 1083-1086.
[http://dx.doi.org/10.1016/j.peptides.2011.02.008] [PMID: 21333703]
[134]
Jiang, T.; Zhang, Y.D.; Zhou, J.S.; Zhu, X.C.; Tian, Y.Y.; Zhao, H.D.; Lu, H.; Gao, Q.; Tan, L.; Yu, J.T. Angiotensin-(1-7) is reduced and inversely correlates with Tau hyperphosphorylation in animal models of Alzheimer’s disease. Mol. Neurobiol., 2016, 53(4), 2489-2497.
[http://dx.doi.org/10.1007/s12035-015-9260-9] [PMID: 26044748]
[135]
Kehoe, P.G.; Wong, S.; Mulhim, A.L. N.; Palmer, L.E.; Miners, J.S. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-β and tau pathology. Alzheimers Res. Ther., 2016, 8(1), 50.
[http://dx.doi.org/10.1186/s13195-016-0217-7] [PMID: 27884212]
[136]
Jiang, T.; Tan, L.; Gao, Q.; Lu, H.; Zhu, X.C.; Zhou, J.S.; Zhang, Y.D. Plasma Angiotensin-(1-7) is a potential biomarker for Alzheimer’s disease. Curr. Neurovasc. Res., 2016, 13(2), 96-99.
[http://dx.doi.org/10.2174/1567202613666160224124739] [PMID: 26907614]
[137]
Ribeiro, V.T.; Cordeiro, T.M.; Filha, R.S.; Perez, L.G.; Caramelli, P.; Teixeira, A.L.; de Souza, L.C.; Simões e Silva, A.C. Circulating angiotensin-(1-7) is reduced in Alzheimer’s disease patients and correlates with white matter abnormalities: Results from a pilot study. Front. Neurosci., 2021, 15, 636754.
[http://dx.doi.org/10.3389/fnins.2021.636754] [PMID: 33897352]
[138]
Kurata, T.; Lukic, V.; Kozuki, M.; Wada, D.; Miyazaki, K.; Morimoto, N.; Ohta, Y.; Deguchi, K.; Yamashita, T.; Hishikawa, N.; Matsuzono, K.; Ikeda, Y.; Kamiya, T.; Abe, K. Long-term effect of telmisartan on Alzheimer’s amyloid genesis in SHR-SR after tMCAO. Transl. Stroke Res., 2015, 6(2), 107-115.
[http://dx.doi.org/10.1007/s12975-013-0321-y] [PMID: 24435631]
[139]
Braszko, J.J.; Wincewicz, D.; Jakubów, P. Candesartan prevents impairment of recall caused by repeated stress in rats. Psychopharmacology (Berl.), 2013, 225(2), 421-428.
[http://dx.doi.org/10.1007/s00213-012-2829-3] [PMID: 22890474]
[140]
Wincewicz, D.; Braszko, J.J. Telmisartan attenuates cognitive impairment caused by chronic stress in rats. Pharmacol. Rep., 2014, 66(3), 436-441.
[http://dx.doi.org/10.1016/j.pharep.2013.11.002] [PMID: 24905520]
[141]
Wincewicz, D.; Braszko, J.J. Angiotensin II AT1 receptor blockade by telmisartan reduces impairment of spatial maze performance induced by both acute and chronic stress. J. Renin Angiotensin Aldosterone Syst., 2015, 16(3), 495-505.
[http://dx.doi.org/10.1177/1470320314526269] [PMID: 24622157]
[142]
Wincewicz, D.; Juchniewicz, A.; Waszkiewicz, N.; Braszko, J.J. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression. Pharmacol. Biochem. Behav., 2016, 148, 108-118.
[http://dx.doi.org/10.1016/j.pbb.2016.06.010] [PMID: 27375198]
[143]
Li, N.C.; Lee, A.; Whitmer, R.A.; Kivipelto, M.; Lawler, E.; Kazis, L.E.; Wolozin, B. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: Prospective cohort analysis. BMJ, 2010, 340(jan12 1), b5465.
[http://dx.doi.org/10.1136/bmj.b5465] [PMID: 20068258]
[144]
Kume, K.; Hanyu, H.; Sakurai, H.; Takada, Y.; Onuma, T.; Iwamoto, T. Effects of telmisartan on cognition and regional cerebral blood flow in hypertensive patients with Alzheimer’s disease. Geriatr. Gerontol. Int., 2012, 12(2), 207-214.
[http://dx.doi.org/10.1111/j.1447-0594.2011.00746.x] [PMID: 21929736]
[145]
Zhuang, S.; Wang, H.F.; Wang, X.; Li, J.; Xing, C.M. The association of renin-angiotensin system blockade use with the risks of cognitive impairment of aging and Alzheimer’s disease: A meta-analysis. J. Clin. Neurosci., 2016, 33, 32-38.
[http://dx.doi.org/10.1016/j.jocn.2016.02.036] [PMID: 27475317]
[146]
Uekawa, K.; Hasegawa, Y.; Senju, S.; Nakagata, N.; Ma, M.; Nakagawa, T.; Koibuchi, N.; Kim-Mitsuyama, S. Intracerebroventricular infusion of angiotensin-(1-7) ameliorates cognitive impairment and memory dysfunction in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2016, 53(1), 127-133.
[http://dx.doi.org/10.3233/JAD-150642] [PMID: 27128367]
[147]
Chen, J.L.; Zhang, D.L.; Sun, Y.; Zhao, Y.X.; Zhao, K.X.; Pu, D.; Xiao, Q. Angiotensin-(1-7) administration attenuates Alzheimer’s disease-like neuropathology in rats with streptozotocin-induced diabetes via Mas receptor activation. Neuroscience, 2017, 346, 267-277.
[http://dx.doi.org/10.1016/j.neuroscience.2017.01.027] [PMID: 28147245]
[148]
Varshney, V.; Garabadu, D. Ang (1-7)/Mas receptor-axis activation promotes amyloid beta-induced altered mitochondrial bioenergetics in discrete brain regions of Alzheimer’s disease-like rats. Neuropeptides, 2021, 86, 102122.
[http://dx.doi.org/10.1016/j.npep.2021.102122] [PMID: 33508525]
[149]
Duan, R. Wang, S.Y.; Wei, B.; Deng, Y.; Fu, X.X.; Gong, P.Y.; e, Y.; Sun, X.J.; Cao, H.M.; Shi, J.Q.; Jiang, T.; Zhang, Y.D. Angiotensin-(1-7) analogue AVE0991 modulates astrocyte-mediated neuroinflammation via lncRNA SNHG14/miR-223-3p/NLRP3 pathway and offers neuroprotection in a transgenic mouse model of Alzheimer’s disease. J. Inflamm. Res., 2021, 14, 7007-7019.
[http://dx.doi.org/10.2147/JIR.S343575] [PMID: 34955647]
[150]
Evans, C.E.; Miners, J.S.; Piva, G.; Willis, C.L.; Heard, D.M.; Kidd, E.J.; Good, M.A.; Kehoe, P.G. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease. Acta Neuropathol., 2020, 139(3), 485-502.
[http://dx.doi.org/10.1007/s00401-019-02098-6] [PMID: 31982938]
[151]
Arendse, L.B.; Danser, A.H.J.; Poglitsch, M.; Touyz, R.M.; Burnett, J.C., Jr; Llorens-Cortes, C.; Ehlers, M.R.; Sturrock, E.D. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacol. Rev., 2019, 71(4), 539-570.
[http://dx.doi.org/10.1124/pr.118.017129] [PMID: 31537750]
[152]
Treiber, K.A.; Lyketsos, C.G.; Corcoran, C.; Steinberg, M.; Norton, M.; Green, R.C.; Rabins, P.; Stein, D.M.; Welsh-Bohmer, K.A.; Breitner, J.C.S.; Tschanz, J.T. Vascular factors and risk for neuropsychiatric symptoms in Alzheimer’s disease: The Cache County Study. Int. Psychogeriatr., 2008, 20(3), 538-553.
[http://dx.doi.org/10.1017/S1041610208006704] [PMID: 18289451]
[153]
Robinson, R.G.; Jorge, R.E. Post-stroke depression: A review. Am. J. Psychiatry, 2016, 173(3), 221-231.
[http://dx.doi.org/10.1176/appi.ajp.2015.15030363] [PMID: 26684921]
[154]
Jellinger, K.A. Pathomechanisms of vascular depression in older adults. Int. J. Mol. Sci., 2021, 23(1), 308.
[http://dx.doi.org/10.3390/ijms23010308] [PMID: 35008732]
[155]
Machado-Silva, A.; Passos-Silva, D.; Santos, R.A.; Sinisterra, R.D. Therapeutic uses for angiotensin-(1-7). Expert Opin. Ther. Pat., 2016, 26(6), 669-678.
[156]
Mogi, M.; Horiuchi, M. Effect of angiotensin II type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases. Geriatr. Gerontol. Int., 2013, 13(1), 13-18.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00900.x] [PMID: 22726823]
[157]
Ahmed, H.A.; Ismael, S.; Salman, M.; Devlin, P.; McDonald, M.P.; Liao, F.F.; Ishrat, T. Direct AT2R stimulation slows post-stroke cognitive decline in the 5XFAD Alzheimer’s disease mice. Mol. Neurobiol., 2022, 59(7), 4124-4140.
[http://dx.doi.org/10.1007/s12035-022-02839-x] [PMID: 35486224]
[158]
Eldahshan, W.; Sayed, M.A.; Awad, M.E.; Ahmed, H.A.; Gillis, E.; Althomali, W.; Pillai, B.; Alshammari, A.; Jackson, L.; Dong, G.; Sullivan, J.C.; Cooley, M.A.; Elsalanty, M.; Ergul, A.; Fagan, S.C. Stimulation of angiotensin II receptor 2 preserves cognitive function and is associated with an enhanced cerebral vascular density after stroke. Vascul. Pharmacol., 2021, 141, 106904.
[http://dx.doi.org/10.1016/j.vph.2021.106904] [PMID: 34481068]
[159]
Royea, J.; Lacalle-Aurioles, M.; Trigiani, L.J.; Fermigier, A.; Hamel, E. AT2R’s (Angiotensin II Type 2 Receptor’s) role in cognitive and cerebrovascular deficits in a mouse model of Alzheimer disease. Hypertension, 2020, 75(6), 1464-1474.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14431] [PMID: 32362228]
[160]
Min, L.J.; Iwanami, J.; Shudou, M.; Bai, H.Y.; Shan, B.S.; Higaki, A.; Mogi, M.; Horiuchi, M. Deterioration of cognitive function after transient cerebral ischemia with amyloid-β infusion—possible amelioration of cognitive function by AT2 receptor activation. J. Neuroinflammation, 2020, 17(1), 106.
[http://dx.doi.org/10.1186/s12974-020-01775-8] [PMID: 32264971]
[161]
Iwanami, J.; Mogi, M.; Tsukuda, K.; Wang, X.L.; Nakaoka, H.; Kan-no, H.; Chisaka, T.; Bai, H.Y.; Shan, B.S.; Kukida, M.; Horiuchi, M. Direct angiotensin II type 2 receptor stimulation by compound 21 prevents vascular dementia. J. Am. Soc. Hypertens., 2015, 9(4), 250-256.
[http://dx.doi.org/10.1016/j.jash.2015.01.010] [PMID: 25753301]
[162]
Higaki, A.; Mogi, M.; Iwanami, J.; Min, L.J.; Bai, H.Y.; Shan, B.S.; Kukida, M.; Yamauchi, T.; Tsukuda, K.; Kan-no, H.; Ikeda, S.; Higaki, J.; Horiuchi, M. Beneficial effect of mas receptor deficiency on vascular cognitive impairment in the presence of angiotensin II type 2 receptor. J. Am. Heart Assoc., 2018, 7(3), e008121.
[http://dx.doi.org/10.1161/JAHA.117.008121] [PMID: 29431106]
[163]
Bosnyak, S.; Jones, E.S.; Christopoulos, A.; Aguilar, M.I.; Thomas, W.G.; Widdop, R.E. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin. Sci. (Lond.), 2011, 121(7), 297-303.
[http://dx.doi.org/10.1042/CS20110036] [PMID: 21542804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy